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ABSTRACT

This paper investigateé some special operator ideals on Banach spaces and
the Grothendieck spaces ideals they generate, from the point of view of their
structural and stability properties. The results are given in terms of the sequence
ideals associated to the operator ideals and an analysis of some special sequence
ideals is also made.

INTRODUCTION

The purpose of this paper is to investigate some special operator ideals on
Banach spaces and the Grothendieck space ideals they generate, from the point
of view of their structural and stability properties. The general results are given
in Section 1, while Section 2 is devoted to examples and applications. Since our
concern is with suitable extensions of proper operator ideals on Hilbert spaces,
the results will naturally be in terms of the associated proper sequence ideals A
(cf.[91],15.2 and 15.3).

We refer to [ 9 ] and also to [ 7 ] and [ 12 ] for the notation and for the no-
tions, by now classical, of operator ideals on Banach and Hilbert spaces, of ideals
of locally convex spaces (space ideals), of Grothendieck space ideals and of se-
quence ideals.

Finally,asis [ 6 ] and [ 7], to every sequence ideal A we associate its (unique)
ideal kernel \ defined by

7:={£e7\ : (sup | & 1)y e?\}.
k>n
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The ideal kernel was first introduced in [ 6 ] and was extensively used in [ 6 ]
and [ 7 ]. Its fundamenta] importance will be reaffirmed in Section 2.

1. OPERATOR AND SPACE IDEALS

From now on A will always stand for a proper sequence ideal (i.e. A C c;)
and, according to [ 7], §2, 8 3 will be the corresponding ideal on Hilbert spaces
(or on £2). If A: is any operator ideal on Hilbert spaces, we denote by .7‘(: h
extension of A: to the class of Banach spaces with the property that (o‘fh )m
c I for some m, where JC is the ideal of all operators that factor through a

‘Hilbert space.

1.1 Remark. From the definitions of the inferior extension .femf and of the
superior extension /& $'P ([9],15.6.4 and 15.6.2), we see that f&mf itself and
(A SupP ym N J for any m, provide examples of extensions a‘(:h Also clearly
ftmf is this smallest such extension. When A& _ = § y further extensmns 8
are exhlblted by the ideals /& and N’ ace ) mtroduced in {7].

Recall that two operator ideals #& and B are said to be equivalent, written
A~ B, if there exist m and n such that A™ CTB and B" CA(cf.[5],7.1.5).
Denoting by Groth ( # ), resp. Groth (3 ), the Grothendieck space ideal gene-
rated by 7, resp. B , it is then clear that Groth (#£ ) = Groth ($) ifA~B.
From this, Remark 1.1 above and Lemma 4 of [ 12 ], it follows the immediate
but useful

1.2 Lemma. -7{1}, ~ A glf and hence Groth ( Ag) = Groth (A g‘f).

1.3 Corollary. Groth ( 8 §27) = Groth (# 3) (=Groth (N*)) if A C £1).

In view of the above lemma, there is no ambiguity in denoting by Groth
( A& ) the Grothendieck space ideal generated by any extension A(})‘ and, when
Ao = 8 ) ,weshall set INy = Groth( S 3\)- The space ideal IN) may rightly
be called the ideal of A—nuclear spaces. We note the fact that, due to the defini-
tion of S 5‘\ and INy, , a locally convex space E belongs to INA, if and only if it
has a basis Ws of hilbertain neighbourhoods of O such that every U W contains
a V €Wsfor which the sequence of diameters (d, (V,U)) e ..

1.4 Remark. Extensions of 8§ 3 which are not of type S 2 may, a priori, genera-
te Grothendieck space ideals different from IN . However, by Theorem 9 of
[ 7] this is not possible if A = 2 1. A, since then S ) has exactly one extension,
say 8; . In this case, it is worth noting that, by [ 9], 15.6.15-17, we have.
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1.5 Proposition. 8 ; is injective, surjective and completely symmetric.
A further stability result may be obtained as follows. For £ € A define é by

£ = Enk , whereny = max {n : n2 <k}. (1

Then the results of [ 13 ], § 3 give

1.6 Proposition. If é € N\ whenever £ € N\, then the tensor product of two maps
in8 , resp. § ig\f , belongs to 8, resp. S K‘f .

We now come to stability properties of Grothendieck space ideals. Recall
that a variety is a class of locally convex spaces which is stable under the forma-
tion of isomorphic images, subspaces, quotients and arbitrary products (cf. [ 2 ]).
Then combining Propositions 7.1.6,7.2.2,7.2.3 and 7.2.6 of [ 5 | we have.

1.7 Theorem. Groth (AN ) is a variety.

1.8 Corollary. INy_is a variety.

Regarding stability with respect to the formation of countable direct sums,
we can generalize Proposition 7.2.7 of [ 5] as follows. Recall that a sequence
(xp) in a linear topological space E is said to be very weakly convergent if there
exists a sequence (£ ) of non-zero scalars such that £ | x, — 0in E. It is clear
that this is a notion which depends only on the bornology of E, since we might
as well require (£ , x,) to be bounded in E. Denote by C the class of all spaces
in which every sequence is very weakly convergent (a characterization of such
a class is given in [ 11 ]; in particular, (G contains all metrizable spaces). We have

1.9 Theorem. Suppose that on J‘Ué there is a quasi-complete linear topology
T such that ( A 2, 7 Ye C. Then Groth (A 2) is stable under the formation of
countable direct sums.

Proof. The proof is the same as that of Proposition 7.2.7 of [5], except that
the use of Proposition 6.2.4 there is motivated by the following argument, which
takes the place of Corollary 1.4.7:

Since every sequence in ( A& 2, 7 ) is very weakly convergent, if maps T, e
A }:) are given (with the same domain and range) then there are scalars £ ;% 0
such that the sequence (¢, T,) is bounded in ( J‘Eg, 7). Thus, by quasi-comple-

teness there are scalars 0, # 0 such that the series Zn, &, T, converges to a map
TeAl, B
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For the varieties INy a further criterion is exhibited by Theorem .5 of
[ 6 ] which we recall here for completeness.
Putting X'={feX:§&; > % >...>0} ,wehave

1.10 Theorem. Suppose that \ satisfies the following hypothesis:
(H) If (¢ ) is a sequence of elements of X', then there is a £ € X' such that
sup g1 K <eoforallk.
" Then INy\ is stable under the formation of countable direct sums.
To understand the relationship between Theorems 1.9 and 1.10 we need
the following lemma, where X, denotes the ideal kernel X endowed with its
normal topology v (X , A%).

1.11 Lemma. If X is perfect, then the following assertions are equivalent:
(i) A (equivalently, X ) satisfies (H).
Gi) A, e C .

Proof: (i) = (ii): Let (¢ (%)) be a sequence of elements of X . There are ele-

ments 7 (%) € A ¥ such that | £ (nk) | < n() for all k,n. By assumption there is

& e X' for which sup glp (®) < ooforall k,whencealsosup g1 | £K) |=c¢ <ee.
n n

A defining system of semi-norms for X ,, is given by the family (p; cte ),
where pr () = Z |0, {, | .Given{e A * and putting D&, |, | = cg, we obtain -
n n

P ((kep) 1 £(9) = (ke Z | g0 ¢

SK'T g 18, =k o ~0.
n

Since ¢ was arbitrary, it follows that (£ (K)) is very weakly convergent and hence
that A e C.

(if) => (i): Let (E(k)) be a sequence of elements of A*. Since A" C X and
X, € C, there is a sequence of numbers v, > 0 such that v, £ (&) — 0Oin
X, . Because X is perfect, X, is complete and hence, if p, =27 v, then there
exists £ € X such that E pi £¥) =¢ . This implies £ € X" and

Pk%’r(lk) S?PJ’EQ) =En,

which shows that (H) is satisfied.

Recalling that the ideal kernel X is additive ([ 7 ], Lemma 1), ie. that
£ ,7m €\ implies that the sequence (| & 1 lsIng 11851, 1m .. ), rearranged
in decreasing order of magnitude, also belongs to X, we can now give the
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1.12 Theorem. On 8 ) and S iﬁf there are natural linear topologies T and
7° arising from v (A, X). If \ is perfect, then (i) and (ii) of Lemma 1.11 are
equivalent to( 8+,7) e C andto( S‘{f ,eC.

Proof. Consider the defining family (pg- : £ € \¥) of semi-norms onT\V . Denoting
by a,, (T) the approximation numbers of T € 8 3, we put q¢ (M =p¢ (2, (1))
forallf eXXandallT e 8 A qgis well-defined, since T € 8 y if and only if
(a, (T)) € X ; also, q¢ (D=7l q¢ (T) for all scalars v . Consider the sets

UR,e)={Te 8y:qp(T) < &},

Foreach §{ € A" let{'y = ¢, for all n. Since X is additive, the sequence
(ay (T), 2y (T), a5 (T), a5 (T), . . ) belongs to Aand hence q¢ * (T) <o . Now
let U (§, £) be given. Without loss of generality we may assume { positive and
non-decreasing. Then if $,T e U({', £/4) we have

UGS+ D=Z¢pan S+ TV 2T g, agey (S+T) <
<2280 (a0 )+ 3 () = Az, () + g (M) <€

sothat S+ TeU(§, g). This shows that {UE, e) : ¢t erx, €E> 0 }
is a basis of neighbourhoods of 0 for a linear topology 7 on 8 3 . A linear topo-
logy 7’ may then be defined on & i)f\lf by setting, for T e 8 iﬂf and T =RT,S
withR,Se £ and T, e 8 ), r¢(T) = inf IR lq¢(T,) IS ¥ (the infimum
being taken dver all possible factorizations) and proceeding as above. Finally,
since q¢ (y T) = |71 qg: (T) for all scalars vy , it is clear that the assertions
Xpe C,(8y,7)e Cand( 8, 1) e C areall equivalent.

To conclude our discussion of the stability properties of the space ideals
IN; , we determine when such ideals are szability classes, i.e. varieties that are
stable under the formation of countable direct sums, completions and projective
tensor products (cf. [ 41). Recalling (1) we find

1.13 Theorem. Suppose that \ satisfies (H) and that there isa p > O such that
Ee \W={¢: (Sﬁ) € N} whenever £ € \. Then IN, is a stability class.

Proof. Since a Grothendieck space ideal is always stable under completions, by
Corollary 1.8 and Theorem 1.10 it remains to check that IN; is stable under the
formation of tensor products. But this follows from [ 13 ], § 2 and the characte-
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rization of INy noted after its definition. The full force of Proposition 1.6 is not
needed and the hypothesis of the theorem suffices.

2. EXAMPLES AND APPLICATIONS

To begin with, we recall some classical ideals of type INy (these are all varie-
ties, by Corollary 1.8).

IN ¢ =the ideal W of weak spaces,

IN go =the ideal IN; of strongly nuclear spaces,

IN g1 =the ideal IN of nuclear spaces,

N oo = the Schwartz-Hilbert ideal SIH(=8 NH) (cf.[1]).

The sequence ideals that we shall consider will be those that are generated
by the power, series spaces A, (a) (cf. [8], 6.2) and their duals I'; (a). Precisely,
let 0 <r <eo and let @ = (a,,) be a sequence such that 0 < ¢,7e. Then

A @ ={g:2 t%n | | <o forallt <r}

is called a power series space of finite or infinite type according to whether
r<eo orr=o . Dually, for0 <s <o we define

I, @ = {fé:suptanl‘;’n | <oo for somet>s } =A'1/s (0).
n

In order to be able to obtain sequence ideals (i.e., contained in ¢,) from the
above spaces, we must have 1 <r <e and 1 <'s < e . We shall assume
1 <1 <o throughout for the finite type case and we shall treat A .a) (and
I’y (a) when necessary) separately. Also, we will only consider the case when
A,(@)and I' (o) (resp. A oo (@)) are nuclear ie., as well-known, when

i: R¥n < oo for each (resp. for some) R > 1 (cf. [8], 6.1.5). Now observe

that in general, outside the classical case, it is very difficult to define a sequence
ideal directly. The most comon procedure amounts to taking an ideal kernel A
(which is much easier to define) and then to set

A= {fec,:Een},
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where £ is the sequence (| £, |) rearranged in decreasing order of magnitude. It is
then clear that A is a sequence ideal. Thus we have to ascertain when A, (&),
I (@) and Ao, () are ideal kernels. We have

2.1 Lemma. (2) A (o) and 'y (@) are ideal kernels if and only if

«
su 2n
np [ <o (ie., a isstable). (2)

(b) A; (o) and T, (o) (> 1) are ideal kernels if and only if

n e = 1. (3)

Proof. To begin with, note that conditions (S1) — (S 3) of Lemma 1 of [ 7 ]

(cf. also Lemma 2), characterize an ideal kernel. Now A | (&), I'g (@) and Ao @)

C ¢,. Also, (su>p | &k 1) e A (@) or A (o) whenever £€ AL (o) or Ao (o)
k=n

by Lemma (2.8) of [ 3 ], which applies also in the finite type case, while it is
immediate to see that this holds for I'y () as well. Thus the property of being
ideal kernels is equivalent to that of being additive (definition just before Theo-
rem 1.12).

(a) It is easily seen (and it is also shown in [ 3 ], Theorem (2.10) for Ao (@)
that additivity is equivalent to (2).

(b) Assume (3) and for each 1 <t <r let q,e be such that t'*¢ <q <r.
Then choose m so that o, , <(1+e€)a, forall n >m. If £, 1 € A, (@), considering
the sequence (I&, 1, Inl, 1£,, In,l. .. ) we have

47
£%2n|q | < q%n g, | <o

z z
n >m n2>m
and similarly for (| £, | : n > m),since ay ; < ay,.Thus A} (a) is additive.
Conversely, suppose that A () is additive and that (3) does not hold. Then
there are a § > 0 and a strictly increasing sequence (ny) of integers such that
%o, > (1+8) an, for all k. Choose 1 ar and define the sequence £ by

-ank
gnk =rx —~and§, = Oforn¢ (ny).
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For each j we have, by nuclearity,

o
On, _ Tj (N Tj ag

e =z — < 3z gl B < oo 4
2T 8, G0 S 30 G0 @

and hence £ € A, (o). Now let n=(&, &, £,, £4, ...) and choose j so that
r}+5_> r. Then

T or'm> T "Myn =
n2n; n an
ay -o
zrjnk nsz r)nk—+oo
k >j k>j Tk

and A; (o) is not additive. Similarly for I"; ().

The above lemma shows that, contrary to the infinite type case (cf. Theo-
rem (2.10) of [ 3]), stability (i.e. condition (2)) is not sufficient for additivity in
the finite type case. This leads us to introduce the classes of nuclear exponent
sequences a which satisfy (2) and (3) respectively. Precisely, we put

= {g - a
0oo= {a © Sup —-j" < e and sup logn <oo}
n n n

B

o= {a: sup %2n
n @

< o and lm 282 - o}
n n n

o = {a : lim %n

n an n n

so that Ace (@) (resp. I'y (@), resp. A, (o), T'y(@) withr > 1) is a nuclear ideal
kernel if and only if & € 0 oo (T€Sp. @ € o} TESP. A € 01). Observe that the defini-
tion of O'Fushows that I'y (&) is @ mixed case, in so far as it is of infinite type with
respect to additivity and of finite type with respect to nuclearity.

Now noting that (n). 'y (@) = Iy (a) by nuclearity, we may supplement
Corollary 2 to Theorem 13 of [ 7] by

2.2 Proposition. If o € 0, (resp. a € 0., resp. o € 0.) then A, (o) and T',(a) (resp.
Axfw); resp. T (a)) are examples of ideal kernels \ for which S A has a unique
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extension (which then enjoys the properties of Proposition 1.5). A(c) and T'f a)
never are idempotent forr > 1 (while A-(a) and T'y (a) are).

2.3 Remark. We note that the proof given in [6], p. 19, to show that (2) implies

supnPa, < oo forsomep> 0,
n

can be adapted to yield that (3) implies

lim nPa, =0 forallp > 0. )

n

The converse is not true, as the following example shows.

2.4 Example. For every k let n, = 22¥ and put o, = (logymkforne; < n <
ny (n, = 2). We have, for any givenp > 0,

[+
a nyp 21{-1
._I;. < o =2k2‘p — 0 as k= o
" N1

and (5) holds. On the other hand

a2nk - (2k+1)k+1

o 2
ﬂk 2k

- +—1k)k(2k+1) — w0 a5 k—-oo
2

and a does not even satisfy (2). Note that A () is nuclear.

Now we wish to obtain upper and lover bounds for the families{A; (®):
r> l,aeo;} and {[ (e):1> 1,0€0y }.

For this we need a

2.5 Lemma. The following assertions are equivalent:

. a
lim nsup _n < c 0
Bn

Ae ) C A (@) (i)
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Proof. (i) = (ii)ﬁ Foragivent <rchoose € > O suchthattcté <Tr°
and then q such thatt < q < randt® < qC. Finally, pick an m for whict

aq < o4
sup —_ [« € .
n’>m Bn -
Ifte Arc (B) we have
2 t%g i< T otee) < = g | <o
nzm Enl_nzm ﬁnlzn _anq sn
and hence & e A ().
(i) = (i): Suppose that there is a strictly increasing sequence (ny) of
On
integers such that B——k- > d > c. Choosing a sequence 1 {1, put
g
<
Enk = rknk and &, = 0 forng (ny).

Asin(4) we see that £ ¢ Arc (B). However, for j such that rdj/c >,

%y oy g dfc  cfn
an 5 o2y U o w
1213 T &, = E (—T—) l (fk ) ,

showing that £ ¢ A, ().

2.6 Corollary. A, (B) C A, (o) (whatever 1,t> 1) if and only if lim _‘;_ﬂ =
n

n

Hence the latter condition is also equivalent to

U A C N A (@) = Aw(@).
t>1 P <oo

Statements similar to those of Lemma 2.5 and Corollary 2.6 hold for the
spaces I';(a) and we leave their formulation to the reader. Now we can give the
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2.7 Pr ition, (i Py = =
oposition. (i) . g o Noo(0P) b L>J oM (nP) =

=U{A @) :r>1,p>01C N Ap(® =
o€ o0

=N{A @ : r>1l,ae o4}

(ii)agh Aool@) = ULA (@) : r > 1, € 0y } =s(=Aco(log n)).

Proof. Let £ € A, (nP) witht > landp > O fixed. If 1 <t <r, wemust
have

TP ] < e

n

Choose any'q < p. Then for any given k we have

sekd | £ | = i: e(kn@-nPlog P | £ | < oo
n

and hence £ € Ao (n). This shows that the first three unions in the statement
of the proposition are equal. Also, by (5) and Corollary 2.6 the third union is
contained in the first intersection, which equals the second. Next, by the first
intersection, which equals the second. Next, by the definition of oy, A (@)
C sfor a € 0. Finally, let £ € s. Choose integers ny such that Ny > 20y

and 3 nkz [, 1 < k-2 and then define the sequence o by
n.~Z np .

o, =1for1<n<n; and o, =k log n for ny <n<ny,,.

Since—lo—g—n =1 -0 and
o k

Q. k+2)log2
2n<( )log2n

-1, ceo,.
k logn 1

Also given any j we have
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jo 2
z e g 1L 2 z nk“ & | < T k? <o
n_>__nj n k_>__j n > ny & k i

and hence ¢ € Ao ().
From the above, by duality arguments and noting that N I (@)=
Ao (), we immediately obtain s < oo

2.8 Proposition. Proposition 2.7 continues to hold when A o is replaced by
[y andfor A, by T;.

We now come to checking when the condition of Proposition 1.6 is satis-
fied. We find

2.9 Proposition. For o€ 0o (resp. o € ) the following assertions are equivalent:

anz

oy

6) sup < o

(ii) £ € Aoda) (resp. Ty (o)) implies te Ao () (resp. T'y (@)
a2 o

=¢ < o ,so that sup
n n n

<

Proof. (i) = (ii): Assume sup

c,and let £ € Ao (a). By (1) we have ék = ¢, forn2 < k < (n+1)2 and
hence, for any j, '

2+2n

. R n :
T d% g =z 3z g 1<
< | &, | (2n+1)ejan2+2n

z
n>2

<3 3T g indm? <3
22

n

j 2
T | ned®¥n® <
2, | &n

n

:.2
[ £, 1nel®™ < 3

<3

z Z lgle™®™ <o,
n> 2 n>2
where sup (je2 + log n
an

te Aoo ?a).

) < m < o by the fact thata € 0o . Thus
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(i) == (i): If (i) does not hold, then for every m there is an integer n,
such that a;2 > mog . If we put Enm = ™%y and g, = 0for
m
n¢ (n,,), then £ e Ao(@), since for every j,

Tel®g =3 M,
n m

However,

2
. B ny. +2n ;
T J% ék = Zemanm " % 2>
-2
k m = nm
jon?2 ma j-1) ma
> T e no Ny S 3 e(] ) np, o
m m

and hence £ ¢ Aoo ().
A similar proof holds for T'; (a).

2.10 Remark. Similarly to what observed in Remark 2.3, condition (i) of Propo-
sition 2.9 implies

sup (logn)Pa, < o forsomep > 0 (6)
n

and hence for some p > 1 by nuclearity of & (put sup @ Jou, = 2P and argue
n

on n in the range 2Fl g < 22Ky,

2.11 Proposition. For XN=A@orT,(@( > 1, a €0y)itis never the case
that teX implies E€X.

Proof. Inspection of the proof of Proposition 2.9 shows that in the finite type
case condition (i) of the above proposition should be replaced by the condition

[+

N

m %% _
noo -
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But this (similarly to (5)) would yield, in place of (6),

lilrln (logn)yPa, = 0 forallp > 0

and it is immediate to see that such condition contradicts the fact that a. € 0.

To conclude, we discuss the varieties IN ) generated by the sequence spaces
considered. To begin with, we recall the following definition from [10]. As we
agreed after Corollary 1.3, INp (@ is the class of A; (@) - nuclear spaces for
o € o;. Then following [10] we say that a locally convex space is Ay ()
- nuclear if it is A; (&) - nuclear forallr > 1.

2.15 Plropasition. If a € 0y, then ]NFr @ = NA @) = Naga for all
r .

Proof. Recalling that T', (&) C A; (@) C I‘ryz(a), the assertion follows from
(3) and Proposition 2.14 of [10]-

We then have the following theorem which includes part of Theorem (2.10)
of [3] and Proposition 3.2 of [10]. ‘

2.13 Theorem. INA __ (¢ (& € 0 o) and lNAN () (w€ 0y) are stable under the

fomation of countable direct sums.

Proof. The assertion follows from Proposition 2.12 and Theorem 1.10, since
A () and A, (o) satisfy (H) by Lemma II.1 of [6].

2.14 Remark. The above theorem does not hold for the space I'; (a). In fact,
let & € 05; then A; (a) belongs to IN . (4 while the direct sum of countably
many copies of Ay (a) does not. Since 1"1 (o) does not satisfy condition (H),
the above example shows that no countable direct sum stability can be expected
in the absence of such condition.

2.15 Theorem. Suppose that o satisfies condition (i) of Proposition 2.9. Then
the varieties N A _ (g) (€€00), INT (o) (2 € 0oo) and INA - (q) (€ 01) are
stable under the formation of projective tensor products.

Proof. Apply Theorem 1.13. For INy _ (o) and IN Ty (@ the result follows
directly from Proposition 2.9, while for INAy (g the assertion is a consequence
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of the easily checked fact (see the first part of the proof of Proposition 2.9)
that, if sup anz/an = ¢ < oo then e A, (a)implies EeA o2 ().
n I

Examples of sequences & € 0 o0 , Oco OF 0y and satisfying Proposition 2.9 (1)
are afforded by the sequences aP (p > 1) defined by « g = (log n)P.
Now a combination of Theorems 2.13 and 2.15 yields

2.16 Theorem. INA __ (o) (@ €0 oo) and IN Ay @ (ae 0¢) are stability classes.

2.17 Remark. The above classes provide additional examples to those of [4]
of stability classes. Moreover, of the four typical varieties mentioned in the
introduction, IN,, IN and 8 IH are stability classes as well-known (this also
follows from Theorems 1.10 and 1.13), but W is not. Indeed, we can assert.

2.18 Proposition: The largest space ideal of the form INy , namely 8 H , isa
stability class and hence it is the largest stability class of this type. There is no sma-
llest stability class of the form INy.

Proof. For the second assertion, out of each sequence § = (8 ,) such that
0 < B, /oo, form the sequence space

A@)y={§:Zokp (1 EI< = forallk }

It is easily seen that A (8) is an ideal kernel satisfying Eel B) if e A (B).
Moreover X (f), being a Kothe space, satisfies (H) by Lemma IL1 of [6] .
Thus IN » B)isa stability class by Theorem 1.13. Now it is evident that,
for each sequence ideal X\ , there exists a sequence [ as above such that

A(B)C N % p,sothat IN C  INy . It also follows from
#* p > o ACB) +* A

this that ?3 INy B = Q = the stability class, introduced in [4], of all locally

convex spaces of maximal diametral dimension.
Finally, observing that N AP (@) = N A (@) = Ao (@) s
p > o 1 < o0
Fréchet, idempotent and clearly Ay (a) -nuclear but not A o () -nuclear,
and applying Theorem I-3 and Corollary I-2 of [ 6] we conclude with the

2.19 Theorem. (a) Let a € 0,. Then Ao (o) isa universal generator for IN Ay (@)
and hence the sub-ideal IFIN Ay (® of Fréchet spaces has Moo (0)N s a univer-
sal space.

(b) FINA (o) has no universal space.



REFERENCES
[1] S.F. BELLENOT. The Schwartz-Hilbert variety. Michigan Math. J. 22 (1975), 373-377.

[2] 3. DIESTEL, A. MORRIS and S.A. SAXON. Varieties of linear topological spaces. Trans.
Amer. Math. Soc. 172 (1972), 207-230.

[3] E. DUBINSKY and M. S. RAMANUJAN. On X -nuclegrity. Mem. Amer. Math. Soc.
128 (1972).

[4] C. FENSKE and E. SCHOCK. Nuclear spaces of maximal diametral dimension. Compo-
sitio Math. 26(1973), 303-308.

[5] H. JUNEK. Locally convex spacesand operator ideals. Teubner - Texte Math. 56 (1983).

[6] V. B. MOSCATELLL On the existence of universal A -nuclear Fréchet spaces. J. teine
angew. Math. 301 (1978), 1-26.

[7] V.B. MOSCATELLI and M.A. SIMOES. Operator ideals on Hilbert space having a uni-
que extension to Banach spaces. Math. Nachr. 118 (1984), 69-87.

[81 A. PIETSCH. Nuclear locally convex spaces. Spiinger Verlag (1972).
[9] A. PIETSCH. Operator ideals. North-Holland (1980).

[10] M.S. RAMANUJAN and T. TERZIOGLU. Power series spaces Ny (0) of finite type and
related nuclearities. Studia Math. 53 (1975), 1-13. ‘

[11] M.A. SIMOES. Very strongly and very weakly convergent sequences in locally convex
spaces. Proc. Roy. Irish Acad. 84A (1984), 125-132.

[12] M.A. SIMOES. Uniquely generated Grothendieck space ideals. Monatsh. Math. 99
(1985), 235-244.

[13] T. TERZIOGLU. Or the diametral dimension of the projective tensor products. Rev.
Fac. Sci. Univ. Istanbul 38A (1973), 5-10.

Departamento de Analise — IMUFF
Universidade Federal Fluminense
24.210 — Niteroi — Rio de Janeiro
BRAZIL

Present address:

Dipartimento di Matematica
Universita degli Studi di Lecce
C.P. 193

73100 Lecce

ITALY



