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ABSTRACT

Corresponding to an arbitrary sequence space u and a sequence «, we intro-
duce the notion of an au-dual of a sequence space which, in particular, envelops
the concepts of Kéthe, f—, ¥ — duals and the duals of an G-space studied in [4].
Using these concepts, we make a structural study of several subspaces of holo-
morphic mappings including characterizations of bounded and compact subsets.

1. INTRODUCTION

Depending on a sequence space u and its ap-dual which we introduce in
this paper, we define a class of weighted holomorphic functions defined on a
Banach space, weights being provided by the sequence space u, and a subclass
of this class with the help of the au-dual. We study structural properties of
these spaces after equipping them with appropriaté locally convex topologies;
and after having characterized the bounded and relatively compact subsets of
the subclass, we investigate conditions under which the subspace topology
coincides with various other topologies on bounded sets. In the final section,
we make a slight deviation from this study and take up the study of a class
of holomorphic (indeed, hypoanalytic) mappings defined on an open subset
of a nuclear sequence space, wherein we explore the basis representation of
elements in the compact open topology.

2. FUNDAMENTALS

In order to appreciate the subject matter of this paper, the reader is assumed
to have a rudimentary familiarity with locally convex spaces, nuclear spaces,
Schauder bases, sequence spaces and holomorphic mappings as envisaged in
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[12], [23], [16], [171, [15], [19], [21], [24], [2], [3]. However, to facilitate the
reader, we mention in brief the salient features of these topics, relevant to the
present work.

To begin with, let us denote throughout by (X, T) a Hausdorff locally con-
vex space (l.c. TVS) equipped with a locally convex topology T generated by the
family D of all T-continuons seminorms; the vector space X being considered
over the field IK of reals or complex numbers. The fundamental neighbourhood
system at origin for T is denoted by SST, and the symbols X' and X* respec-
tively stand for the algebraic and topological duals of X. Further, we write IN
={1,2,...} andIN| ={0} VIN.

Let p, be the Minkowski functional corresponding to’ u in B and
X, = X/kerp, whereker p = {x e X: p, ®x) =0 }, be equipped with
the usual quotient norm p . Ifve® T I8 absorbed by u; thatis v <u,so
that p, < p,, there exists a natural canonical continuous mapping Kl‘: X,
X, with K 7 (x) = x,,x, € X, Let us denote by K‘l‘: the extension of
K X from the completion X of X to the completion X of X,,. Then we
have.

Definition 2.1: An lc. TVS (X, T) is said to be nuclear (resp. Schwartz)

if to each u € B there corresponds v e B, v < u such that KK :

5(v - 5(u, is nuclear (resp. precompact); here, a nuclear mapping T from one
Banach space E to another Banach space F means a continuous linear mapping
having the following representation.

Tx =n§1 anfn x) yn> , x¢€ekE
for some { o}

e L {f} CE* and (y }CF withlIf 1I<1,
ly,I1<1,n> 1. -

n

A sequence { xn} in (X, T) is said to be a base if each x in X isuni-
quely expressed as

where the limit is being considered in the topology T and{q; } is the unique
sequernce of scalars corresponding to x. Thus we have a sequence { fi b c X
such that f (xj) = 8j;, the Kronecker delta and f; (x) = o;,i > 1.1 {fj}
C X*, then {x }iscalleda Schauder base for (X,T). We shall have occasion to
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make use of special case of the concept of fully A-bases. In fact corresponding
to an arbitrary sequence space A (see definition below), a Schauder base { X
fn} -for an Le. TVS (X,T) is called a fully A-base (cf. [13]; [18]) if for each
p in Dy and x in X, {f (x)p(x,)} € M andthe mapping Vi X,
v, ) = {f, () p(x)} isT-n(A,A") continuous, where n (X, \*) is
the normal topology on A introduced below.

Coming to a brief discussion on sequence spaces, let w denote the vector
space of all scalar-valued sequences under usual pointwise addition and scalar
multiplication; and ¢ be the subspace of w spanned by the set {e” :n> 1},
where e = {0,0,0,...,1,0,...}, 1 being placed at the nth-coordinate.
In case we consider sequences defined over IN_, the members of our sequence
spaces will be indexed from 0 and ¢ will be spanof {e™: n > 0.} The
letters a, b, ¢, . . . and e (which denotes the sequence with all its coordinates
equal to 1), are used to denote the members of w, where a = {a } ,b=
{b,} etc.and ab stands for the sequence {a b }.Anelement a in w is
said to be positive, written as a- > 0, if a_ > 0 for each n > 1.The nth
section of an element a in w, denoted by a(") s the sequence

™ =% L.
a =2 ae' = {al,az,...,a

0,0,...} .
i=1 | }

n’

A sequence space \ is a subspace of w containing ¢ .The Kdthe, 8 -and
~v-dual of X are respectively the spaces A\*, A8 and AY defined as

N={bew: I |ab,l <oV-aeld};
n>1

= {bew: X a b convergesforeachaini};

n>1
and
n
NY={bew: sup | = ab; | < o, Vae}
n> 1. i=1

For the dual pair <X, A*>, the topology n(A, A*) is the normal ropology
on A, which is generated by the family { p,:b e A* } of seminorms where

Pp@= X Jagb,l.aeX,bed .
n>1

Let us also recall the
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Definition 2.2: A subset B of a sequence space M is said to be normal if a € B
whenever | a, | < |b, |,n> 1 forsomeb e B;and A is known to be perfect if
A = A**_ A linear sequence space (A,T,) is called a K-space if the co-ordinate
maps P;:A = IK, P; (a) =a;, 121 are continuous; and a K-space (A,Ty) is known
as an AK-space if each a in A satisfies the condition

n .
(*) a(™ = '21 ae' >a,asn>oinTy.
=

A seminorm p on A is called solid if p(a) <p(b)fora,beAwithla | <
o, lLn>1.

Clearly, the normal topology is generated by the family of solid seminorms.
For more examples of locally convex topologies generated by solid seminorms,
one is referred to [7], [8] and [15].

Following [14] and [15], we have the Schock-Terzidglu criterion and the
Grothendieck-Pietsch characterization respectively contained in

Theorem 2.3: A sequence space (A, n (A, p)) is Schwartz if and only if to
each a > 0 inpy, there exists b > 0 in u witha, < by, n > 1 such that
{ a,/b,} ec,,where uisa normal subspace of A*.

Theorem 2.4: A sequence space (A, n (A, p)) is nuclear if and only if for
each positive element a in u and a positive number s, there exists a b e u with
0 <a, < b,,n> 1suchthat { (a,/b,)*} €%}, where u is a normal subspace
of A*.

In the statements of Theorems 2.3 and 2.4, 0/0 means O.

In what follows, we shall also come across a particular type of perfect se-
quence spaces known as Kdthe spaces, denoted by A (P). Here P is a KGthe set
or a power set and is a subset of w satisfying the conditions: (i) each element a
in P is positive;(ii) for a, b € P, there existsce Pwitha b, <c,foreachn>1;
and (iii) for each n in IN, there exists a-€ P witha, > 0. The Kéthe space A (P)
is then defined as

AP)={bew:p,(b)= T I|byla, <=,VaeP}.
n> 1

The natural topology on A (P), generated by the family { p,:ae P },is
denoted by Tp. It is known that the space (A(P), Tp) is always complete and it
is nuclear if the conclusion of Theorem 2.4 holds with A* being replaced by P(cf.
[15],p.98).

In the sequel, we will require the following result which we prove here from
[17] for the sake of completeness. :
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Theorem 2.5: Let { x_f, } be a fully A-base for an 1.c.TVS (X,T), where A
satisfies the (K)-property (i.e. there exists vy in A* witHk,Y £ infy, > 0). Then
there exists a Kéthe set P such that (X,T) =(8,Tp[8) where § = {{f, (x) } : x
e X} is a dense subspace of ( A (P), Tp); in particular, if (X,T) is sequentially
complete, then (X,T) = (A (P),T,).

Proof. Let P= {{p(x,) B, } :peDy,BeX*, >0} and A (P)the co-
rresponding Kéthe space equipped with the topology T ;.

Since for each p in Dy, { f, (X)p(x,) } € A, & CA (P). Consecuently the
map ¥ :X~5, ¥ (x)= { f, (x) } isa bijective linear map.

The seminorms generating the topology T, are given by

Q = Z p(Xy)Bulonl
p.6() n>1 @

Therefore, by the fully A-character of { x,f },forevery pin Dy and Bin
A*, B > 0, there exists q in D such that Q8 (¥ (x)) <q(x).0n theother
hand, for p in D!

p(¥ ({£,(x)})) _<k1_7 Qpy ({ £a(0)})

Hence (X,T) ~ (8,T, |6). We next show that § = A (P). Let ae A (P) but
a ¢ § .Thenby the Hahn-Banach theorem, there exists an fin ( A (P))* so
that < a«,f > = 1 and < §,f > = 0 for every f§ in §. The last equality yields
<elf >=0foralln > 1. Thus< a,f > =0, a contradiction and so § =
A (P).

Finally, if (X,T) is sequentially complete, then § = §. For, if § & &, then
we find some o in A (P)suchthat a ¢ §.

Now

ky Z loglp(x) <2 |alpx)v, <=,VpeD,.
71’121&“ xn_nzlan n/ in Iy T

Therefore E opx, converges in (X,T); that is, « = { f_ (x) } €5,
n=1
a contradiction again. Now apply the first part to arrive at the desired result.

For Banach spaces E, Fand n e IN,, let us denote by T ("E;F) the Banach
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space of all n-homogeneous continuos polynomials from E to F with respect to
the norm | | - | | given by

[IPll=sup IIPXIl p. gEF).
x#0 [[x||®

Let us recall from [21] the following

Definition 2.6: A power series from E to F about X, e Eisa seriesinx ¢ E
of the form

2.7 Z P, (xx,),
n>0

where P, ¢ § ("E;F), n >0, are known as the coefficients of the power series.

Proposition 2.8: A necessary and sufficient condition for the power series
(2.7) to be convergent is that the sequence { (||P, || /n!)lln: nelN,} is
bounded.

Definition 2.9: A mapping f:E > F is said to be holomorphic at x € E if
there exists a unique power series of the form (2.7) such that

(2.10) )= Z P,(xx,),
n>0

where the series on the right hand side converges uniformly in a neighbourhood
of the point x, and is termed as the Taylor series of fat x .

Let H(E,F) denote the vector space of all holomorphic mappings with usual
pointwise addition and scalar multiplication. For f € H(E;F) having representation
(2.10), put

(2.11) d"f(xg)=n!P, ,n>0
so that
n
fi
(2.12) = p I 1) (xX,)
n>0 n!

We call the mappings d"f(n > 0) from E to T ("E;F), the differential map-
pings. Clearly, the operators d" maps H(E;F) into H(E, T ("E;F)).
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For f e H(E;F), x, € E and n >0, the sum

n o~
(2.13) Tafx, =3z L3 f(x,) (x-x,), x € E
i=0j!

is called the Taylor polynomial of f at x,.

Note: For F = C, the complex plane, we will write § ("E) and H(E) in place
of T ("E;C) and H(E,C) respectively.
For g € E*, one can easily check that g" € T ("E) and this leads us to

Definition 2.14: The subspace of T (“E), spanned by the collection { g":g e
E* } , is denoted by T ; ("E) such that each member of & ("E) is knownasa
polynomial of finite type.
On 7 4("E), other than the subspace norm of J ("E), we have another
stronger norm ||-[| N known as the nuclear norm defined by
m

m
(2.15) IIPll = inf{ El lgl":P= Z ¢} gp;eE*i=1,...m,}
i= i=

where the infimum is taken over all possible representations of P.

The completion of ( F ("E), ) in T ("E), is the Banach space § (("E)
whose members are called the nuclear n-homogeneous polynomials on E.

Finally, we follow [2] and [3] in the rest of this section. For a Hausdorff
TVS (X, T) and a sequentially complete 1.c. TVS (Y, S) let T ,("X;Y) and
T ("XiY) denote respectively the class of algebraic and continuous n-homogeneous
polynomials from X to Y.

For an open subset u of (X, T), we have

Definition 2.16: A function f:u > Y is to be said G-holomorphic in u if for
every X € u, there exists aseries = f,,f ¢ T,("X,Y),n >0fromXto

Y such that n>0

GDENEREC
n

for all hin a neighbourhood of 0 in X.

Definition 2.17: A continuous function f:u > Y is called holomorphic in u

if for every x € u, there existsa series = fn,f, € §("X;Y) such that
n>0
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f(xth)= I fo(h)
nZO

for all h in a neighbourhood of 0 in X.

Definition 2.18: A mapping f:u > Y is known as hypoanalytic on u if it is
G-holomorphic on u and is continuous on compact subsets of u.

We denote by H(u) the class of all holomorphic mappings from uto € and
by Hy, (u) the class of hypoanalytic mappings from u to €. Clearly

2.19) H(u) C Hy, (v)

In the sequel, we use the symbol 7 , to denote the topology on Hy , (u) or
H(u) of uniform convergence on compact subsets of u.

3. au-DUALS AND TOPOLOGIES

In this section we introduce a kind of a dual of a sequence space A, which in
particular includes the notions of a-, -, v- and other duals studied earlier in
{11, [20], [22], [9] and [4]; indeed, for a given sequence « in w and a sequence
space u, we define

Definition 3.1: The au -dual of a sequence space A is the subspace 7\‘& of
w defined as

)\ﬁ={bew: aabeu,Vael}

If (“’T#) is a locally convex sequence space with T, being generated by a
family D, of seminorms, then we can topologize either of the spaces A and?\’é
with the corresponding locally convex topologies T, u and T *aw respectively
generated by the families |{ pub‘ ‘pe D“ ,be )\g }and { pg ‘pe DM’ ae\} of
seminorms where forae A, b € )\g andpe Dﬂ’

(3.2) Py (@)= po (b) =p( { &y a, b, }

The topology Tau onA(resp. Ty, on M Yisknown as the ap-topology
i * o
on A (resp. on \).
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Note: From now onwards, we shall assume throughout that o € w is such
that o, # ,foreachn > 1. As particular case of a and u , we have

(a) for a, =1,n>1, we have the following well known duals:
@ ifp=0',% isthe Kothe dual \* of \:

(i) ifp=cs, ¥ isthe g-dual M ofA;

(iii) if u=bs, )\g is the y-dual AY of A; and

(b) for o, =—r11— ,n>1,u=c,and

a
A= {aew:—" >0 asn>oo},

n

}\Z is the space introduced by Boland (cf. [4], Definition 1.3, p. 41).

Thus different values of a and different sequence spaces u yield various
duals of A. For an arbitrary a with «; # 0,n> 1, we shall study in general the
impact of the structure of (u, T”) on the space (A, T w in this section. Let us
begin with

Proposition 3.3: If (u, T, is a K-space (resp. an AK-space), then (A, T, w
isalso aK-space(resp.an AK-space). Similar result holds for the space ()\“a s T, #).

Proof: For showing the K-property of (A, Tau)» consider a net {a®:fe A }
in A such that aﬂ >0inT, ,. Therefore, for e >0,pe D# andbe 7\’& , there
exists anindex = B, (¢, p, b) in A such that

p* @=p({a,alb, 1) <e VB>,

Thus ¢o,8b>0in (u, Tﬂ) for eachb e )\g . Consequently,

a,afb,>0,Vn >1and {b,} eNs.

= a0 ,Var1

n —

Hence (A, T, ”) is a K-space.
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The AK-ness of A is immediate from the equality

py (@™ 2)=p(y ™ -7),
wherea e\, b e)f:!, Y=« abeuandpeDM.

The result for (W%, T #) follows analogously.
Regarding ap-duals, let us introduce.

Definition 3.4: A sequence space A is said to be au-perfect if )\ )\“ o Where
)\”"‘l ()\”)“ {cew:abcep, foreachbe)\“} the audualof)\

Definition 3.4: A sequence space \ is said to be «u-perfect if X = AH¥

o« o«

where M = W )E = { cew: xbcey, foreachb e X K ), the ep-dual of
ML '

Remark: The au-dual of a sequence space is always au-perfect.
For an arbitrary sequence space, we have

Proposition 3.5: Let (u, T ) be an AK-space. If A\, T, #) is sequentially
complete, then X is au-perfect.

Proof: For proving the result, we just need show that 7\“ M C A forthe
other inclusion is always true. Let us therefore, take an element cin ?\” H

Then
M enVn>1,

Also, for b in 7\“ 7(“) >bin T , where vy = abc. Therefore, for P e D and
m <n,the equahty

pp (€™ — (™ )= p(y(W) _o(m),

yields that { ™} isa Cauchy sequence in (A, T

Ty ”)
Hence there exists an s in A such that

¢® 55 asn >
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relative to T . But s = ¢ by Proposition 3.2 and the fact that CE") = ¢, for
each n > i. Hence )\gg‘ = A

Remark. Before we prove a partial converse of Proposition 3.5, let us note
that none of the conditions, namely, AK-ness of the space (A,T”) and the
sequential completeness of (A, T 4 w is indispensable in the hypothesis of the
above result; for we have

Example 3.6. Let p be the non-AK-space {* of all bounded sequences
equipped with the usual supnorm topology and A be the space c, of all null
sequences. Choose o =e. Then one can easily verify

M =(=and b =(

Thus A is not au-perfect. However, the space (c,, T (oo) is complete;
- e
indeed, Tef°° which is generated by the family of seminorms

e le ]
pi(a)= sup Ja b |,aec, ,bel
b nZl n"n 0

is equivalent to the supnorm topology of c .

Example 3.7: Let (u, T,) be the AK-space ¢ equipped with the supnorm
lI'llo and A be c,. For a =e, we have

)\g =¢ and 7\%: w.

The topology Tep on g is n(cy, ) and so the space (A, Tyy) = (co, (cqo, ¥))
is not sequentially complete [indeed, { e(™ :n > 1}  wheree® = { 1,1,

5 1,0,0,... } isanonconvergent n(c,,y) —Cauchy sequence in ¢, ]. Observe
n-th place

that ¢, is not au —perfect,
On the contrary, the following example illustrates that the AK-ness of the
space (1, T,)) is not a necessary condition in Proposition 3.5. ‘

Example 3.8: Let (u, T“) be as in Example 3.6 and A be ¢. Fora = e,
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7\5 = w and )\gg=xp

Thus A is au-perfect. Also, the topology T ¢= which is generaled by the family
of seminorms

p{i(a)= S;PI lagb, | ,2a € 9,b € w
n

is nothing but the normal topology 7 (¥, w) [indeed, Te oo C1 (¢, w) is clear;

for the other inclusion, use the nuclearity criterion of (¢, n(y, w)), cf. [15], p.

288; or equivalently the fact that foreachb e w, b, >0, there existsce w, ¢; >0,

such that { b /c,} €%1]. Therefore, (y, T,go0) is complete, cf. [15], p. 83.
Converse of Proposition 3.5 is obtained in the form of.

Proposition 3.9: Let (u, T ) be a complete (resp.sequentially complete) K-
space. If X is opu-perfect, then (A, T #) is complete (resp. sequentially comple-
te).

Proof. Let us prove the result for completeness; the part for sequential
completeness follows analogously.

Let { 2P BeA} bea Tau-Cauchy net in A. Then by Proposition 3.2,
there exists a sequence {a,} C IK such that

() ab>a, , Vn>1.

Forbe ?\g, write 76 = aaPp, Be A .Then { 'yﬁ :8e A} is a Cauchy net
in (4, T#) and so for some s in u,

(%) 7B+ sin TM'
Hence from (%) and (#%),s= { &, a, b, } andso { aja, b, } eu Asb
€ 7\5 is arbitrary, it follows thata e ?\Zg = A.

Also, from (xx) we have that aP>ain Tau' Thus (A, Tau) is complete.

Remark. Neither the completeness of (u, Tﬂ) nor the au-perfectness of A
can be dropped in the above proposition; for we have

Example 3.10. Let u = 2! and T# be the supnorm topology on 2! Further,
take A= 2" and « =e. Then
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oo g i _ g1
7\& 27 and N, .

Thus A is au-perfect; however (A, T, “) is not complete, for the topology

Tau’ in this case, is the same as TM'
Example 3.11. This is the well known example of A = ¢ and (u, T ) =
@', 11-ll,), where |||}, is the usual norm on 21. For « = e,

M _pl ML goo
?\a—ﬁ and?xaa—!l.

Thus ¢, is not au-perfect. As Tau =n(c,, 1), the space (cy> Tau) is not
complete [cf. also {15], p. 83]

On the other hand, completeness of (u, T #) is not a necessary condition as
illustrated in

Example 3.12. Consider the incomplete space ( v , |I-ll,) as (u, T#) and
A=y .For a=e,

M pl _
)\a— w and )‘aa— .

Hence X is au-perfect. Also, the space (¢, T

is complete since T, =
7 (¢, w);of Example 3.8.

o)
Since 7\2 is always oau-perfect, a consequence of Proposition 3.9 is con-
tained in.

Corollary 3. 13 If (u, Tp) is a complete (resp. sequentially complete) K-
space, then (?\“ , ) is complete (resp. sequentially complete).

Combining Propositions 3.5 and 3.9, we get a characterization of au-per-
fectness exhibited in

Theorem 3.14. For a sequentially complete AK-space (u, T ) Ais oau-
perfect if and only if (A, Tau) is sequentially complete.

Boundedness. It is clear that a subset A of Ais T, -bounded if and only if
theset Aba= { {a;b; o } :aeA} is boundedm(u,T )foreachbe)\”
Replacing the singleton set {b} in 7\“ by a T* bounded subset of 7\” we
introduce

Definition 3.15. A subset A of A is said to be completely bounded in \ if for
each Tzu-bounded subset B of 7\5, the set
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ABa={{ab; a;}:aeA, beB}

is bounded in(u, T IJ)'

Remarks. Clearly, every completely bounded set in A is T, u-bounded. The
converse, given in Proposition 3.17, makes use of the following result reproduced
from [10].

Lemma 3.16. A subset B of an 1.c. TVS (X, T) is bounded in X 1f and only
if for every sequence { x, } C Band {a,}e&", the sequence { 3 a; % }
is a Cauchy sequence in X. i=

Proposition 3.17. Let (u, T ) be a sequentially complete K-space. Then
every Ty - bounded subset of A is completely bounded.

Proof. Let us assume that the result is not true. Then there exists a T
bounded subset A of A, which is not completely bounded. Hence we can fmd a
T%,,-bounded set B in ?\“ suchthat ABa = { aba: ae A,be B} isunbounded
in (1, Ty). Consequently, forgivene >0andp € D“, there existsal e A,bl ¢ B
with the property that

p(aibla) >1 +e.

As A and B are bounded in (A, Ta/.t)
exist constants L, >0 and M; >0 satisfying

and ()\“ ’Tzu) respectively, there

sup p(aab') <L,
a€cA

and
sup p(aa'b) <M.
beB

Choose m, € IN such that

mtl e, .

From the unboundedness of AB a, choose 22 € A and b? € B such that

p(a®b? @) >2™1 (L, +2+e).
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Corresponding to the points a2 € A and b? € B, we can now find constants
L, >0 and M, > 0 such that

sup p(aab®) <L,
aeA

and

sup p(aa’h) < M,.
beB
Choose my > my such that

2m2tl < oM,

As above for the constant 2™2 (L, +2"™1L,+3+¢€), select a*> € A,b% ¢ B
and then the constants Ly > 0, M, > 0 satisfying the relations

p(aa®b®) > 2™M2 (L, +2™1L, +3+¢),

sup p(eab’) <L,
aeA

and

sup p(aa’b) <M,.
beB

Then consider my > m, with the property
2m3tt oM,
Continuing this process, we get sequences {a™} < A, {b"} CB, cons-
tants L, > 0, M;, > 0 and an increasing sequence {m,_ } of integers such that

the following four inequalities hold:

n-1
p(aa™®)>2 ™01 (T 27 Litnke), L, = m, =0;

i=0

sup p(aab™) <L ;
acA .

sup p(aab) < M,;
beB
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and

pmptl <efm,
forn=1.2,3,...
n :
Now using Lema 3.16 we infer that the sequence {| £ 2™i1b'}isa T*jxu
i=1

-Cauchy sequence in ?\Ié and so by Corollary 3.13, there exists b® in )\’;[ such
that

n : .
Bo=Th, —lm X 2Mi-1pl= 3 27Mi-1pl
i=1 i>1

Thenforn> 1,

plo (") = plaa® T 2 ™i-1 b
izl

>2 “Mn-1 p(ea™b™?) — p(eaBbl)
— 271 p(gatb?) — ... —2 ™n2 plaabn-l)

_2—mn Mn (1 +2mn—mn+1 +2mn—mn+2 +.)

n-1
>( T 2™itLi+n+e)—L, —27MIL, ..
=0

_.92Mp2 —
2 Ly, —€

=n

Hence Ais T, “-unbdunded. This contradiction proves the result.

Note. Let us observe in the following example that the conclusion of Propo-
sition 3.17 may hold even if (y, TIJ) is not sequentially complete.
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Example 3.18. Let a, X and (u, T, ) be as in Example 3.12. Here Tau =
n(y, w)and TZ# =n(w,y).IfA andﬁ are respectively Tau -and TZ -boun-
ded sets, then using the characterizations of 7(¢, w) and 7 (w, y)-bounded sets
(cf. [15], p. 104 and p. 106), one can easily verify that AB is bounded in ( ¢ ,

Mlo0)-

Remark. The vector-valued analogues of the results of this section for a
fixed a, namely a=e, are to be found in [11].

4. SPACES OF HOLOMORPHIC MAPPINGS

In this section we study several subspaces of the class H (E) of holomorphic
mappings (cf. Section 2) defined corresponding to an arbitrary normal sequence
space i, a nonzero « in w and the au-dual of a sequence space A. Indeed, we
endow these subspaces with locally convex topologies in order to study their
topological behaviour and also to characterize the bounded and relatively com-
pact subsets. In this section, we consider sequences defined over IN,.

To be precise, let us assume throughout that u denotes a normal sequence
space equipped with a Hausdorff locally convex topology T” generated by the
family D, of solid seminorms, o a sequence in w with o, # 0,n >0 and A a
sequence space. Then we introduce the spaces

(4.1) H” (E) = { fe H(E):d"f(0) e T ("E),n>0

with { ( ||a:‘f(0)|| EITTEE
n:

(4.2) H‘I‘; (E) = { f e H(E):d™f(0) ¢ Ty ("E),n>0

with { ( __lid"fO)IIN _ ) /n
n!

Vem}s

(4.3) HE (BN = {feHY(B): { 1AMO) 1™ } ey bs
and

(4.4) B G(EsN = {feHY (B) : { 1 "OIY™ } ey ).
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The power 1/n wherever it appears for n = 0, means 1. Clearly,
HK (E;0 H (E)
and
B L (EsN=HE (B) N Hy (B).

Let us equip the spaces defined in (4.1), (4.2), (4.3) and (4.4) with the
Hausdorff locally convex topologies T, , T, Ty and Tllj o respectively genera-
ted by the families Dy = { Q,: pe Dy }, DY = { Qr; :peD, [N

A _ a. NA N .
Dy = {Qp.peD“,ae?\ } and D,/ %= { Qp’a .peD”,ae)\ }
where forp e Dy, aenN,

(45) Q () =p( { (O yi/nyy re it (E).
n!

(4.6) Ql:(f)=p({(m Yy, fenl (B)
n!

4.7 Q,, (0= p( { 1A*FO)IH/™ oy a, } ), feHE (E;N).

@8) QN (M =p({11d" O 1" oy ag )} )T € Hyy BN,
Concerning the spaces (4.1) and (4.2), we have

Proposition 4.9: Let (U, Tﬂ) be a complete K-space such that p, (") =1,
for each n 2 0 and some p, € DM' Then the space (Hﬁ (E), TE) [resp. (H* (E),
T, )] is quasi-complete.

Proof: For proving the quasi-completeness of (H{fl (E), TI\}II), consider a TE
—bounded Cauchy net | fB :Bent in H’I{I (E).Fix ¢ > Oandp € Dy
Then there exists §, depending on € and p such that

| 1d"fg (0) 4™ty @ | | N

n!

p({ ( yiny Yy < e B,v> By. ()

Since p is monotone, it follows from ( + ) that the net { aB:geA } , where
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| 1d"fg @ [ N

n!

a6 =

Yim} Be A
is a Cauchy net in u . Hence there exists an element a in u such that

aﬁﬁainT#

aﬁ*an,VnZO (%)

Applying ( + ) for p= p, and using the monotone character of p,, we get

L1 da™ fg (0)-d™ f @1 |y

n!

po (( YUn en) < e,B, 7 > B

But p, (e") = 1,n > 0; therefore, the net { dn fﬁ (0): B € A} is Cauchy
in TN (RE), for n > 0.Hence we can find a sequence { P, } of polyno-
mials,P,, ¢ Ty (PE),n > O such that

P, = lip d g (0). (*+)
Thus from (%) and (**), we get

HPy 1
a, :(_“__N_)l/n ,n> 0.

n

Hence { (|| P, || n/n!)Vn} € p.Let

Py, (x)

n!

Qu(x) =

Clearly, Q, € Fn ("E),n > 0. We now show that the sequence

(e, Il
{ n'n —)¥n } s bounded so that a function f in H¥ (E) could be defi-
ned as follows:
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f(x) = N § 0 Q, (x), x € E (*'**)

To prove this, observe that for the p, of the hypothesis, there exists a cons-
tant K = K (p,) such that

[ 1d2 8 0) | | n

n!

po ({ ( Yo}y < K,V eA

Using the monotonicity of p, and the fact that p, (eM=1,n>0,we
get

[1d™f5(0) 11
(BN /" <K, Vn>0,8eA

n!
1 Pntl
==> (——)/" <kVn>0
n: - -
- (9t yuno (HE Il yim < Va0
n! (n!)

Thus f e H* (E). Since { (| |P, |1 x/nD!/™ } isin u,feH‘;I (E).
"Finally, it remains to show that f6+ fin TI;II. Define a net { bﬁ, BeA}in
u as follows:

|12"5(0) -4"f (0) | Iy

n!

bP= { Yny geA

Then from the monotonocity of each member of D, and the relation (+),
it follows that { bﬁ :BeA} isaCauchy netin(u, T“). Hence there exists b
€ ¢ such that

B
b +b1nTu

==> bB>p,,Vn>0
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But
o _ M@ TO@ Iy )y
" n! n
>0 ,foreachn>0.

Hence b, = 0,V n > 0. Thus bP>0in(uT > or equivalently fg> f in
Th Hence the space (H“ (E), TN ) is quasi- complete

Proceeding exactly on similar lines, the quasi-completeness of the space
(H* (B), T,,) also follows.

For our next result, we need to introduce

Definition 4.10. A sequence space A is said to have G-property if A
contains an’element b satisfying the condition

by I> —L—— Vn>o.
| oy Inlit/n

Proposition 4.11: Let (u, T ) be as in Proposition 4.9, A a sequence space
w1th G-property and o € w w1th o, #0,n>0. Then the spaces (H Na (E),
)and (H“ (E;N), T, ,) are quasi-complete.

Proof: The proof of this result is not very different from that of Preposi-
tion 4.9; however, we outline the same for the sake of completeness. Indeed,
we prove the quasi-completeness of (H (E;D), T o) the result for the
space (H“ (E;M, T he ) being true on 51m11ar lines.

53

Let { fg:8 ¢ A} be aTha —bounded Cauchy net in Hﬁa.(E;)\).Then

for arbitrarily fixeda € X, € > Oandp € D , there exists B, = 8, (e,p,
a) such that
p({11dn6g(0) — dfy @) 11 P anan}) < e . )

forallB,y > B,.Write

8B=(11d 50 11" agay ) .6 €A
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Then the net { Bf : 8 € A} isaCauchy net in (IJ,T#) and sowegetd, € pu
such that

5, =1ién 88

B, = lim 56 ,¥n>o

_On the other hand, choosing p = p, in (%), we can easily show that
{ dn fg (0):B €A }isaCauchynetin Ty ("E),foreachn > 0.So, the-
re is sequence { P, } of nuclear polynomials,P, € Jy (2E)such that '

P, = 1131 d" f5(0) , n > 0.
Therefore

5a,n=||Pn||]I{1n anan,VnZO.

Asé, € panda € Misarbitrary, it followsthat { | | P | | ]I{Jn } e )\‘al.

Forn > 0, define

Py (¥)

Q, (x) =

n!

We now prove the boundedness of the sequence | (M )1/ n } . Observe
n'l )

that for the given a and p, as in the hypothesis, there is a constant K depending
on a and p,, such that

|1dnfg (0) 11" po (@qagen) <K,Vn=>0.

Using the G - property of A , we get
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(] 1a® g0 Il N yn

n!

<K, Vn=0

HPnH I/n

: (n!

<K,Vn>0

| 1Qq |1
= (—)"™ <k Va>o.

Thus the function f defined by

f(x) = E Q“(x)’er«,.

n=o

is a member of H (E). Since K is normal and A has the G-property,
(1P, 1] Njnp)V/n } € u ;consequently f € Hilfm (E;A).

The convergence of the net { f g:BeA}to f in the topology T§ o follows
analogously as in the proof of the preceding result; however, in place of the net
{bB:pe¢ A}, for a € A we consider here the net { bg :BeAtin pu ,where

b/: ={ | 1dfg(0) — drf @)1 1§ apay}
and show that
1ién b8 <o,

. : . . N
This establishes the quasi-completeness of the space (H‘IL\I o EN)T o)

Remark: If p, o and X be as in (b) of the Note given after Definition 3.1, the
spaces H{fl o (E; M) and Hﬁ (E; \) are the ones introduced and studied by Boland
in [4], Section II; and therefore, our Proposition 4.11 includes his result ([4],
Proposition 2.1, p. 49) as a particular case,

Bounded Sets in H{\‘I o (E;N) and H‘& (E; 2): In this subsection we charac-
terize bounded subsets of the spaces HE , (E; A) and HH (E; %), and obtain
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results exhibiting the equivalence of two topologies induced on a bounded
subset of HﬁoKE; M) [resp. Hg (E; )] by Tlﬁa [resp. Tyqland Ty,.

In this subsection we consider sequences indexed over IN,. For a subset
B of HY,, (E; ), we introduce the notation

b, =sup { [f(0)]:f € B}
bY =sup { [[d"f(0) |Iy:f e B} ,0> L (4.12)
In the sequel, the symbol b wherever it is used, will stand for the sequence
{ by} asintroduced in (4.12).
Let us begin with

Proposition 4.13: A subset B of H‘Ifl « (E; ) is bounded ifb e )\g .

Proof: As D# contains monotone seminorms, we have

Q) , () <p(aba)

foreachfinB,pin Djanda € A Therefore B is bounded.

The situation for the validity of the converse of Proposition 4.13 is not so
pleasant in general; however, restriction on u or on both the spaces u and A, leads
to the following three different variations of the converse:

Proposition 4.14: Let B be a bounded subset ofH‘IfI o (E; 1) If u contains e and
po (¢") = 1,n > 0, for some p, € D#,then be )\g.

Proof: Since B is bounded, for p, as in the hypothesis and a € A, there exists a
constant K = K (a, p,) such that

po ({11dPf @) 11" aja,}) <K, VfeB

= Jopab, | <K, Vn>0

as p, is monotone and py(e") = 1,n > O.Henceoab € uforeachaind;
consequently,b € )\g.
For our next result, we make use of,
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Lemma 4.15: For a normal sequence space A with (A\*, n (A%, X)) nuclear

M ={bew: sup |ab,| <o Vaer}
>0

n._.
={be w:lab,| >0as n>oo ,Vaer}

Proof: Immediate from Theorem 2 4.

Proposition 4.16: Let B be a bounded subset of H‘#m (E; N). If (uX, n(u*x, w)
is a perfect nuclear sequence space, thenb € ?\'L& .

Droof: Letb ¢ A‘& . Then there exists a in A such that aba ¢ u. Using Lemma
4 15, we can find ¢ in u* such that

sup |apbpc o, = 0@
n

Therefore, for each i > 0, there exists a subsequence { n; }-of IN such that
| ap.bn.coan, | > 2,0 >0

or, sup | | d"IFQ) | 0™ | apcpan | > 2,0 > 0.
feB 1 1 1

Consequently, there exists a sequence { f;} in B such that

M I/n; .
| d"if ) |y Ll B Cn @n, | > 241> 0

= Ql\i,a(fi) = E . I Icf“fi(o) I lf\{" lageq o |
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This contradicts the boundedness of B in H‘Ifl o EsN).

Henceb e M,

Proposition 4.17: Let A be a normal sequence space such that (AX, n (A%, A)) is
Schwartz and suppose that 4 = c,.Thenb € AL if B is a bounded set in (H a

EN, T} ).

Proof: Assume that b ¢ )\a‘. Then we can find a € A such that aba ¢ c,.Hen-
ce there isan € > 0 and an increasing sequence { n; } for which

| ag b0, | > € Vi>o.
Consequently, we get a sequence { f; } C B satisfying

||(fnifi(0)l|%ni | 2y, Op, | > e Vi > 0.

By Theorem 2.3, there exists a sequence ¢ € Asuchthat {ap/c,} € ¢
Write 8, = a,/c,, n > 0.Thenforeachi > 0,

0 -

Qe Bayf= s LG 1R T

a 1/n;
Z Hdnl (f1) I | N1 ]ﬁni anicni l

Hence 8, f; # Oin Tﬁa This contradicts the boundedness of B and so the
result holds good.

To characterize bounded subsets of Hg (E; \), for a subset D of H‘& (E; D)
let us write

dy, = sup {|f(@) | : f € D}
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d® = sup { ||df(0) | | :feD}, n> 1.

Let us fix the symbol d to denote the sequence {d, :n > 0} asdefined
above, Then we have

Proposition 4.18: A subset D of H¥ (E;\) isbounded ifd e M,
o o

Proposition 4.19: Let D be a bounded subset of Hg (E; M. If u contains e and
Po (€") =1,n > 0,forsomep, € Dy ,thenb e )\g.

Proposition 4.20: Let (uX n (uX, u)) be a perfect nuclear sequence space. Then
for a bounded subset D of HE (E;)),d € M.

Proposition 4.21: Let X\ and u be as in Proposition 4.17. Thend € }\“ if Dis
a bounded set in (H“ (E;N), Tha)-

The proofs of these results are analogous to the corresponding ones for the
space HNa (E; ) and so omitted.

Since the spaces H“ (E; ) and H o (E; \) are respectively contained in
H (E) and H“ (E), it is natural to mqulre the relationship between the original
and induced topologles In this direction, we have.

Proposition 4.22: Let A possess G-property. Then the induced topology Tj, | Hg
(E; M) on H” (E; D) [resp Tha | H o E;Non Hlifla (E; M) ] is weaker than the
topology Tha [resp. T Ha]

Proof: Straightforward.
On the other hand, on bounded subsets we have.

Proposition 4.23: Let B [resp. D] be a bounded subset of Gi“ E; N, Tya)
[resp. (H‘Ifm (E; D), T ha? - Then the topologies induced on B [resp on D] by
Tpo and Ty, [resp. T o and T 1 ] coincide provided A contains G-property and
one of the following two condltlons hold:

(i) u=c,, A\ is normal and (A%, n(AX, \)) is Schwartz;
(ii) The space (u* 1 (uX, W) is a perfect nuclear sequence space.

Proof: We prove the result for (Hg (E; N), Tyq); the result for the bracketed
space follows analogously.
In view of Proposition 4.22, we need prove

Tye !B C Ty IB . (+)
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Let us consider the cases corresponding to the conditions (i) and (ii) separa-
tely.

(i) For proving ( + ), let ustake anet { fg5:8 € A } and fsuch that
fs — fin Ty, Then for given € > 0, there existsSo in A such that

dfs (0) — df (0
p (1475 © O i < e 55,

‘n n!

(x) = dnf5(0) » d*f(0)in  F(E), V. > 0.

Also, for given ain A, aba € c_ by Proposition 4.17 and so there exists an
integer n, = ng ( € , a) such that

[apbyo, | <€/2 ,n > n,
Hence ford e A,

Qpp.ypals-D < su { | 1dofs (0)-dn (o) |1V |aya, |, €}

n < ng-l

Consequently, f§ = fin Ty, by using (+). This proves ( + ).
(i) For this case, use Proposition 4.16 to inferb € ?\‘& and proceed exactly
as in (i).

Relatively compact sets in B, , (E; \) and B& (E; )):

Using the above characterizations of bounded sets in the spaces H‘I\‘I o (EsN)
and Hg (E; A), we characterize in this subsection the relatively compact subsets
of these spaces. We have

Proposition 4.24: Let (u*, n (uX, 1)) be a perfect nuclear sequence space and

A possess the G-property. Then a set B [resp. D] in (H‘Ifm (E;N), T}I:a) [resp. in

(H’(‘I‘ (E; M), Tpy)] is relatively compact if and only if B [resp. D] is bounded and

the set { dif(0):f € B} [resp. { dPf(0):f e D]is relatively compact in
TN (E) [resp.in  F("E)] foreachn > 0.

Proof: We prove the result for the space (H"P‘& o (Es ), Tlﬁa ); the result for the
space (H’é (E;N), Ty, ) follows on similar lines.
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Assume that B is not relatively compact. As the space (Hﬁ o EN), Tl;lla) is
quasi-complete by Proposition 4.11, B is not relatively compact. Hence there
exista € A\,d € pX, e >0andasequence {f,} C B such that

z | 1dnf; (0) AP (0) 11 Y™ apandn | > €,V i,j > 0. ()
n_

Also, b= {b_} € 7\5 by Proposition 4.16, therefore, for the above € > 0,
there exists an integer n, = n, (€) such that

z [apanbad, | < € /4,
1

n > ng+
Consequently,
> [ dof, (0) -d°f, ©) [[ 4" | epand, |
n > ng+1 )
<2 | agbyed, | < € /2, V i,j > 0.
T n > ngtl

Hence we have from (*),

ng

FEO {1dnf(0) —d2f (0) | | ™ logagd, | € >¢€/2,Vi,j>0.

Thus for each pair (i,j) & IN, x INg, there exists an integer nj; lying
between 0 and n,, such that

€

[1d"06,0) 4™ 0) 11" lonandy | > 5y
o

(+)

Consequently, the inequality ( + ) is satisfied for infinitely many ij’ s
corresponding to the same n = ny; lying between 0 and ng. This contradicts
the relative compactness of the set { dnf(0): f € B } foreachn > 0

Conversely, if B is relatively compact, it is clearly bounded. Forn > 0,
define linear maps V¥ : H"}‘Ia (E;N) - Ty (PE) as follows:
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¥, (f) = df(0),n > 0

Clearly, each ¥ is continuous. Hence the sets { (i"f(O) :feBl= ¥
(B),n > 0 are relatively compact. This completes the proof.

Proposition 4.25: Let A be a normal sequence space with G-property such that
(A*, n (A% ,N)) is Schwartz and u=c,. Then B C H‘Ifm (E; ) [resp.D C Hg
(E; )] is Tlﬁa — [resp. Ty o — ] relatively compact if and only if B is Tl;fa — [resp.
Ty — ] bounded and the set { d2f(0) : f € B} [resp. {d?f(o):f e D}is
relatively compact in Ty ("E) [resp. T(®E)]foreachn > 0.

Proof: For proving this result, proceed as in the proof of the precedint proposi-
tion.
5. HOLOMORPHIC MAPPINGS ON NUCLEAR SEQUENCE SPACES:

The holomorphic functions on nuclear spaces have considerably been stu-
died in [5] and [6]. This section is a continuation of this study to a class of holo-
morphic mappings defined on an open subset of a nuclear sequence space. The
main result is contained in Theorem 5.6 whose proof makes use of
Proposition 5.1: Let \ be a normal sequence space with (AX, n (A%, 1)) nuclear
and u be a neighbourhood of zero in (A%, 7 (A%, A)). Then there exists an absolu-
tely convex neighbourhood v of zero and a sequence & ={&,} with 8, > 1, for
eachn > 1 such that {1/8,} €% and

v = {{6,by} 1 {by} € vand {6.b,} e A}

C u.

Proof: In view of Lemma 4.15, we may assume
u = {beX:sup|byc, | <e},
n

for some positive ¢ = {c;} € A and € > 0. Using Theorem 2.4, we can
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findd = {d,} in A with0 <¢, < d, suchthat {c /d;} e ¢
Define

v = fae N sup |apd, | <el

n
and

an ifc, = 0

d,/c, ife, # 0
Clearly, {1/8,} € £'and8, > 1foreachn > 1. Further,one can easily
check thatdv C wu.
Proposition 5.2: Let (A, n (A, \*)) be a barrelled nuclear sequence space and u be
a normal open set in (A*, B (AX, N)). If K is a compact subset of u, then there
exists a sequence 8 = {8} suchthat§, > 1foreachn > 1, ({1/8}
€ %' and '
8K = {{bja,} :a = [{a,} e K}

is a relatively compact subset of u.
Proof: We may assume without loss of generality that K is normal. Since

(\, 7 (A, AX)) is barrelled, there exists a positive sequence b = {b;} € A*
such that ’

={aer:la | <ib|,Vn> 1}

Let c correspond to b in AX such that { b, /c,;} € & (cf. Theorem
2.4). Define
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Since K is compact, we can find € > 0 such that
K + e voC u

As v is a n (A, AX) —neighbourhood of zero, it follows that K + ev® is
* arelatively compact subset of u. Now define 8 = {§_} as follows:

Cn
1+e — ,ifb, # 0
bn n

2n , otherwise.

Clearly,6, > 1foreachn > 1land {1/6,} e #'.Since

v = {a°ce A | < ey | ,Vnyzyl} ,
it follows from the normality of K that
K C K+te{ae M:|a | <|cl,n> 1} C u
This completes the proof.

The main result: We need make some preparation for the main and the last
result of this section. Forr ¢ IN, write

IN' ={m ={my,my,..,m,0,0,... }: mj e Nj,i=1,2,..,r} (53)

INF (5.4)

Further,form ¢ INM withm = { m;,m,,.., m,00,..} ,definea
mapping f™ : w > € by
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fm (a) = T apt = gm, (5.5)

n=.1

Then the mappings M, m ¢ IN(IN) are known as the monomials.
We are now prepared to state and prove the main result contained in

Theorem 5.6: Let (A, 7 (A, AX)) be a barrelled nuclear space such that (AX,
B (\*, A)) is an AK-space. Then the class thf(u) of hypoanalytic function defi-
ned on a normal open subset u of (AX, §(AX, A)), equipped with the topology 7,
of uniform convergence on compact subsets of u, is a complete nuclear space
and theset { f™ :m e ININ)} of monomials formsa fully &'-base for

(Hpy (1), 75).

Proof: We prove this result in two parts. Whereas in Part I we prove the fully
! -basis character of the monomials, Part II exhibits that the space (H,y (),
To 2) is complete and nuclear.
I.Clearly, the set { fM :m e INUN) } jsa countable subset of Hyy (u).
Consider now an f in Hy , (u) and a compact subset K of u. Forb € uand
r € IN,define.

[b]; ={s€e w: s | <[b|,1 <i<Lrands =0 > r}

As u is normal, [ b ], is a finite dimensional polydisc in u. Therefore using
the theory of analytic functions of several variables, we get fors = {5} € K,

f@y= = ap tm , Vit e [s],

m € INT
where
f(ug,..,ur,0,0,..)
1 15 «es YUy Vs Uy
= f.uJ duy ...duy
m T a2nry T u;"1+1 1
.U
T = { U,y l=1s|,i=1..,r}

Consequently, form e IN®
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PEEET ) NEN
K
lag | < - < — (5.7)
NI EX
where for A C  u,[|f ||, = sup {If(x) [:x € Aland [s™ | =
Pyl Is3r .
Since K is compact, we have by Proposition 52 aé = { 6§} with

§, > 1,n > land {1/8,} e %' suchthatdK isa relatively compact
subset of u. Applying (5.7) to 6K, we get

[If Ilsk
- T
lam | < TGom | ,Vm e IN
[f 11
| a s | < %K V¥me N
5m
As the above inequality is true for each s in K, we get
[1f11
sup |ags | < — 2K Ve (5.8)
seK om
1
Z sup  Japs™ | < | f ] p) —. (59
meNM sek ™ oK N(N) §m
Since IN' C INT*1 r > 1 and { —61— | € 21 we have
n
]N oo
m e N TT (1-;—)
n=1 n
where C is a finite constant. Hence
z . su ans™ | < C f . 5.10
T o BB lansm IS CIIE gk (5.10)
Consequently, the series z ay s™ converges in the field IK for

N
each s in u. Define m e NN
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T(s) = z a,s™ s € u 5.11
(s) o 2 N m (5.11)

Then T is clearly an hypoanalytic function on u. Moreover,

T()=1f@E),VseD

where D = U D
r > 1

Since both the functions f and T are continuous on compact subsets of u, it
follows that f = f onu. Hence

D = U {[s];:s € u} ,isadense subset of u.

f(s) = z a sm,Vs € u 5.12
(s) T an (5.12)

= z a fm(@s), Vs € u
m(—.‘lN(]N)m ()

In order to show that {fMm:m e IN@} jsaSchauder base for

(th (u), 74), it suffices to prove that the series X a, f™ converges
m ¢ IN(N)
to f in the topology 7, the Schauder character is immediate from (5.8). There-

fore consider a compact subset K of u and an € > 0. Then for § = {§,, } as abo-
ve we can find a finite subset J, of IN(ND such that

1 €

z _— < = 5.13
NNy om Tk ¢13)
Hence for any finite subset J of IN(IN) withJ D J_, we have
| 1f— Z a,fMm || x = su | z s | (5.14)
meJ K7 %% memwm—; ™™

from (5.12), (5.8) and (5.13). Thus (5.14) yields the unordered convergence of

the series - Ee N (IN) a,, f™ to f in the topology 7.
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The fully 2! —character of the base {fm :m e IN(N)}}  isimme-
diate from (5.10) which can be written as

Em(m)llamfmllK <Cllfllsgg < =.
m

II. Let us first prove the completeness of the space (Hy, (u), 7,) and so
considerar, _Cauchynet {fo @ @ € A} inHyy (u).If

f = z @gm s e ua e A
a (8) 2 IN(IN)amS ]

!
o . . . . .
where a_ s are uniquely determined scalars in the basis expansion of f, 75,

then {a2% :a e A} isaCauchynetinlIK foreachm e IN(IN) Hence
there existsaset { a, :m e INN) }  C IK such that

ap = lim a% ,m e N@D (%)
a

For given € > 0 and a compact subset K of u,leta, = o, ( € ,K)in
A be such that

| 1fq —fgllsg <€, a B 2> a5.

where & = { &, } isthe one as obtained in Proposition 5.2.
Using (5.8) and (), we get ‘

o €
| (ay —ay,)s™ | S;‘— , 0> o

forsinKandm € IN(N) HenceforsinKanda > o,

laps™ | < Ce + z | 2% s | <o

>
m e IN(IN) m e N(IN) m
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where
1 | 1

C = ) =
m e N TT -1/8,
n=1

Consequently, we can define a function f on u as follows:

f(s) = ) M s € u.
(S) m e IN(IN) #m S ’
Further,
sup | z (aﬁ —ayp)s™ | < Ce ,a > aqa

s € K m ¢ IN(N)

yields that f;, - f uniformly on K. Hence f is in Hyy (u) and it is the required
To —limitof {f, }

For nuclearity, observe that the space (Hpy (u), 74) can be made topologi-
cally isomorphic to the Kothe sequence space (A (P), Tp), cf. Theorem 2.5;
where

P={{l1f™||gx} memw(N) :Kvariesover compact subsets

ofu }
Since from (5.8) we have,

L™ g < ‘a’lm‘ [1fm | |sg ,m e INAN)

where z 1 < o and 8K is a relatively compact subset
m € IN({N) m

8
of u, the space (th (u), 7,) is nuclear. This establishes the result completely.
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