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ABSTRACT.

The results of Giné & Marcus (6) on the C.L.T. for stochastic integrals w.r.t.
Lévy processes are extended to the multidimensional time-parameter situation.
To reach this extension some useful convergence criteria for [0, 1]9-indexed
processes are proven, extending wellknown results of Billingsley, Chentsov,
Bickel and Wichura (3), (2).
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0. INTRODUCTION

In (6) Giné & Marcus proved that processes defined by stochastic integra-
tion, i.e.

F,= J| f.dM, t€[0,1],

where M is a random measure with independent increments uniformly in the
domain of normal attraction of an stable law of index p € (0, 2], satisfy the
C.L.T. in D[0, 1] if p # 2 and in C[0, 1]if p = 2. They prove that if (F:‘)T; | are
independent copies of the process F, then the normalized sums
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converge, in the usual weak sense, to an stable process in the space D[0, 1]
(or C[O, 1]).

It is wellknown that in this kind of problems what is relevant is to have
good thigtness criteria in the corresponding spaces of values. The first part of the
present work is devoted to find the appropiate tightness conditions in our situa-
tion, i.e. in the D[0, 1]2 (or C[0, 1]%) case. With this results in hand we show the
main lines of the construction of the stochastic integral in a second part, and in a
third part we prove the C.L.T. and give some applications: we prove that Ito’s
and diffusion processes with multidimensional time parameter satisfy the central
limit theorem. It may be worth mentioning that in the proof of the fundamental
maximal inequality, lemma (3.1) of II, an extension of Ledoux’s 2-dimensional
Doob’s inequality to q dimensions is needed (Thm. (2.1), II).

L. Convergence and regularity of stochastic processes indexed by [0, 11%

In (2) P. Bickel & M. Wichura obtain fluctuation inequalities for processes
indexed by [0, 119, extending results of Chentsov and Billingsley, (3), (4). Here
we extend their theorem 3 to the case that marginals of m, the control measure,
are not necessarily continuous. Bickel & Wichura (op. cit. pag. 1665, final)
announce a possible extension to the case that m depends on n, and the measu-
res my, converge weakly to a measure with continuous marginals. Our extension
has a different character: m will be fixed (independent of n), we will suppose
instead that our processes have independent increments, and the constants that
appear in their theorem 1 will depend on m, q, v, and § in our case. This is the
content of point 2. Point 3 is devoted to give applications of the fluctuation
inequalities to the convergence of processes indexed by [0, 1]%. An application
to the regularity of processes with independent increments over [0, 1]¢ is given
in point 4. On this later result it is worthy to say that R. Morkvenas (10), using
Dynkin-Kinney’s type conditions, proves that all stochastically continuous pro-
cesses with independent increments have versions in D[0, 1]%. Our Thm. (4.1) is
not enclosed in his result because we only impose right stochastic continuity.

As most of the proofs offer no difficulties we only give short sketches or
just skip them completely for the sake of saving space, thus keeping the paper
reasonably sized.

1. DEFINITIONS AND PREVIOUS RESULTS.

Notation is much like in (2). Let q be a positive integer and T,, T, . . . Tq
subsets of [0, 1], each of which contains 0 and 1, and is finite or [0, 1]. Let



The central limit theorem for stochastic integrals 91

(Xiher be a stochastic process indexed by T=T,; x Tz x .. . x Tq and with va-
lues in a normed space (E, |.1). We suppose that X is separable and vanish on the
lower boundary of T,d; (T ,i.e. the set of points of T with some coordinate equal
to 0.

For each p, 1 <p < q, and each t €T}, define

X,fp) : Tyx. . XTpx. . xTq —> E by
XEP)(tl,...,tp_l,tpﬂ,...,tq)=X(t1,...,tp_l,t,tpﬂ,...,tq)
and if s <t <uin T}, define
mp (s, t,u) (X) =min { 1X®) - x®) |, jx® ~X® |} where

I, Iis the supremum norm.

Definition (1.1): With the notations just introduced
Mp (X)=sup {mp(s,t,u)(X) : s<t<u, s,t,u€Tp}

MY (X)= | X Mg (X)

MX)=sup { IX())| : t€T}

The following proposition is very useful and quite elementary.

Proposition (1.2): If 1g: =(1,. .. ,1), then

MEO<ZL My (X) + 1X(1g) | SM"(X) + 1X(1g)!

q
We say that B CT is a block if B=1II  (sp, tp], in this case we also write
p=1
B=(s,t] where s =(sq,...,8q) and t =(t1,. .. tg)
Denote by X(B) the rectangular increment of X over the block B, i.e.:
q

1 1 Q-2
.€q§0 (D)7 p=1€6X(s; +e; (t; —81),... Sq T

XB)= 2, T, -

+€q (tq — 5¢))
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and say that X has independent increments if X (B;),i=1,. . ,n, are independent
random variables whenever Bj,i=1, . . ,n, are disjoint blocks.

Definition (1.3): We write X € C{n (8, 7) if X has independent increments and
for all positive X

P{IX(@B)I=r}<A 7. (m@B)»
holds for all block B CT, for some positive finite measure, m, on T, vanishing

over 9;,T and some fixed ¥> 0 and § > 0.
Here we recall Thm.1 of Bickel & Wichura (2), for later use.

Theorem (1.4): If X €C™ (B, 7), i.e. if for all pair of disjoint blocks B and C in
T, and all positive A

P{IX®B) =) IX©) =2} <A m@BUC)P

for some fixed y > 0 and 8 > 1, then for all positive A and all p, 1 <p < q, the
following inequalities hold ‘

P{My(X) >N} <KqBNAT . (m(D)
P{M'(X) >N} <Lg NN . (m(D)
The identification Dy =D ([0, 11%; R)=D ([0, 1]; Dq—l) suggests the intro-

duction of the following moduli.

Definition (1.5): For x €Dg and 6 > 0 we define
wy ®) (8) =sup { min (I xt(p) - x(sp) I, I xl(lp) - xgp) ) : stu€Tp,
s<t<u,u—s<§}
w'(8)=max {w'®(5) : 1<p<q}

In what follows we shall olso need Thm. (3.1) of Neuhaus (11).
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2. FLUCTUATION INEQUALITIES.

The following theorem is the main technical tool in the proof of the remai-
ning results of this part. We sketch its proof in the following. From now on
g>1/2.

Theorem (2.1): Let X be a stochastic procress on T C[0, 114, as above. Suppose
that for some B > 1/2 and 7 > 0 the process X satisfies condition C{n (8, 7) for
0 < A < 1 (see Definition (1.3)). Then there exists a constant K =K (g,,7, m (T )]
such that

PIMI(0 > ) 1< KA (m (DFF (1 — o
my[0,1]

for all A, 0 <A< 1, and all p, 1 <p <q. Where J,[0, 1] is the maximum jump
of the distribution function, Fmp, of the p-th. marginal, myp, of the measure m

over T.
Proof. (Sketch). It goes through three steps.

Step 1. Suppose, in a first step, that T ={to, t;,..., tm }, where
to =0<t; <...<ty =1.In this case

U

sup
<ty St <t; <1

M ()=
i~

min { " Xt] — Xti ", " Xti — th " } .

§
Ifweletf, =X¢ — Xy, ,8 =0andS;= X &, then
k k4 17 k= K

M" (X)= sup min { IS, —S; I, 1S, —S; I}
o<k <t &

< g <m

P{l S; - § IZA}<A7(_Z m (tk))ﬁ, and by independence of
i<k <j

the increments

PUIS =8 12 0088 1= 2} <A27( 2 m(t,)*
i<e<j

(= m(t)’

k<exi



94 Antonio Sintes Blanc

Hence, we are in position to apply thm. (12.6) of Billingsley (3), to get the result
we want with A~27 instead of A=*7 . (We will use this fact in step 3).

Step 2. q=1,T =0, 1], m arbitrary.

Use discretization, step 1 and separability to show that

3. [0,1]
" - 28 R m [i]
P{M/(X)= 2} <KX (m(D)** (1 YO )*.

Step 3. q 2 2, T and m arbitrary.

Assume p = 1, for other p the argument is the same. Like in step 5 of Bickel
& Wichura’s proof of theorem 1, the key point is that the version for q =1 of
our theorem works for the function valued process (Xg 1))t eT,-To show this it
is enough to find bounds for its increments.

For fixed sand t let Y = X{!) — X{!) over T* =T,x. . .xTq. It is easy to see
that if m*(B"):=m((s,t]xB"), then

Y € @)
forall A, 0 <A <1, hence
P MY (V)2 Ny (=D <APYK (0, B) 17 (my (5, t])PP <
<A2YK, (m (D)P 1727 (my (5, 1))

for all positive A <1 and r;, by thm. (1.4). This, together with the trivial bound
(see prop. (1.2))

PLIXD x>} <P {My(V)> N, (g-1)7H} +
P{IY(145) !> M}
valid for all 0 <A < 1 and all non negative r; , r, such thatr; +r, =1, leads to

PARXY XD > A} <@ (m (TP Ky + 1) A2 (my G, t])*
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Now, by the theorem in dimension 1:

J1 (T1)

PAMY () >M} <A77 (m (D) Kg +5) A7) (m(DYF (1 - —

)ﬁ

where I14 T2 aI€ choosen to minimize the constant, i.e. 1o is the solution of

the equation 2Kq (m (T))P (1 —r,)" * =r27 *1 over (0, 1), and f3o=1—T1q o

3. COVERGENCE OF PROCESSES INDEXED BY [0, 1]9.

Using arguments very near to those in Billingsley (3), pg. 133-134, we can
now proof the following result.

Theorem (3.1): Let (Xn)':’=l be processes over T = [0, 1]9 vanishing on 9;T.
Suppose that X, € C’in (8, 7) forsome 3>1/2and forn=1, 2, ... Then:

lim lmsup Plwy ®@)>e} =0
5§40 n*= n

foralle>0::

Remark. The previous theorems olso hold if condition X e C{n (8, 7) is replaced
by: X defined over (2, x Q,,P; x P,)andforallu, e Q;,X; (u;, ) e C'in @, 7).
We then say that X E’E:n @, 7).

Theorem (3.2): A sequence (Pn)‘;o=1 of probability measures over (Dq,‘:Dq) is
tight if: ,
i) For all > 0, there exists a € IR such that
P,o{x :sup, Ix(®)I>a} <n,n=1,2,...

ii) For all positive €, 1 there exists §, 0 <& < 1, and n, such that for all

n=2n,:

a) P, {x 1w (8)=e} <n.
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b)P, {x : W)Ep) [0,8)>¢, forsome p,1 <p<q <n7.

)P, {x : w)((p) [1-8,1)=¢, forsome p,l <p<q} <7.
Proof: Apply the arguments of Billingsley (3), thm. (14.4), to the functions
t— 1x® |

As an application of the previous results we get he following theorem, that
generalizes theorem (2.3) of Giné & Marcus (6), to processes indexed by [0, 1]%.
Theorem (3.3): Let (X,)p-;> X be Dg-valued random variables, vanishing on

9;,¢T, and such that:

i) The finite dimensional distributions of the X, converge weakly to the
corresponding distributions of X.

ii)Xne'(\fim B8,7), n=1,2,..., forsome $>1/2,and v > 0.
iii) Foralle >0

lim limsup P {x : wP)[1.8,1)>¢, forsomep,1 <p<q} =0
6§10 n-roo X

Then { P, =L (X,) }:’: , converge weakly to L(X), as a sequence of proba-
bility measures on (Dg, D).
Proof: Follows by induction on q ::

In applications quite frequently we don’t know that X € Dy . Itisthen useful
to have the following variant of the previous theorem, whose proof requires no
new arguments.

Theorem (3.4): Let (Xn)";’= ; be as in thm. (3.3). Suppose that:
i) The finite dimensional distributions of X, are weakly convergent and

lim limsup P, {x : Ix;® I>e} =0
640 n—o>
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foralle>0andallp, ]l <p<gq.
ii)XneCin B, N,n=1,2,..., forsome §>1/2and v>0.

iii) For all positive €

lim limsup P, {x: wg(p)[l—ﬁ,l),>eforsomep,1 <p<q =0.
8§40 n—>o°

Then { P, =L (X)) } ?1°= , is weakly convergent ::

4. REGULARITY OF PROCESSES WITH INDEPENDENT INCREMENTS.

A straightforward extension of the proof of theorem (15.7) of (3), leads to
Theorem (4.1): If X € C™ (B, 7), where § > 1/2, ¥ > 0, then X has a version
with sample paths in D[O, 1]% ::

I1. Construction of the stochastic integral.
Here we define integrals of the form
f(tJ f(s, w).M(ds, w)
where f(s, w) is a process over T =[0, 1]¢ and M is a random measure satisfying
certain conditions to be specified below. The main technical complication is
solved by extending to dimension q > 2, whatever, a Doob’s kind inequality for

strong martingales, that allows as to derive the maximal inequality, lemma (3.1),
in much the same way as in Giné & Marcus (6).

1. DEFINITIONS AND NOTATIONS.

Definition (1.1): Lét (22,F P) be a complete probability space and L° (,F P)
the set of measurable functions over (§2,F,P). Let 33 denote the Borel o-field of
[0, 1]%. Say that

M:$B— L°(QFP
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is a random measure if it satisfies the following two conditions:

n
(i) M(U, A = L O M(@A) s
n
(ii) Prlim M (U A) = M(A) a.s.
n—> c° 1=1
whenever A,,A,,... are disjoint Borel sets in [0, 1]%, (where Pr.-lim means

o0
“limit in probability”” and A = igl A)).

Definition (1.2): We say that a random measure, M, is an independently scatte-
red random measure with increments uniformly in the domain of normal attrac-
tion (D.N.A.) of a symmetric stable law of index p € (0, 2] and control measure
m, if m is a finite positive measure over ({0, 1]%, $) and the following condi-
tions hold:

i) M (A) e DN.A. (m (A)I/pﬂ), for all A €95, where 0 is a symmetric
stable r.v. of index p.

i) sup, g Ap (m (A)PM (A)) = c <o

where the sup is taken over those Borel sets with m (A) # 0, and Ay is the weak

L,-norm (sometimes Lorentz norm).

iii)M(A,), ... M(Ap)areindependent symmetricr.v.'s whenever A, , ... A}
are disjoint Borel sets.

If p = 2 we use the same notations but instead of i) and ii) we shall require
that

EM? (A)=m(A), forall Ae B ::

Definition (1.3): Let f(t,w), t € [0,11¢, be a stochastic process and (Ft)te[O,l I
the natural filtration associated with the process M (0, t], i.e. F, is the o-field
generated by negligible sets and the random variables M (A), where Ae N[0, t].
Say that f is simple and non-anticipative w.r.t. (F,) if there exist partitions of

[0,1,0=s) <P < <D =1 0=sD << <D=,

ny+1 ng+1 -
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i . . . . < i PR
say, and random variables {a,, o, .. .1q)} Gr. . ig)’ where 1 <i; <ny,. '

1 < ig < nq, such that @&, is Fo-measurable and if Zill...iq=

ig) F, _ -measurable, and our
*q (11 .. .lq)

- (1) (2) @) q
(sil , Si2 ,...,siq } € [0, 1] 2O,

process may be represented as

ny..ng
f(t,w)=ay(w) I )+ = a. . (W) I t
(t,w) =g (w) {0}() iy. q=1 (11--1q)( ) A(il..iq)()

q
: o : _ ®) (@
where A ig) (g, iy Zaitn, .. ,iq+1)] pf:‘l(sip ’Sip+1]

and {0} =3, ([0, 1]%, the set of points in [0, 112 with some coordinate equal
to0 ::

Definition (1.4): Let f be a simple non-anticipative process as in the previous de-
finition. Define its stochastic integral w.r.t. dM as the process

I f.dM = Ji f(s) M (ds,w) = o (w) . M{0} +

' [
ni. .nq

+ Z a .. ._iq)(w).M(A(z

(i

M

ig. .iq-_—l 1 Jq)

r = ! m
where M (A(il. .iq))t M (A(il. ig) [0,tD
We shall always choose a separable version of M such that the process

X (t) =M (0, t] has sample paths in D[0, 1]9, (use Thm. (4.1), part I, here), so
that the previously defined process

F(t) = [, f.dM

is a non-anticipative process with trajectories in the space D[0, 1]1.

Definition (1.5): Say that a process (X,), . ya is a strong martingale w.r.t. the
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o-fields (F)), ¢ a, if it vanishes over ainf(qu)’ the random variable X is inte-

grable and F,-measurable for all t e N9 and
E(AXR)| v =0
p=1’ . ’q p
for all rectangle R, = t with vertex at t, where AX (R,) is the usual rectangular

increment of the process X over R;, and

= v F
tp Z€Q (tp)

Q (tp) being the set of points in INY with tp as p-th. coordinate (V means
“o-field generated by”) ::

2. DOOB’S INEQUALITY FOR STRONG MARTINGALES.

Using induction on q and arguments very similar to those in (8) the following
theorem is easily proved.

Theorem (2.1): Let X be a strong martingale over IN, k a positive integer and r
a positive real number. Then, the following inequality holds:

P {sup X 1>497 1 } <
n; <k,..ng<k (1...7g)

q-1
<(5/2) E(lx(k...k)ll{sup 1 X |>r})
n; <k,..,ng <k (ny...ng)

A standard argument then leads to

Corollary (2.2): Let X be a square integrable strong martingale over N9, like in
the theorem. Then

E (sup (X

2y g 9%-1104/26-1/2 2 ..
n; Sk, ..,ng <k (nl,..,nq)) )< 2T0TES E(X(k,n,k)) ”
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3. THE MAXIMAL INEQUALITY AND THE EXTENSON OF THE INTEGRAL.

Let f be a simple non-anticipative process, as previously defined, and let

F(t) =/ f.dM

be its stochastic integral. Define

HFH=wmem1FU;MMI

Lemma (3.1): (Maximal inequality). There exists a constant, cp, such that

Ap (IF 1) cp . IEhpop, o

forall f ¢ LP (P x m).

Proof. With Corollary (2.2) in hand the proof goes through the same lines as the
corresponding 1-dimensional result in (6) ::

Definition (3.2): We say that f belongs to the class MP (M,m), where (M,m) is a
random measure like the one in DEF. (1.2), II, if it belongs to LP (P x m) and
there exists a sequence, { f, }, of simple non-anticipative processes, such that
fy = fin LP (P x m). Suppose that

oo

(S fa M}

n=1
converge uniformly a.s. Then, define the stochastic integral of f w.r.t. dM as the

limit

F(f)=f, £dM =lim [} f,.dM

n—>oo

forallte[0,1]%

Remark. The definition above makes sense because of the maximal inequality.
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Lemma (3.3): Let { MY, £) : v=1,2,...} be independent copies of (M,f),
where f ¢ MP (M,m). Then

n
Ap Gupy InP = 0¥ MY ) <
v=1

<op (ol BITP  dm)*/?.

Proof. Prove it first for simple non-anticipative f, and then use an approximation
argument, like in (6) ::

II1. The Central Limit Theorem.

1. THE CASE p #2
Now we can state and prove the C.L.T. we were looking for.
Theorem (1.1): Let (M,m) be a random measure like in DEF. (1.2), part II, and f

a process in MP (M,m). Then there exists a stable process, S, t € [0, 1]9, of
index p and sample paths in D[0, 1]4, such that the process

F(t)= ff) f.dM

is in its domain of normal attraction (D.N.A.), ie. if (Fk)‘;:= , are independent
copies of F, then

wh—lim o MP(sp gl amk) = s,

n—>oe
in the usual sense of weak convergence of D[0, 1]%-valued random variables.

We need several lemmas to completely prove this theorem. We state them all
and prove the most relevant one (to this work).

Lemma (1.2): Let (Xn)‘:’: " O(Irln):; »m=1,2,..., besequencesof D[0, 1]%-va-
lued random variables. Assume that the following conditions hold:
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i) Forallm =1, 2, ... the sequence of measures

(LG

n=1
is weakly convergent.
if) nllu_r)leo sup, Ap (1Xp =Y ' ) =0
Then { L (X)) } °:= , is weakly convergent and
w* lim L (X,) = w*.lim (w*.lim L (Yy)) ::
n—o0 m—>o° n—>oo

(M,m) will be, all the time, a random measure like that in theorem (1.1).

Lemma (1.3): Let f be a simple non-anticipative process, then

f.dM
mﬂﬂ

belongs to the domain of normal attraction of

VEhp by O

where 0 is a random variable like in DEF. (1.2), IL.

Proof: Looking at definition (1.4), II, we see that the argument is the same as
that in the proof of lemma (4.1), in (6) ::

Lemma (1.4): Let { A be as in DEF. (1.3), II. For each mul-

G- ig) | Gy ig)
tiindex (iy, . . ,ig) let {Z, (- q) =_, be a sequence of D[0, 1]%-valued ran-
dom variables such that:

) 2,90 )= 0 if 2¢[0, 11N\ { 22>z, ).

(1. .ig

i) 2,0 @)=z, G )



104 Antonio Sintes Blanc
=
222G 41, .. ig*t1) "

(iy. .iq) _y (q..dg) ray - A
i)z, iy. .iq (z)—znu ‘o) (2) if ZEA(il..iq)\A(il. i)

where A, g {2z >z ig) A% Z26,41, . g+ D)

<z}
and Z is the orthogonal projection of z on the frontier of A, . if
A a . (11 . .lq)
zeA, . \A. . andZ =z otherwise.
(1. .lq) (. .xq)

Suppose that for all (iy, . . ,iq) the sequence of probability measures

Lz, IA(il..iq)) Foo1

13 |”

(where
over D[A G

means “‘restriction to”), is tight as a sequence of probability measures

1. )]'
- . q
Then the sequence of probability distributions

(L, 2z "))

oo
n=1

1. ig)
is tight in the same sense.

Proof. Use appropiate moduli and THM. (3.1) of Neuhaus (11), the analog of
THM. (15.2) in (3), in the present situation ::

Lemma (1.5): Lef M and f be as in lemma (1.3). Then the finite dimensional dis-
tributions of the process

f) £.dM

are in the D.N.A. of the corresponding distributions of a stable process, S;, over
[0, 1712 ::

To state the following lemma we need some more notation: Let us define

G{O}(t)=M{0 } I[O,l]q (t) and
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G . . = . ) 7 » +
1. O MGy s g, ) O

+ M (A ()

ool
UE 'lq)) (Z(i1+1, gty 1)

where the notations are the same as in lemma (1.4). Then it is easy to see that
for all t€ [0, 1]? we have the following equality

[ EdM=0aGpo, O+ 2 a (1).

11--1q (11..iq)'G(i1..iq)
Next lemma is the C.L.T. statement for a process like

%, ig) - Caiy. igp M

P« oo
when E |a(i1_ i) [P oo,

Lemma (1.6): Let us suppose that o, . ig) is independent of G( and

iy. .iq)

that E la(il_ i) P < oo, Consider a sequence

k k oo
{ . igy i ig) b
of independent copies of the pair (a(il. ig)’ F}(il. .iq))‘

Then the sequence of probability measures
1/p n k k * oo
{L(n Zyoq oy i) Gg,. ig) lA(il. .iq)) } n=1

over the space (D[A_(il. .iq)]-‘ D [Z(il. .iq)]) is tight, in fact it is weakly con-

vergent to the law of a stable process indexed by Z(il gy

Proof: In what follows we will not write the indexes (i; . -ig)-

Let us assume, in a first step, that a is a.s. bounded. We want to use THM.
(3.4), I, with A (the closure of A(il. .iq)) in the place of [0, 1]%.

Forn=1, 2, ... let X, be the random variable whose distributions is the
n-th. term of the sequence (of distributions) in the lemma; we already know
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that the finite dimensional distributions of X, converge weakly to the corres-
ponding distributions of a stable process. Note that X, vanishes on the inferior
frontier of A, and also

P{IX, B) =N} =P{In?/P 21 okM*(B) I=2} =

=Eq(Py { In/P 20 o*M* (B) 120} ) <E, A\ PK n' 2} 1o P . m(B))

= K;, AP .m(B) for all positive A, where K{, depends on & and p.

This proves that X € t’lm (v, B) with ¥y = p and § =1. Now, an argument
like that in step 3, proof of THM. (2.1), I, shows that for all positive €

lim  limsup Pn{lelxgp)||>e}=0.
5§10 n—>oe

Hence it remains only to verify condition iii) of the above mentioned

theorem (3.4). Fix p, 1 <p < g, and define M over

P _
Ts =Tix.. xTy 4 X [tjs, —5ati+1]pr+1 X.. x Ty

by

M) =M (A)—M(AnasupTg’),M(@) = 0.

Then M is a measure with independent increments and control measure

i (A)=m (A) — m(AN3_ _TP).

sup 6

We have

(p) - ®
WXrl [ti+1 nd 6, ti+ 1) < 2.Supse[ti+1 —s, ti+1) I (XH)S I <

<2sup(z) et 5t )an(z)l

i+1 ~ %t
hence
®) : -1/ k 2k
P {wxn (e, — 8, ti+1)>.e}<P { sup In p2k=1°‘ M (Zil. _ _iq,z] |>E/2}

(Z)p € [ti+1 -8, ti+1)
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<2P.eP, (cl'j)p Ela |p.r'Tl(T6p)<2p.e"p. (cl'))p Ela |p.mp [ty — 8 ty,)

> i+l

goes to zero, uniformly in n, when & { O.

This proves the lemma in the a.s. bounded case. Now the general case follows
like in (6), pg. 71, by a truncation-approximation argument where lemma (1.2)
plays its role. ::

Now the proof of theorem (1.1) follows:

Iff€isa simple non-anticipative process

t k_ k 4k k k
I, £ aM* =ag M (3,,T) + T, O i)
1..lq

with notation specified before lemma (1.6).

By lemma (1.6)

-1/p sn k k oo
{ L™ 2y o, .iq)‘G(il. ig) ! Aq,. .iq)) } n=1

weakly converges to the law of a stable process, st ‘iq), over A(il i)" This,
together with lemma (1.4), gives the tightness of the sequence 4

-1/p t k ky | ©©
{L(n Zk=1f0f 'dM)}n=1

and, in fact, by lemma (1.5), this sequence is convergent in law to L (S,), where
S, is a stable process over [0, 1]3.

Now, for an arbitrary f, choose a sequence, { f; } :1,
pative processes such that f; ~ fin LP.

of simple non-antici-

Then, if for eachi=1,2,..,{ (fik, Mk) } :; L is a sequence of independent
copies of (f;, M), we have

* s -1/p sn t ok ky _
w¥.-lim L (n Ek=1 N £ .dM%) = L(St)'

n—>oQ
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By the extension of the maximal inequality (lemma (3.3)):
. 1/p sn t k k
lim supy Ay (0P ZL S (@ - £ aM®) <

<cp.ill'x)r:° IIfi—flle =0.

Hence, by the approximation lemma (1.2):

w*.lim L(n/? = f; £ . am*y =

n—>co

=wlim (w*dim L@™P 2P 0 £ dMY)) =

t
j~—>oco n—>o0 0
= w*dim (L (S}) = L(S)
j—>o0
Remark. Previous results are easily extended to cover the [0, ©0)? time domain
case, using wellknown techniques (7).
2. THE CASE p = 2. APPLICATION TO ITO’S AND DIFFUSION PROCESSES.
If the control measure, m, is a continuous one, and the process M [0, t] has
a C [0, 1]%-valued version, then the C.L.T. holds in C [0, 1]4. In this case, M is
necessarily a Gaussian measure (a wellknown fact, at least in dimension q = 1.
See (5) and also (7) where the proof of Thm. (19.1) of (3) is generalized to an

arbitrary dimension).

In the present case define the class M2 (M,m) exactly like in DEF. (1.2), II,
and remember that M satisfies

EM? (A) = m(A)

forallAe3.

Then if f is a simple non-anticipative process

E(f, £dM)? = [ EIfP . dm
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for all t € [0, 1]%, and as we may work with right continuous versions, the
maximal inequality

E(l 5, £.dM I1)"/* <K.( lofﬁqlf ? . dm)'/?

is satisfied, and this allows us to define the stochastic integral for f e M2 M,m)
in the same way as in the case p # 2. The following theorem then holds:

Theorem (2.1): Let (M,m) be a random measure like before, and m continuous.
Suppose that M [0, t] has continuous trajectories. Then M [0, t] is a Gaussian
process with continuous paths and if f belongs to the class M2 (M,m), there
exists a process, Sy, Gaussian with continuous trajectories, such that the process

t
fo f.dM

belongs to its D.N.A. in the sense of weak convergence of probability measures
inC10,1}2

We skip the proof of this theorem and go directly into some applications.
It is welknown that Itd’s processes are processes of the form

I, = f; a(s,w)ds + f; b (s,w) dW,

where we suppose that t € [0, 1]%. Under some conditions on a and b we can
apply the previous theorem to show that I, satisfy the C.L.T. in C [0, 1]%.

Theorem (2.2): Let a and b be nomn-anticipative processes w.r.t. the o-fields

where W is Wiener process. Assume that

[E@®? () dt<eoand sup B la¥tl(s, ) 1<
s&T
forallTe IRE. Then the process I, satisfies the C.L.T. in C [0, =) ::

We write the result for diffusion processes only in the case g = 2.
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Theorem (2.3): Let a (z,x) and b (z,x) be two functions over [0, ®)? x (—oo, =),
and suppose that for all x and z

a2 (z,x) + b% (zx) < c. (1 +x%).

Let (Xz)zElR2 be the diffusion process defined by the stochastic differential

equation (some Lipschitz condition on a and b is asumed)

Xy = Jr 2@X)dz + [ b@X)dW,

where R, =[0, 5] x [0, t]. Then the process X, satisfies the C.L.T.in C [0, o0)2,

Proof. In view of the preceding result it is enough to show that
sup E (Xst)2m < oo
stST

for all T <ee, But it is an easy matter to show that in fact

E(X )™ <K_ .e"

m

for all s,t (standard arguments apply) ::

Final remarks and comments

a) It will be very interesting to get a result like THM. (2.1), part (I), for pro-
cesses with non necessarily independent increments. I don’t know at present
how to do this.

b) Extension of the previous results to the Banach valued case offer no diffi-
culties, at least when the space of values is (p + €)-uniformly smooth, for some
positive €. Complete characterisation of those spaces where the results hold are
not yet known.

c) I want to express my indebtedness and gratitude to Professor E. Giné,
who suggested this problems to me and has given efficient help whenever needed.
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