BLOCK SEQUENCES OF STRONG M-BASES IN BANACH SPACES

by

PAOLO TERENZI

SUMMARY.

Let (x_n) be a strong M-basis of a Banach space, then:

in general the block sequences of (x_n) are not strong M-basic, also if (x_n) is uniformly minimal; moreover, if all the block sequences of (x_n) are strong M-basic, in general (x_n) is neither uniformly minimal nor basic with brackets.

§ INTRODUCCION.

B is a Banach space, (x_n) a sequence of B, $[x_n] = \overline{\text{span}}(x_n)$, moreover we say that (y_n) is a *block sequence* of (x_n) if there exists an increasing sequence (q_n) of natural numbers so that, setting $q_0 = 0$,

$$y_m \in \text{span}(x_n) q_m \atop n=q_{m-1}^{-1}$$
 for every m.

Some standard definitions:

Let $(x_n) \subset B$ and $(f_n) \subset B^*$ (the dual of B), (x_n, f_n) is biorthogonal if

$$f_m(x_n) = \begin{cases} 1 & \text{if } m=n \\ 0 & \text{if } m\neq n \end{cases}$$
, for every m and n;

this is the same as saying that (x_n) is minimal $(x_m \notin [x_n]_{n\neq m})$, for every m).

Let (x_n, f_n) be biorthogonal with $[x_n] = B$, (x_n) is said to be

- i_1) uniformly minimal if $(\|x_n\| \|f_n\|)$ is bounded (which is equivalent to $\inf_{m} f \operatorname{dist}(x_m/\|x_m\|, [x_n]_{n\neq m}) > 0);$
- i₂) M-Basis of B if $[f_n]$ is total on B, that is $[f_n]$ (= { xeB; f_n (x) = 0 for every n}) = {0};
- i_3) strong M-basis of B if $[x_{n_k}] = [f_{n_k'}]^{\perp}$, for every $(n_k) \cup (n_k') = (n)$,

$$(n_k) \cap (n'_k) = \phi;$$

 i_4) basis with brackets of B if there exists an increasing sequence (q_n) of natural numbers so that, setting $q_n = 0$,

$$x = \sum_{m=0}^{\infty} \left(\sum_{n=q_{m+1}}^{q_{m+1}} f_n(x) x_n \right) \text{ for every } x \text{ of } B;$$

 i_5) basis of B if we have i_4) with q_n =n for every n.

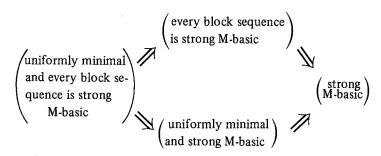
Finally (x_n) is said to be *M-basic* (strong *M-basic*) (basic with brackets) (basic) if it is M-basis (strong M-basis) (basis with brackets) (basis) of $[x_n]$.

The Note concerns the general theory of the Banach espace B, in particular the research of the best sequence wich can represent a separable B. Two famous problems in this direction were stated already in the Banach book [1] (1932): the existence of the basis and the existence of the uniformly minimal M-basis. In spite of many efforts these two problems were solved only recently; precisely the existence of the basis had a negative answer (Enflo [2] 1973) and the existence of the uniformly minimal M-basis a positive answer (Ovsepian—Pelczynski [4] 1975). After this "bracket" of results the most important open question in this direction seems to be the existence of the strong M-basis. Then it appears necessary to know the structure and the properties of the strong M-basis. These sequences have been characterized by Plans and Reyes in [5] and [6].

In a mathematical meeting at Zaragoza (november 1982) the following questions were raised by A. Plans and A. Reyes:

Question 1. Let (x_n) be strong M-basic, are all the block sequences of (x_n) strong M-basic?

Question 2. If every block sequence of (x_n) is strong M-basic, is (x_n) uniformly minimal?


We add

Question 3. Question 1 with the further hypothesis of (x_n) uniformly minimal. Question 4. If (x_n) is uniformly minimal and every block sequence of (x_n) is strong M-basic, is (x_n) basic with brackets?

The Note answers these questions, precisely:

In § 1 we characterize the strong M-bases by means of two fixed complementary subsequences. After, by means of the idea of [8], in § 2 we are able to construct an example of a uniformly minimal strong M-basis $(x_n) \cup (y_n)$ such that not all the block sequences are strong M-basic (hence questions 1 and 3 have negative answers); moreover all the block sequences of (x_n) are strong M-basic, while (x_n) is not basic with bracktes (hence question 4 has a negative answer). So proceeding in §3, always by means of the idea of [8], we give an example of a sequence (x_n) which is not uniformly minimal, while all the block sequences of (x_n) are strong M-basic (hence question 2 has negative answer too).

Therefore the following implications are strict (that is the inverse implications do not hold):

§ 1. A characterization of the strong M-bases.

Next proposition gives a characterization of the strong M-bases by means of properties of two subsequences; this will be used in following paragraphes.

Firstly we recall ([7] p. 243)

I*.
$$(x_n)$$
 strong M-basic \iff $(x_{n_k} + [x_{n_i'}])$ M-basic, for every $(n_k) \cup (n_k')$
$$= (n), (n_k) \cap (n_k') = \phi.$$

Proposition I. Let (x_n) and (y_n) be sequences of B, then

$$(x_n + [y_k])$$
 is strong M-basic; $(x_n + [x_k])$ is strong M-basic; $(y_n + [x_{m_k}])$ is strong M-basic for every $(m_k) \subseteq (n)$

Proof. Let us prove \Longrightarrow

It is evident, indeed let

(1)
$$(m_k) \cup (m_k') = (n), (m_k) \cap (m_k') = \phi,$$

by th.I* it is sufficient to see that (y $_{n}$ +[x $_{m_{_{\scriptstyle{k}}}}$]) is strong M-basic.

Indeed otherwise there exist two subsequences $(m_k^{\,\prime\prime})$ and $(m_k^{\,\prime\prime\prime})$ of (n) so that

$$(2)(m_k'') \cup (m_k''') = (n) \ , \ (m_k'') \cap (m_k''') = \phi, (y_{m_n''} + [(x_{m_k}) \cup (y_{m_k'''})]) \text{ is}$$
 not M-basic.

Hence by (1) and (2) it would follow that

$$({y_m}_n'' + [(x_{m_k}) \cup ({y_m}_k''')] \cup ({x_m}_n' + [(x_{m_k}) \cup ({y_m}_k''')]) \text{ is not M-basic,}$$

therefore by th.I* $(x_n) \cup (y_n)$ would not be strong M-basic.

Let us prove \iff :

Let (m_k) and (m'_k) be the sequence of (1), set

(3)
$$Z = [(x_{m'_k}) \cup (y_{m'_k})]$$

(we can consider a suitable permutation of (y_n)), by th. I* it is sufficient to prove that

(4)
$$(x_{m_n} + Z) \cup (y_{m_n} + Z) \text{ is M-basic.}$$

By hypothesis $(y_n + [x_{m_k'}])$ is strong M-basic; hence , by th.I* and by (3),

(5)
$$(y_{m_n} + Z)$$
 is M-basic.

Moreover by hypothesis $(y_n + [x_k])$ is M-basic, hence there exist $(H_n) \subset (B/[x_k])^*$ so that

(6)
$$(y_n + [x_k], \widetilde{H}_n)$$
 is biorthogonal.

Set

(7)
$$h_n(x) = \widetilde{H}_n(x + [x_k])$$
 for every x of B, for every n.

By (1), (6) and (7) it follows that

$$[(x_k) \cup (y_{m_k'})] \subset [h_{m_n}]^{\iota};$$

hence by (3)

(8)
$$Z + [x_{m_k}] \subset [h_{m_n}]^r.$$

By (8) we can set

 $H_{m_n}(x + Z) = h_{m_n}(x)$ for every x of B and for every n.

By
$$(5)$$
, (6) , (7) and (9)

$$(y_{m_n} + Z, H_{m_n})$$
 is biorthogonal, with $[H_{m_n}]$ total on $[y_{m_n} + Z]$. (10)

Moreover, by (8) and (9),

$$[x_{m_n} + Z] \subset [H_{m_n}]^{\perp}. \tag{11}$$

By hypothesis $(x_n + [y_k])$ is strong M-basic; hence, by th.I* and by (3), $(x_{m_n} + \overline{Z + [y_{m_k}]})$ is M-basic; that is there exists $(\hat{F}_{m_n}) \subset (B/\overline{Z + [y_{m_k}]})^*$ so that

$$(x_{m_n} + \overline{Z + [y_{m_k}]}, \widehat{F}_{m_n})$$
 is biorthogonal, $[\widehat{F}_{m_n}]$ is total on $[x_{m_n} + \overline{Z + [y_{m_k}]}]$. (12)

Set

$$F_{m_n}(x+Z) = F_{m_n}(x+\overline{Z+[y_{m_k}]})$$
 for every x of B and for every n. (13)

By (12) and (13) it follows that

$$(x_{m_n} + Z, F_{m_n})$$
 is biorthogonal, $[y_{m_n} + Z] \subset [F_{m_n}]^{\perp}$. (14)

Finally by (10), (11) and (14) $(x_{m_n} + Z, F_{m_n}) \cup (y_{m_n} + Z, H_{m_n})$ is biorthogonal; hence let $\bar{x} \in B$ so that

$$\vec{x} \in [(x_n) \cup (y_n)]$$
, $F_{m_n}(\vec{x} + Z) = H_{m_n}(\vec{x} + Z) = 0$ for every n; (15)

in order to have (4) it is sufficient to prove that

$$\bar{x} \in Z$$
.

By (15) $\overline{x} + \overline{Z + [y_{m_k}]} \in [x_{m_n} + \overline{Z + [y_{m_k}]}]$; moreover by (13) and (15) $\tilde{F}_{m_n} (\overline{x} + \overline{Z + [y_{m_k}]}) = 0$ for every n; hence by (12) $\overline{x} \in \overline{Z + [y_{m_k}]}$; that is $\overline{x} + Z \in [y_{m_n} + Z]$; on the other hand by (15) $H_{m_n} (\overline{x} + Z) = 0$ for every n, hence by (10) $\overline{x} \in Z$; which completes the proof of prop. I.

§ 2. BLOCK SEQUENCES OF UNIFORMLY MINIMAL STRONG M-BASES.

Next proposition answers question 3 (hence question 1) and question 4.

Proposition II. There exists a Banach space B_o with two sequences (x_n) and (y_n) so that

- (i) $(x_n) \cup (y_n)$ is uniformly minimal strong M-basis of B_0 ;
- (ii) not all the block sequences of $(x_n) \cup (y_n)$ are strong M-basic;
- (iii) all the block sequences of (x_n) are strong M-basic but (x_n) is not basic with brackets.

Proof: Let $(x_n) \cup (z_n)$ be a linearly independent sequence of vectors of a linear space. Set

$$r_0 = 0; r_1 = 1, r_2 = 2; r_{2m+1} = r_{2m} (2^m + 1), r_{2(m+1)} = r_{2m+1} + 2^m r_{2m}$$

for every
$$m \ge 1$$
. (16)

Firstly we define a norm on a particular subspace of span (x_n) :

$$u_{p} = \sum_{m=1}^{p-1} \frac{1}{2^{m-1}} \sum_{n=r_{2(m-1)}+1}^{r_{2m}} x_{n} + \frac{1}{2^{p-1}} \left(\sum_{n=r_{2(p-1)}+1}^{r_{2p-1}} x_{n} - \sum_{n=r_{2p-1}+1}^{r_{2p}} x_{n} \right)$$

for every
$$p \ge 1$$
; (17)

$$\left\| \sum_{n=1}^{m} a_n x_n \right\| = \max \left\{ |a_n|; 1 \leqslant n \leqslant m \right\} \text{ for every } \sum_{n=1}^{m} a_n x_n \in \text{span } (u_n).$$

Now we define the norm on span (x_n) :

$$I \{x, u\} = \sum_{n=1}^{m} |a_n| + ||u|| \text{ for } x \in \text{span}(x_n), u \in \text{span}(u_n),$$

$$x \cdot u = \sum_{n=1}^{m} a_n x_n; \qquad (18)$$

$$\| x \| = \inf \{ I \{ x, u \} ; u \in span(u_n) \} \text{ for every } x \text{ of } span(x_n).$$

Then we define the norm on span (x_n) + span (z_n) and we consider the completion:

$$\left| \left| x + \sum_{n=1}^{m} a_n z_n \right| \right| = \|x\| + \max \left\{ |a_n|; 1 \le n \le m \right\} \text{ for every } x \text{ of span } (x_n)$$

and for every
$$(a_n)_{n=1}^m$$
; (19)

 $B_0 = \text{completion of span}(x_n) + \text{span}(z_n)$.

Finally choose the sequence (y_n) :

$$y_n = x_n + z_n$$
 for every n. (20)

We pass to prove that (x_n) and (y_n) satisfy thesis.

We affirm that

$$\left\| \sum_{n=1}^{m} a_n x_n \right\| \ge \max \left\{ |a_n|; 1 \le n \le m \right\}, \text{ for every } (a_n)_{n=1}^{m}. \tag{21}$$

Indeed, setting $a_n=0$ for $m+1 \le n \le r_{2m}$, by (16), (17) and (18) it follows that

$$\begin{split} & \left\| \sum_{n=1}^{m} a_{n} x_{n} \right\| = \left\| \sum_{n=1}^{r_{2}m} a_{n} x_{n} \right\| = \inf \left\{ \sum_{n=1}^{r_{2}m} |a_{n} - b_{n}| + \sum_{n=1}^{r_{2}(m+p)} |b_{n}| + \max \left\{ |b_{n}|; 1 \le n \le r_{2(m+p)} \right\}; \\ & \sum_{n=r_{2m}+1}^{r_{2}(m+p)} b_{n} x_{n} \in \operatorname{span}(u_{n}) \right\} = \min \left\{ \sum_{n=1}^{r_{2m}} |a_{n} - b_{n}| + \sum_{n=1}^{r_{2}(m+1)} |b_{n}| + \max \left\{ |b_{n}|; 1 \le n \le r_{2(m+1)} \right\}; \\ & \sum_{n=r_{2m}+1}^{r_{2}(m+1)} |b_{n}| + \max \left\{ |b_{n}|; 1 \le n \le r_{2(m+1)} \right\}; \end{split}$$

$$\sum_{n=1}^{r_2 (m+1)} b_n x_n \epsilon \text{span} (u_n)_{n=1}^{m+1}$$

On the other hand

$$\sum_{n=1}^{r_{2m}} |a_n - b_n| + \sum_{n=r_{2m}+1}^{r_{2(m+1)}} |b_n| + \max \{|b_n|; 1 \le n \le r_{2(m+1)}\}$$

$$\ge \sum_{n=1}^{r_{2m}} |a_n - b_n| + \max \{|b_n|; 1 \le n \le r_{2m}\} \ge \max_{1 \le n \le r_{2m}}$$

$$|a_n - b_n| + \max \{|b_n|; 1 \le n \le r_{2m}\} \ge \max \{|a_n - b_n| + |b_n|;$$

$$1 \le n \le r_{2m}\} \ge \max \{|a_n|; 1 \le n \le r_{2m}\} = \max \{|a_n|;$$

$$1 \le n \le m\},$$

which completes proof of (21).

By (17), (18), (19) and (20) if follows that

$$\| \mathbf{x}_n \| = 1$$
 and $\| \mathbf{y}_n \| = 2$ for every n. (22)

Moreover, for every $(a_n)_{n=1}^p = (b_n)_{n=1}^p$ of numbers and for every m, by (19), (20) and (21) it follows that

$$\left\| x_{m} + \sum_{n=1, n \neq m}^{p} a_{n} x_{n} + \sum_{n=1}^{p} b_{n} y_{n} \right\| =$$

$$\left\| x_{m} (1 + b_{m}) + \sum_{n=1, n \neq m}^{p} (a_{n} + b_{n}) x_{n} + \sum_{n=1}^{p} b_{n} z_{n} \right\| =$$

$$\left\| x_{m} (1 + b_{m}) + \sum_{n=1, n \neq m}^{p} (a_{n} + b_{n}) x_{n} \right\| +$$

$$\left\| \sum_{n=1}^{p} b_{n} z_{n} \right\| \ge |1 + b_{m}| + \max \left\{ |b_{n}|; 1 \le n \le p \right\} \ge$$

$$|1 + b_{m}| + |b_{m}| \ge 1;$$

$$\left\| y_{m} + \sum_{n=1}^{p} a_{n} x_{n} + \sum_{n=1, n \neq m}^{p} b_{n} y_{n} \right\| =$$

$$\left\| z_{m} + x_{m} (1 + a_{m}) + \sum_{n=1, n \neq m}^{p} (a_{n} + b_{n}) x_{n} + \sum_{n=1, n \neq m}^{p} b_{n} z_{n} \right\| = \left\| x_{m} (i + a_{m}) + \sum_{n=1, n \neq m}^{p} b_{n} z_{n} \right\| \ge 1.$$

$$\left\| a_{n} + b_{n} x_{n} \right\| + \left\| z_{m} + \sum_{n=1, n \neq m}^{p} b_{n} z_{n} \right\| \ge 1.$$

Hence by (22) there exist (f_n) and (h_n) in B^* so that

(since
$$\|y_m - x_m\| = 1$$
) (23)

 $(x_n, f_n) \cup (y_n, h_n)$ is biorthogonal, $\|f_n\| = 1$ and $\|h_n\| = 4$ for every n.

In what follows we use a known characterization of the M-basic sequences ([3]; see also [7] p. 225 Rem. 8.3):

$$(w_n)$$
 minimal and $\bigcap_{m=1}^{\infty} [w_n]_n \ge m = \{0\} \iff (w_n) M - basic. (24)$

Fix (n_k) , (m_k) and (m'_k) so that

$$(n_k) \subseteq (n) , (m_k) \cup (m'_k) = (n) , (m_k) \cap (m'_k) = \emptyset ,$$
 (25)

We affirm that

$$\bigcap_{p=1}^{\infty} [x_{m_k} + [(x_{m_i}) \cup (y_{n_i})]]_k \ge p = \{0\}.$$
(26)
$$Fix \, \overline{p}.$$

By (25) there exist \overline{s} , \overline{q} , p', p'', p''', q'', q'', q''' so that

$$r_{2(\bar{s}-1)} < m_{\bar{p}} \le r_{2\bar{s}}; m_{\bar{q}} \le r_{2(\bar{s}+1)} < m_{\bar{q}+1};$$
 (27)

$$(n)_{n=1}^{r_{2}\bar{s}} = (m'_{k})_{k=1}^{p'} \cup (m'_{k})_{k=1}^{p''} \cup (m''_{k})_{k=1}^{p''}, (n)_{n=r_{2}\bar{s}+1}^{r_{2}(\bar{s}+1)} = (m'_{k})_{k=p'+1}^{q} \cup (m''_{k})_{k=p''+1}^{q''} \cup (m'''_{k})_{k=p''+1}^{q'''};$$

$$(m_k^{\,\prime\prime})_{k=1}^{q^{\,\prime\prime}} \cup (m_k^{\,\prime\prime})_{k=1}^{q^{\,\prime\prime\prime}} = (m_k)_{k=1}^{\overline{q}} \ , \ (m_k^{\,\prime\prime})_{k=1}^{q^{\,\prime\prime}} = (n_k) \ \cap \ (m_k)_{k=1}^{\overline{q}}.$$

$$\operatorname{Fix}\left(\overline{a}_{m_{k}}\right)_{k=1}^{\overline{p}}.$$

For every $(b_{m'k})_{k=1}^{q'} \cup (c_{m'k})_{k=1}^{q''} \cup (d_k)_{k=1}^{r_2(\overline{s}+1)}$ of numbers, with

$$\sum_{k=1}^{r_2 (\overline{s}+1)} d_k x_k \in span(u_n),$$

by (17), (18) and (27) it follows that

$$I \begin{cases} \sum_{k=1}^{\overline{p}} \bar{a_{m_k}} x_{m_k} + \sum_{k=1}^{q} b_{m_k'} x_{m_k'} + \sum_{k=1}^{q''} c_{m_k''} x_{m_k''}, \end{cases}$$

$$\left.\begin{array}{ccc}
\sum_{k=1}^{r_{2}(\bar{s}+1)} & d_{k} x_{k} \\
\end{array}\right\} = \left.\begin{array}{ccc}
\sum_{k=1}^{p'''} & \bar{a}_{m''} - d_{m''} \\
\end{array}\right| +$$

$$\sum_{k=1}^{p''} \left| \vec{a}_{m''_{k}} + c_{m''_{k}} + d_{m''_{k}} \right| + \sum_{k=1}^{q'} \left| b_{m'_{k}} - d_{m'_{k}} \right| +$$

$$\sum_{k=p'''+1}^{q'''} \left| d_{m'''} \right| + \sum_{k=p''+1}^{q''} \left| c_{m''} - d_{m''} \right| +$$

$$\max \, \left\{ \, \mid d_{k} \mid \, ; \, 1 \, \leqslant \, k \, \leqslant \, r_{2 \, (\overline{s} \, + \, 1)} \right\}.$$

Hence by (17), (18), (19), (20) and (27) it is possible to verify that

$$\left\| \sum_{k=1}^{\bar{p}} \bar{a_{m_k}} x_{m_k} + [(x_{m_i}) \cup (y_{n_i})] \right\| = \left\| \sum_{k=1}^{\bar{p}} \bar{a_{m_k}} x_{m_k} + (x_{m_i}) \right\|$$

$$[x_{m_i}]_{i=1}^{q'} + [y_{m_i}]_{i=1}^{q''}$$

Consequently there exists $(\overline{b}_{m'k})_{k=1}^{q} \cup (\overline{c}_{m'k})_{k=1}^{q''} \cup (\overline{d}_{k})_{k=1}^{r_{2}(\overline{s}+1)}$ of numbers so that

$$\left\| \sum_{k=1}^{\bar{p}} \bar{a_{m_k}} x_{m_k} + [(x_{m_i}) \cup (y_{n_i})] \right\| = \sum_{k=1}^{\bar{p}'''} \bar{a_{m_k}}''' - \bar{d_{m_k}}''' +$$

$$\sum_{k=1}^{p''} \left| \bar{a}_{m_{k}''} + \bar{c}_{m_{k}''} + \bar{d}_{m_{k}''} \right| + \sum_{k=1}^{q'} \left| \bar{b}_{m_{k}'} - \bar{d}_{m_{k}'} \right| +$$

$$\sum_{k=p'''+1}^{q'''} \left| \overline{d}_{m''} \right| + \sum_{k=p''+1}^{q''} \left| \overline{c}_{m''} - \overline{d}_{m''} \right| + \max \left\{ \left| \overline{d}_{k} \right| \right\}$$

$$1 \leqslant k \leqslant r_{2(\overline{s}+1)} + \max \left\{ \left| \overline{c}_{m''_{k}} \right| ; 1 \leqslant k \leqslant q'' \right\}.$$

Therefore it is easy to see, by (27), that

$$\left\| \sum_{k=1}^{p} \bar{a}_{m_{k}} x_{m_{k}} + x + [(x_{m_{i}}) \cup (y_{n_{i}})] \right\| \ge$$

$$\left\| \sum_{k=1}^{\bar{p}} \bar{a_{m_k}} x_{m_k} + [(x_{m_i}) \cup (y_{n_i})] \right\|,$$

for every x of $[x_{m_k}]_k > \bar{q}$.

That is we have (26); hence, by (23) and (24), it follows that

$$(x_{m_k} + [(x_{m_i}) \cup (y_{n_i})])$$
 is M-basic;

therefore, by th. I*,

$$(x_n + [y_{n_i}])$$
 is strong M-basic. (28)

On the other hand, by (19) and (20), for every $(a_n)_{n=1}^m$ of numbers,

$$\left\| \sum_{n=1}^{m} a_n y_n + [x_k] \right\| = \left\| \sum_{n=1}^{m} a_n z_n + \sum_{n=1}^{m} a_n x_n + [x_k] \right\| =$$

$$\left\| \sum_{n=1}^{m} a_{n} z_{n} + [x_{k}] \right\| = \left\| \sum_{n=1}^{m} a_{n} z_{n} \right\| = \max \left\{ |a_{n}| ; 1 \leq n \leq m \right\};$$

that is $(y_n + [x_k])$ is equivalent to the natural basis of c_0 , hence is strong M-basic; therefore, by (28) and by prop. $I, (x_n) \cup (y_n)$ is strong M-basic; which, by (23), completes proof of (i).

Moreover by (17) it follows that

That is, by (17),

$$\left\| u_{p+q} - u_p \right\| = \frac{1}{2^{p-2}}$$
 for every p and q;

hence (u_0) is Cauchy sequence, that is there exists \overline{u} of B_0 so that

$$\overline{u} = \lim_{p \to \infty} u_{p}, \|\overline{u}\| = 1.$$
 (29)

Set

$$v_{m} = \sum_{n = r_{2 (m-1)} + 1}^{r_{2m}} x_{n} \text{ for every } m \ge 1, V = [v_{n}].$$
 (30)

Let us consider

$$x = \sum_{m=1}^{2p} a_m \sum_{n=r_{m-1}+1}^{r_m} x_n = \sum_{m=1}^{2p}$$

$$\sum_{n=r_{m-1}+1}^{r_m} b_n x_n$$

by (16), (17) and (30) it follows that

$$\sum_{m=1}^{p} | \sum_{n=r_{2(m-1)}+1}^{r_{2m}} b_{n} | \begin{cases} = \sum_{n=1}^{r_{2p}} |b_{n}| & \text{if } x \in \text{span}(v_{n}), \\ = \sum_{n=1}^{r_{2p}} |b_{n}| & \text{if } x \in \text{span}(u_{n}), \end{cases}$$

Therefore by (16), (17), (18) and (30) it is possible to verify that

$$\| v_n \| > 2^n r_{2n-2} \text{ for every } n ; \| \sum_{n=1}^m a_n v_n \| = \sum_{n=1}^m |a_n| \| v_n \|$$
 for every
$$(31)$$

$$(a_n)_{n=1}^m ; \| u + V \| = \| u \| \text{ for every } u \text{ of } [u_n].$$

By (17), (23), (29) and (30) we have that

$$\overline{u} = \lim_{p \to \infty} \left(\sum_{m=1}^{p-1} \sum_{n=r_{2(m-1)}+1}^{r_{2m}} f_n(\overline{u}) x_n + \right)$$

$$\sum_{n=r_{2(p-1)+1}}^{r_{2p}} \bar{a}_{n} x_{n} = \lim_{p \to \infty} \left(\sum_{m=1}^{p-1} \frac{1}{2^{m-1}} v_{m} + \frac{1}{2^{m-1}} v_{m} \right)$$

$$\sum_{n = r_{2}(p-1)+1} \bar{a}_{n} x_{n} ,$$

$$\frac{1}{r_{2}(p-1)} \text{ for } r_{2}(p-1) + 1 \leq n \leq r_{2}$$

$$\text{with } \overline{a_n} = \left\{ \begin{array}{l} \frac{1}{2^{p-1}} \text{ for } r_{2 \, (p-1)} + 1 \leqslant n \leqslant r_{2p-1} \ , \\ \\ -\frac{1}{2^{p-1}} \text{ for } r_{2p-1} + 1 \leqslant n \leqslant r_{2p}. \end{array} \right\}$$

That is, by (17), (18), (29) and (31), \overline{u} is not representable by a series with brackets by means of the elements of (x_n) ; hence 2^{nd} part of (iii) is proved. Moreover, for every p, by (17), (20) and (30) we have that

$$\sum_{n = r_{2(p-1)+1}}^{r_{2p-1}} \frac{y_n}{2^{p-1}} - \sum_{n = r_{2p-1}+1}^{r_{2p}} \frac{y_n}{2^{p-1}} + V =$$

$$(u_p + V) + (\sum_{n = r_2 (p-1)+1}^{r_{2p-1}} \frac{z_n}{2^{p-1}} - \sum_{n = r_{2p-1}+1}^{r_{2p}} \frac{z_n}{2^{p-1}} + V);$$

hence by (17), (19), (29) and (31),

$$\left\| \left(\sum_{n=r_{2(p-1)}+1}^{r_{2p-1}} \frac{y_n}{2^{p-1}} - \sum_{n=r_{2p-1}+1}^{r_{2p}} \frac{y_n}{2^{p-1}} + V \right) - \right\|$$

$$(\bar{u} + V)$$
 = $(u_p - \bar{u}) + V$ + $\sum_{n=r_2(p-1)+1}^{r_{2p-1}} \frac{z_n}{2^{p-1}}$ -

$$\sum_{n=r_{2p-1}+1}^{r_{2p}} \frac{z_n}{2^{p-1}} = \left(u_p - \overline{u} + V \right) + \frac{1}{2^{p-1}} =$$

$$\| u_p - \overline{u} \| + \frac{1}{2^{p-1}} = \frac{1}{2^{p-2}} + \frac{1}{2^{p-1}}.$$

On the other hand by (29) and (31) $\| \vec{u} + V \| = 1$, hence by (24) $(y_n + V)$ is not M-basic; therefore, by (30) and by th. I^* , $(y_n) \cup (v_n)$ is a block sequence of $(y_n) \cup (x_n)$ which is not strong M-basic; which proves (ii).

Let (w_n) be a block sequence of (x_n) , that is there exists an increasing sequence (t_n) of natural numbers so that, setting $t_0 = 0$,

$$w_{m} = \sum_{k=t_{m-1}+1}^{t_{m}} a'_{k} x_{k}$$
, for every m. (32)

Let

$$(m_k) \cup (m_k') = (n), (m_k) \cap (m_k') = \emptyset, (x_{n_k}) =$$

$$\bigcup_{k=1}^{\infty} (x_i)_{i=t_{m_k-1}+1}^{t_{m_k}}, W = [w_{m_k'}].$$
 (33)

In order to complete proof of (iii) it is sufficient, by th. I* and by (32) and (33), to prove that $(x_{n_k} + W)$ is M-basic, since a block sequence of an M-basic sequence is M-basic too.

We shall proceed as for proof of (26).

$$\operatorname{Fix}\left(\overline{a}_{n_{k}}\right)_{k=1}^{p}.$$

By (32) and (33) there exist numbers \bar{s} , p', \bar{q} and \bar{m} so that

$$r_{2(\bar{s}-1)} < n_{\bar{p}} \le r_{2\bar{s}}, n_{p'-1} < r_{2(\bar{s}+1)} \le n_{p'},$$

$$t_{m'_{q-1}} < r_{2(s+1)} \le t_{m'_{q}}, \ \overline{m} = max \left\{ n_{p'}, \ t_{m'_{q}} \right\}.$$
 (34)

Then for every $(b_k)_{k=1}^{\overline{q}} \cup (c_k)_{k=1}^{\overline{m}}$ of numbers, with

$$\sum_{k=1}^{\overline{m}} c_k x_k \in \operatorname{span}(u_n),$$

by (17), (18), (32), (33) and (34) it follows that

$$I \left\{ \begin{array}{ll} \vec{p} & \vec{a}_{n_{k}} x_{n_{k}} + \sum_{k=1}^{\vec{q}} b_{k} w_{m_{k}'}, \sum_{k=1}^{\vec{m}} c_{k} x_{k} \right\} = \\ \sum_{k=1}^{\vec{p}} |\vec{a}_{n_{k}} + c_{n_{k}}| + \sum_{k=\vec{p}+1}^{\vec{p}} |c_{n_{k}}| + \sum_{k=1}^{\vec{q}} \\ \sum_{i=t_{m_{k}'-1}+1} |b_{k} a_{i}' - c_{i}| + \max \left\{ |c_{k}|; 1 \leq k \leq \vec{m} \right\} \end{array}$$

Hence by (17), (18), (32), (33) and (34) it is possible to verify that

$$\left\| \sum_{k=1}^{\overline{p}} \overline{a}_{n_k} x_{n_k} + W \right\| = \left\| \sum_{k=1}^{\overline{p}} \overline{a}_{n_k} x_{n_k} + [w_{m'_k}] \right\|_{k=1}^{\overline{q}}$$

Consequently there exists $(b'_k)_{k=1}^{\overline{q}} \cup (c'_k)_{k=1}^{\overline{m}}$ of numbers so that

$$\left\| \sum_{k=1}^{\bar{p}} \bar{a_{n_k}} x_{n_k} + W \right\| = \sum_{k=1}^{\bar{p}} \left| \bar{a_{n_k}} - c'_{n_k} \right| + \sum_{k=1}^{\bar{p}} \sum_{i=t_{m'-1}+1}^{t_{m'_k}} \left| b'_k a'_i - c'_i \right| + \sum_{k=1}^{\bar{p}} \sum_{i=t_{m'-1}+1}^{t_{m'_k}} \left| b'_k a'_i - c'_i \right| + \sum_{k=1}^{\bar{p}} \sum_{i=t_{m'-1}+1}^{t_{m'_k}} \left| b'_k a'_i - c'_i \right| + \sum_{k=1}^{\bar{p}} \sum_{i=t_{m'-1}+1}^{t_{m'_k}} \left| b'_k a'_i - c'_i \right| + \sum_{k=1}^{\bar{p}} \sum_{i=t_{m'-1}+1}^{t_{m'_k}} \left| b'_k a'_i - c'_i \right| + \sum_{k=1}^{\bar{p}} \sum_{i=t_{m'_k}+1}^{t_{m'_k}} \left| b'_k a'_i - c'_i \right| + \sum_{k=1}^{\bar{p}} \sum_{i=t_{m'_k}+1}^{t_{m'_k}} \left| b'_k a'_i - c'_i \right| + \sum_{k=1}^{\bar{p}} \sum_{i=t_{m'_k}+1}^{t_{m'_k}} \left| b'_k a'_i - c'_i \right| + \sum_{k=1}^{\bar{p}} \sum_{i=t_{m'_k}+1}^{t_{m'_k}} \left| b'_k a'_i - c'_i \right| + \sum_{k=1}^{\bar{p}} \sum_{i=t_{m'_k}+1}^{t_{m'_k}} \left| b'_k a'_i - c'_i \right| + \sum_{k=1}^{\bar{p}} \sum_{i=t_{m'_k}+1}^{t_{m'_k}} \left| b'_k a'_i - c'_i \right| + \sum_{k=1}^{\bar{p}} \sum_{i=t_{m'_k}+1}^{t_{m'_k}} \left| b'_k a'_i - c'_i \right| + \sum_{k=1}^{\bar{p}} \sum_{i=t_{m'_k}+1}^{t_{m'_k}} \left| b'_k a'_i - c'_i \right| + \sum_{k=1}^{\bar{p}} \sum_{i=t_{m'_k}+1}^{t_{m'_k}} \left| b'_k a'_i - c'_i \right| + \sum_{k=1}^{\bar{p}} \sum_{i=t_{m'_k}+1}^{t_{m'_k}} \left| b'_k a'_i - c'_i \right| + \sum_{k=1}^{\bar{p}} \sum_{i=t_{m'_k}+1}^{t_{m'_k}} \left| b'_k a'_i - c'_i \right| + \sum_{k=1}^{\bar{p}} \sum_{i=t_{m'_k}+1}^{t_{m'_k}} \left| b'_k a'_i - c'_i \right| + \sum_{k=1}^{\bar{p}} \sum_{i=t_{m'_k}+1}^{t_{m'_k}} \left| b'_k a'_i - c'_i \right| + \sum_{k=1}^{\bar{p}} \sum_{i=t_{m'_k}+1}^{t_{m'_k}} \left| b'_k a'_i - c'_i \right| + \sum_{k=1}^{\bar{p}} \sum_{i=t_{m'_k}+1}^{t_{m'_k}} \left| b'_k a'_i - c'_i \right| + \sum_{k=1}^{\bar{p}} \sum_{i=t_{m'_k}+1}^{t_{m'_k}} \left| b'_k a'_i - c'_i \right| + \sum_{k=1}^{\bar{p}} \sum_{i=t_{m'_k}+1}^{t_{m'_k}} \left| b'_k a'_i - c'_i \right| + \sum_{k=1}^{\bar{p}} \sum_{i=t_{m'_k}+1}^{t_{m'_k}+1} \left| b'_i a'_i - c'_i \right| + \sum_{k=1}^{\bar{p}} \sum_{i=t_{m'_k}+1}^{t_{m'_k}+1} \left| b'_i a'_i - c'_i \right| + \sum_{k=1}^{\bar{p}} \sum_{i=t_{m'_k}+1}^{t_{m'_k}+1} \left| b'_i a'_i - c'_i \right| + \sum_{k=1}^{\bar{p}} \sum_{i=t_{m'_k}+1}^{t_{m'_k}+1}^{t_{m'_k}+1} \left| b'_i a'_i - c'_i \right| + \sum_{k=1}^{\bar{p}} \sum_{i=t_{m'_k}+1}^{t_{m'_k}+1} \left| b'_i a'_i - c'_i \right| + \sum_{k=1}^{\bar{p}} \sum_{i=t_{m'_k}+1}^{t_{m'_k}+1}^{t_{m'_k}+1}^{t_{m'_k}+1}^{t_{m'_k}+1}^{t_{m'_k}+$$

$$\max \ \Big\{ \mid c_k' \mid \; ; \; 1 \, \leqslant k \, \leqslant \, \bar{m} \Big\}.$$

Then by (34) it is easy to see that

$$\left\| \sum_{k=1}^{\overline{p}} \overline{a}_{n_k} x_{n_k} + x + W \right\| \ge \left\| \sum_{k=1}^{\overline{p}} \overline{a}_{n_k} x_{n_k} + W \right\|, \text{ for every}$$

$$x \text{ of } [x_{n_k}]_k > p'.$$

That is by (23) and (24) $(x_{n_k} + W)$ is M-basic, hence (iii) is proved. This completes the proof of prop. II.

§ 3 . Strong M-bases which are not uniformly minimal.

Next proposition answers question 2.

Proposition III. There exists a Banach space B_1 with a sequence (x_n) so that (i) all the block sequences of (x_n) are strong M-basic; (ii) (x_n) is not uniformly minimal.

Proof. Let (x_n) be a linearly independent sequence of vectors of a linear space and let $(r_n)_n \ge 0$ be the sequence of (16), we set

Now we define the norm on span (x_n) :

$$I \{x, u\} = \sum_{n=1}^{m} |a_n| (1 - \frac{1}{2^n}) + ||u||, \text{ for } x \in \text{span}(x_n), u \in \text{span}(x_n)$$

 (u_n)

and
$$x - u = \sum_{n=1}^{m} a_n x_n$$
; (36)

 $\parallel x \parallel = \inf \left\{ I \left\{ x, u \right\} ; u \in span \left(u_n \right) \right\}$, for every x of $span \left(x_n \right) ; B_1 = completion of <math display="inline">span \left(x_n \right)$.

Fix $(\bar{a}_n)_{n=1}^m$ of numbers and let $(b_n)_{n=1}^{m+p}$ be another sequence of numbers such that

$$\sum_{n=1}^{m+p} b_n x_n \in \operatorname{span}(u_n);$$

then by (35) and (36) it follows that

$$I\left\{ \sum_{n=1}^{m} \bar{a_{n}} x_{n}, \sum_{n=1}^{m+p} b_{n} x_{n} \right\} = \sum_{n=1}^{m} |\bar{a_{n}} b_{n}| (1 - \frac{1}{2^{n}}) +$$

$$\sum_{n=1}^{m} \frac{|b_n|}{2^n} + \sum_{n=m+1}^{m+p} |b_n| (1 - \frac{1}{2^n}) + \sum_{n=m+1}^{m+p} \frac{|b_n|}{2^n} =$$

$$\sum_{n=1}^{m} (|\overline{a}_{n} - b_{n}| (1 - \frac{1}{2^{n}}) + |\underline{b}_{n}|) + \sum_{n=m+1}^{m+p} |b_{n}| \ge$$

$$\sum_{n=1}^{m} (|\bar{a}_{n} - b_{n}| (1 - \frac{1}{2^{n}}) + \frac{|b_{n}|}{2^{n}}) \ge$$

$$\sum_{n=1}^{m} \frac{|\bar{a}_{n} - b_{n} + |b_{n}|}{2^{n}} \geqslant \sum_{n=1}^{m} \frac{|\bar{a}_{n}|}{2^{n}}.$$

Hence by (36) we have that

$$\left\| \begin{array}{ccc} \sum_{n=1}^{m} & \overline{a}_n x_n \\ \end{array} \right\| \geq \sum_{n=1}^{m} & \frac{|\overline{a}_n|}{2^n} ;$$

therefore there exists (fn) of B1 so that

$$(x_n, f_n)$$
 is biorthogonal. (37)

By (37) proof of (i) is similar to proof of (iii) of prop. II; hence we pass to (ii). By (35) for every m and p we have that

$$u_{m} - u_{m+p} = -2$$

$$\sum_{n=r_{2(m-1)+1}+1}^{r_{2m}} x_{n} -$$

$$\sum_{n = r_{2m} + 1} x_n + \sum_{n = r_{2(m+p-1)+1} + 1} x_n ; hence$$

$$\| u_{m} - u_{m+p} \| = \sum_{n = r_{2(m-1)+1}+1}^{r_{2m}} \frac{1}{2^{n-1}} + \sum_{n = r_{2m}+1}^{r_{2(m+p)}} \frac{1}{2^{n}} < \sum_{n = r_{2m}+1}^{r_{2m}} \frac{1}{2^{n}} < \sum_{n = r_{$$

$$\frac{1}{2^{r_2(m-1)+1^{-1}}}$$

Therefore by (35) and (37) we have that

$$\lim_{m\to\infty}\quad u_m=\overline{u}\ \ , \ with \ f_n\left(\overline{u}\ \right)\ =\ 1\ \ \text{for every n.}$$

On the other hand by (35) and (36) $\|x_n\| = 1$ for every n; hence by [3] (see also [7] p. 167) ($\|f_n\|$) is not bounded, which proves (ii). This completes the proof of prop. III.

BIBLIOGRAPHY

- [1] BANACH, S. Théorie des opérations linéaires. Chelsea Publishing Company. New York 1932.
- [2] ENFLO, P. A counterexample to the approximation problem. Acta Math. 13 (1973), p. 309 317.
- [3] GRINBLIUM, M.M. Biorthogonal systems in Banach spaces. Doklady Akad. Nauk SSSR 47 (1945), p. 75 78.
- [4] OVSEPIAN, R.I. and PELCZYŃSKI, A. The existence in every separable Banach space of a fundamental total and bounded biorthogonal sequence and related constructions of uniformly bounded orthonormal systems in L^2 . Studia Math. 54 (1975), p. 149 159.
- [5] PLANS, A. and REYES, A. On the geometry of sequences in Banach spaces. Archiv der Mathematik, 40 (1983), p. 452 458.
- [6] PLANS, A. Another proof of a result of Paolo Terenzi. Teubner Texte zur Mathematik 67 Leipzig (1983), p. 200 202.
- [7] SINGER, I. Bases in Banach spaces II. Berlin-Heidelberg-New York: Springer 1981.
- [8] TERENZI, P. Markushevich bases and quasi complementaru subspaces in Banach spaces. Rend. Ist. Lombardo A 111 (1977), p. 49 61.

Dipartimento di Matematica del Politecnico Piazza Leonardo Da Vinci 32 20133 Milano Italy