ELEMENTS OF FINITE ORDER IN THE FUNDAMENTAL GROUP OF A BRANCHED CYCLIC COVERING

por

ANTONIO F. COSTA

To the memory of A. Reyes

ABSTRACT

In this paper we establish relations between the order of a non-free automorphism of a P.L. manifold and its fundamental group. Similar relations can be found in the literature: [B] and [C].

1. PRELIMINARIES

Let M be a connected q-dimensional P.L. manifold, and $\widetilde{L} \subset \mathring{M}$ be a locally flat, codimension two, submanifold. Suppose that ϕ is a periodic automorphism of M of order h, whose fixedpoint set is \widetilde{L} . Let $M/\phi = N$ be the quotient manifold then $p: M \to N$ is an h-fold cyclic covering branched over L with $L \supset p(\widetilde{L})$.

We choose $o \in N-L$ as base point. Assume that there is a fixed triangulation in M. We shall call *meridian* m of L every element of π_1 (N-L,o) which has a representative bcb^{-1} where b is a path connecting o with the star of a vertex v of L, St(v), and c is a representative of a generator of π_1 (St(v)-L).

Let i: N-L \rightarrow N be the inclusion map. We can consider a presentation of π_1 (N-L,0) as follows:

$$\langle m_i, n_s | r_t \rangle_{i \in I, s \in S, t \in T}$$

where the m_i are meridians of L, I is the set of vertices of L, and $s \in S$ are elements such that $i_*(n_s) \neq 1$ in $\pi_1(N)$.

We call $\{o_1,\ldots,o_h\}=p^{-1}$ (o), $o_n=\phi^{n-1}$ (o₁). Let ω : π_1 (N-L,o) \to S_h be the representation corresponding to the covering $p\colon M\to N$. Note that there is at least a meridian which is sent to an h-cycle; call this meridian m_1 and suppose

 ω (m₁) = (1 ...h). In [F] R.H. Fox describes a process for obtaining a presentation of π_1 (M). We shall apply this process to our case.

Let o_1 be the base point of M. We shall call m_{ij} the lift of the meridian m_i origin in o_j . We define the connecting tree by $A = m_{11} \cup m_{12} \cup \ldots \cup m_{1,h-1}$. Then π_1 (M, A) ($\simeq \pi_1$ (M, o_1) because A is contractible) is generated by $(m_{ij})_{i \in I}$ and $(n_{sj})_{s \in S}$ the lifts of n_s . We have the relations:

- 1. Lifting of the relations r_t , $t \in T$: $(r_{tj})_{t \in T}$ $j = 1, \ldots, h$
- 2. Branch relations: If $\omega(m_i) = \dots (a_1 \dots a_\ell) \dots$, $\ell \mid h$, then $m_{ia_1} \dots m_{ia_\ell} = 1$.
- 3. Connecting relations: $m_{11} = 1, \dots, m_{1,h-1} = 1$.

Note that $m_{1h}=1$ beacause of the branch relation $m_{11}m_{12}\dots m_{1h}=1$ and the connecting relations $m_{11}=1,\dots,m_{1,h-1}=1$. If we call $B=A\cup m_{1h}$ then π_1 $(M,A)\simeq \pi_1$ (M,B). It is very important to note that ϕ (B)=B, then we can consider $\phi_*\colon \pi_1$ $(M,B)\to \pi_1$ (M,B), the automorphism of π_1 (M,B) induced by ϕ . Now we have that ϕ_* (m_{ij}) is represented by the lifting of m_i with origin in ϕ $(o_j)=o_{j+1}$; thus ϕ_* $(m_{ij})=m_{i,j+1}$. Also ϕ_* $(n_{sj})=n_{sj+1}$.

2. THE MAIN RESULT

Theorem. Let M be a connected q-dimensional P.L. manifold, and $\widetilde{L} \subset \mathring{M}$ a locally flat, codimension two, submanifold. Suppose that ϕ is a periodic automorphism of M of order h, whose fixed-point set is \widetilde{L} . Assume that:

- (1) ϕ induces the identity on π_1 (M)
- (2) π_1 (M) $\not\cong \pi_1$ (M/ ϕ).

Then there is in π_1 (M) a non-trivial element whose order divides h.

Proof.

If $m_{ij} = 1$ for every $i \in I$, j = 1, ..., h then since $\phi_* = id$ we have

$$\pi_1 (M) \cong < m_i, n_i \mid r_t, m_i > \cong \pi_1 (N)$$

Assume that there is $m_{ij} \in \pi_1$ (M,A) with $m_{ij} \neq 1$. Suppose that $\omega(m_i) = \ldots (ja_2 \ldots a_\ell) \ldots$ then $\ell \mid h$. But $m_{ij} = \phi_* m_{ij} = m_{i,j+1}$ so $m_{ij} = m_{ip}$, $p = a_2, \ldots, a_\ell$. We have the branch relation $m_{ij} m_{ia_2} \ldots m_{ia_\ell} = 1$, that is to say, $m_{ij}^{\ell} = 1$; hence the order of m_{ij} divides ℓ (and h). \square

Scholia:

- (1) Under the conditions of the theorem we can say that π_1 (M) is generated by elements whose orders divide h and by elements whose orders are the orders of some elements of π_1 (M/ ϕ).
- (2) Let all the elements of π_1 (M) except the unity have infinite order and let ψ be a periodic automorphism of M of order h, isotopic to the identity, whose fixed-point set is \widetilde{L} . If π_1 (M) $\not\equiv \pi_1$ (M/ ψ) there exists $x \in \pi_1$ (M) such that $x \not\in C(\pi_1$ (M)) (center of π_1 (M)) and $x^h \in C(\pi_1$ (M)).

Proof. All the elements of π_1 (M) have infinite order and π_1 (M) $\not\equiv \pi_1$ (M/ ψ) then, by the theorem, ψ_* is not the identity. Since the automorphism ψ is isotopic to the identity, ψ_* is an interior automorphism of order h; hence there exists $x \in \pi_1$ (M), $x \notin C$ (π_1 (M)) and $x^h \in C$ (π_1 (M)).

Corollaries:

- (1) Let $p: M \to S^n$ be an h-fold cyclic covering such that for an $x \in S^n$, $p^{-1}(x)$ consists of just one point (in particular, this is the case if h is prime). If $\pi_1(M) \neq 1$ and the covering transformation induces the identity on $\pi_1(M)$, then there exists $x \in \pi_1(M)$, $x \neq 1$, such that the order of x divides h.
- (2) Suppose that M is a manifold which has infinitely many periodic automorphisms { φ_i }_{i ∈ I} of prime different periods and π₁ (M) is finite. Assume that the fixed point set of φ_i is a submanifold of codimension 2 of M, for each i ∈ I. Then there exists a finite subset F ⊂ I such that π₁ (M) = π₁ (M/φ_i) for i ∈ I-F.

3. EXAMPLE

Suppose that π_1 (M) is the binary icosahedral group, I*, and ϕ is an automorphism of M with non-empty fixed-point set such that $M/\phi = S^n$ then $|\phi|$ is not coprime with 2, 3 or 5 (note that Aut (I*) is S_5 , see [M-B-D]). For example, the homology sphere of Poincaré [P] is not an h-fold cyclic covering with h prime different of 2,3 or 5.

On the other hand, we take MxS². We call $\phi \alpha = \operatorname{id} x \, r_{\alpha}$, where r_{α} is the rotation of angle α of S². Then $\phi \, \frac{2\pi}{n}$, $n \in \mathbb{N}$, provide us with infinitely many periodic automorphisms of different periods, but it is clear that in this case $\pi_1(M \times S^2) = \pi_1(M \times S^2/\phi_{\alpha})$.

REFERENCES

- [B] Borel, A.: Seminar on transformation groups. Ann. of Math. Studies No. 46, Princeton, N.J.: Princeton University Press 1960.
- [C] Conner, P.E.: Transformation groups on a K $(\pi,1)$, II. Mich. Math. Jour. 6 (1959) 413-417.
- [F] Fox, R.H.: Free differential calculus III Subgroups. Ann. Math. 64 (1956) 407-419.
- [M-B-D] Miller, G.A., Blichfeldt, H.F., Dickson, L.E.: Theory and applications of finite groups, John Wiley and sons, New York (1916).
- [P] Poincaré, H.: Cinquième complément à l'Analysis situs. Rend. Circ. Mat. Palermo 18 (1904) 45-110.

A.F. COSTA UNIVERSITÉ DE GENEVE Section de Mathématiques 2-4, rue du Lièvre Case Postale 240 1211 GENEVE 24