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by

MANJUL GUPTA AND N. R. DAS

1. INTRODUCTION

Depending upon the study of the notion of mixed convergence of a net in
[1], it has been shown in |2] that a locally convex space with a Schauder decom-
position yields a bi-locally convex space (abbreviated bi-1.c. TVS) which we
term as a canonical bi-1.c. TVS and of which the strucutal properties could be
related with the types of the Schauder decomposition. This note is a continua-
tion of our investigations on the canonical bi-1.c. TVS. Indeed, we introduce the
notion of k-reflexive bi-locally convex spaces and characterize the class of such
spuaces in terms of the subspaces forming the Schauder decomposition. Further,
we identify its Y-completion termed as canonical Y-completion, as a vector-
valued sequence space; and [inally, having characterized k-reflexivity and houn-
dedly complete Schauder decomposition we establish relationship between k-
and 7-reflexivities of a canonical bi-locally convex space.

2. BASIC EXCLRPTS

In order to facilitate the reading of the subject matter of this paper, we
mention in this section the rudiments from the theory of locally convex spaces,
Schauder bases and decompositions, bi-locally convex spaces as introduced in
[1] and [2], and the theory of veclor-valued sequence spaces. [lowever, we refer
to [6], |7]. 18], 191, 110], [12], [13]. [15] and [16] and several refences given
therein for various terms, results and detailed discussions of these topics.

Throughout the sequel, we denote by (X,T) a Hausdorff locally convex space
(abbreviated 1.c. TVS) X equipped with a locally convex topology T which is
gencerated by the family Dr of all continuous seminorms. Its algebraic, sequen-
tial and topological duals are respectively denoted by X', X" and X*. Clearly,
X* O X" O X' An l.c. TVS (x,T) is said to be a Mazur space if X* = X*. The
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symbols o(X.X*), 7(X,X*) and 8(X,X*) arc used to denote the weak, Mackey
and strong topologies on X.

A Schauder base in an 1.c. TVS (X,T) is a sequence {x;} in X with associa-
ted sequence of coefficient functionals {fj} contained in X* such that each X in
X is represented uniquely in the form

x X i (x)x;,
i=1

where the infinite series converges in the topology T of X. A Schauder base
{xj; fi} is known as shrinking if {fi} is a Schauder base for (X*8(X*,X)) and

boundedly complete if for any sequence {o;} ol scalars, the serics ojx; con-

il

. n . .

verges to a point of X whcncver{ Zaxj, n= 1 } is bounded in X.
i-1

I'or our later use in the paper, let us recall the following [rom 5 (cf. also 16).

Proposition 2.1: The strong dual (X*,8(X*X)) of a Mazur space (X,T) is a com-
plete locally convex space.

Proposition 2.2: A barrclled space with a Schauder base is a Mazur space.
A notion more general than that of a Schauder basc is of Schauder decom-
position (8.D.) which is defined as a pair {My; Pt of a sequence | M, of

subspaces of X and a sequence { P, } of conlinuous projections {from X onto My
such that each x in X is expressed uniquely in the form x '—-'%in, (%) = xi,
il

iz 1.Wewrite§, = 5 Pi,n 2 | and denote the adjoint maps of P, and S, by P
i=1

and Sj respectively. Then we have

Definition 2.3: An S.D. {M;; Py} ofan 1.c. TVS (X,T) is said to be

(i) an e-Schauder decomposition (e-S.1D.) if the sequence {S,} is cquiconti-
nuous;

(i) monotone if for each p € D and x = 2 x5, x; G M;

p(gj X)) < p(g' x;), for all m,n with m <n;
i-1 i-1
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(iii) boundedly complete if for each sequence ;x| with x; ¢ M, i > 1 and
n

{ 231 Xj:n = 1} being bounded in X, the series % Xj is convergent in X;and
i- i1

(iv) shrinking if | R(PF), PF L is a S.D. for (X*B(X* X)), where R(P¥) is the

range of P¥.

We nced the following in the sequel (cf. 15, Theorem 2.9, p. 34;and 11).

Proposition 2.4: Let {Mp; Py} be an e-8.0). for an 1.c. TVS (X.T). Then the

topology T is equivalent to a locally convex topology T on X which is genc-

rated by the family { Do | of seminorms, where pg(x) = su>p Pa (Sn (x)) for
1

n=
P € Driand the S.D. { Mp; P, } is monotone in (X,T).
INext, we have

Definition 2.5: (i) A lincar space X equipped with two Hausdorff locally convex
topologies T; and T, on X such that T, is finer than T, is said to be a bi-I.c.
TVS and is denoted by Xy, that is, Xy, = (X,[;,T5). (i) Anet {x5:8¢ A} in
Xp, is said to be Y-convergent to x (resp. Y-Cauchy) writlen as x5 X X, provided
{ xs} is T;-bounded ant T,-convergent to x (resp. T, -bounded and T,-Cauchy).
A bi-1.cTVS X, is said to be (iii) Y-complete (resp. v-sequentially complete) if
every Y-Cauchy net (resp. Y-Cauchy sequence) in X;,, Y-converges to a point of
X, and (iv) quasinormal (resp. normal) il there exists a family 1), of seminorms
generating T, such that for cach p ¢ Dy, there exists q e D, , depending on p
such that
1,
Xsg = x=p)< Ii;n q(xgs)

T,
(resp.xs —> x=p)<limp(xs),Vpe Dy)
&

where lim p (x5) is defined as sup in>f p (x5). A subset Bofabi-l.c. TVS Xy, is
[ o 6.0

said to be Y-dense (resp. v-sequentially dense) in Xy, provided for cach x in X,
there is anet { xg} (resp.sequence {x,))in Bsuch that x5 Xox (resp. Xy~ X).

Definition 2.6: Let X, = (X,T,,T,) be a bi-l.c. TVS. An fin X' is said to be a
Y-continuous linear functional if x5 2~ x -> f(xg ) - f(x) in K for cach y-conver-
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gent net { x5} in X},. The vector space consisting of all y-continuous lincar func-
tionals on Xy, is termed as the v-dual of X}, and is denoted by X3%. The symbol
X#slands for the topological dual of (X,T;),i=1,2. A bi-1l.c. TVS Xj, is said to
be saturated if X5 =X§.

Proposition 2.7: Let X}, = (X,I,,T,) be a bi-l.c. IV S where (X,T,) is assumed
to be a Mazur space. Then

B XE L XE
X3 T Xy L XE

Further, X% is dense in X3 relative Lo the topology S(X¥.X) provided X, is qua-
sinormal.

Proposition 2.8: Let X, = (X,T{,T,) be a quasinormal space. Then for each
p € D, there isa q ¢ D; such that

p(x) < sup {|f(x)| fe vy ﬁX’z"}
< sup {lf(x)| :fe v ﬁX%‘},

where va denotes the polar of vy ={x: ¢ (x) <1} in X". In casc X, is normal,
then

p(x) =sup {[f(x)l :Fev) NX3 } .

Definition 2.9: let X;, = (X,T,.T;) be a quasinormal bi-l.c. IV $ such that
(X,T)is a Mazur space. If

X$F = (X5, 8 (XE X) | x2)* = (X5, 8 (XF. X) | x2)* = X5F

then there exists a well-defined one-to-one linear map from X to X¥¥ defined by
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J(x)(H)=f(x),VfeXs and xeX.

Xy, is said to be y-semireflexive if J is onto and v-reflexive if J is a topological
isomorphism from (X,T;) onto (X¥¥, 8 (X3T, X3)) and from (X,T,) into

(X35, B (X573, X¥)) where X7* is the topological dual of X relative to § (X},X).

Proposition 2.10: A bi-1.c. TVS X,, is saturated and y-semireflrexive if and only
if (X,T1,) is semirefllexive where (X,T;) is a Mazur space.
Concerning canonical bi-1.c. TVS, we recall the following from | 2].

Definirion 2.11: Let {Mu:P, ) be an S.D. in an l.c. TVS (X,T). Then the
bi-1.c. TVS Xy, =: (X,T,1%) is known as the canonical bi-1.c. TVS where 1 and
T* are the locally convex topologies gencrated respectively by the families
DT ={p:pebDy} and Dys={p* pec D! of seminorms p and p* defined for

xinX withx= ¥ X, Xj€Mj. i=1, by
i-1

n ) . op(xy)
p(x)=sup p( 2 xi) and p*(x)= 2 i_‘_ ;
P (x) a2 P LS i) and p (x) i>1 2

The topology T* is known as the canorical topology.

Proposition 2.12: 1[ { M: P, 1 is an ¢-S.D. ol an 1.c. TVS (X.T), then (X, 1,1%)
is a quasinormal canonical bi-1.¢c. TVS.

Proposition 2.13: et (X.1) be a Mazur space containing an ¢-S.D. { M5} .
Then { PR (X*). PE}is an s-8.D. of the v-dual X3 of the canonical bi-1.¢. TVS
Xy relative to the topology 8 (X*, X) | X% Consequently, an ¢-S.D. of a Mazur
space (X,T) is shrinking il and only il the corresponding canonical bi-1.c. TVS is
saturated.

Proposition 2.14: An ¢-S.D. { My} of an Le. TVS (X, 1) is boundedly com-
plete i Xy, = (X, 1,1%) is y-sequentially complete. Conversely, X}, is 7-scquen-
tially complete if { My Py} is boundedly complete and cach M is T-sequen-
tially complete.
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Regarding vector-valued sequence spaces (abbreviated VVSS), let us consi-
der a vector space X and denote by »(X) the vector space of all sequences
{xi}. xj € X, i 1such that x; = 0 for all except tinite indices i. A vector-valued
sequence space \(X) is defined as the vector space of sequences from X with
respect o the usual pointwise addition and scalar multiplication with
O(X) C A(X). We denote an arbiirary member of A(X) by x, where x =
I%it. xj € X, i 2 1; and lor x in X, wcI write 8¥ .to denote the sequence
ith

{0.0...,0x0... .+ . % being placed at the. i coordinate. FFori 2 1, set

Ni={6;‘(:xeX}.

Then Njis a subspace of A(X) forcachi= 1.

Assume now that X is an Le. TVS and F is a HausdortT locally convex
topology con A(X). Then (\MX),F) is said to be a GK-space if' the maps
Cii M(X) =X.C;{(X)=xj.i=1arc continuous.

3. k-RELTLEXIVE BFLOCALLY CONVI'X SPACES

I'or a Mazur space (X.T) with an e-S.D. {My:Py} . the pair { Py (XF),P§} isan
¢-S.D. for the y-dual X% of the canonical bi-1.c. TVS X, = (X,T,T*). with res-
peet to the topology B (X3, X) Iy + where XT =(X.T)* by virtue of Proposition
2.13. This fuct is exploited to intw(]ucc the k-conjugate spaces as follows:

Definition 3.1: Let X, = (X, 1.1#) be the canonical bi-1.¢c. TVS corresponding to
a Mazur space (X,T) with an ¢-S.D. { My: Py} - Then the canonical bi-1.c. TVS
(Xz. B (X‘;", X) IX.,** 'l’l"') defined by the y-dual X3y ol X}, and ils e-S.D.
FPE(XF). PR} is termed as the first k-conjugate space of Xy, and is denoted by
k-Xp. where 1§ is the corresponding canonical topology defined by the family
l)-|-=1:< of seminorms defined as:

D= = { p;‘, : B varies over T-hounded subsets of X and
1

e DRI
pp(D=2 __—_J° forfeX*}.
B iz T 7
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In case (X3. B (X}. X) !xs) is a Mazur space, the canonical bi-1.c. TVS
(X33, B (X3%, X3 |X*;4;~ 15 where X3% = (X%, B (X¥, X) | xx)*, defined by
the 7-dual X33 of the first k-conjugate space and its ¢-S.D.  {PE* (X37). P} is
known as the second k-conjugate space and is denoted by k?-Xy,. Here T3 is the
corresponding canonical topology generated by the family DT;: of seminorms
given by

l)-l-; = {pi-";* : B¥ varies over B (XF. X) |X.‘; bounded subsets of X¥ and

L orrexyx )

pp* (F)=

W
>
~,
=

j=1 2]

Let us observe that PF* (XEX) =P (Xf‘;?), V iz | and so we denote bolh
these subspaces by the common symbol Xaxni=z1 for the sake of convenience.

In view of k-conjugate spaces defined above. il is natural to enquire whether
we can deline an embedding from X to X%%. in this direction, we prove Theo-
rem 3.3, However. let us mention here that we consider throughout a Mazur
space (X.T) with an ¢-S.D. { My; Py} such that the y-dual X3 of the canonical
bi-1.c. 1VS Xy, = (X, 1,T*) is Mazur relative to g (X}. X) | Xz and J is the map

definet from X 1o X5 ¥ by the relation

(Ix) (N =1 (x), Ve Xz,

Then we hegin with the following simple

Lemma 3.2: IMy C Xf;,,k, forcachk 2 1.

Proof: 'or proving the result, we need show that Ixg € X3%¥ and PE* (Jxy) =
Ik for xg € My, k 2 1. However, these are simple Lo verily and so the prool is
omitted.

Restricting (X, T) {urther, we have
Theorem 3.3: Let (X.'1) also be infrabarrelled. Then ) maps X into X¥3andisa

topological isomorphism {rom (X, 1) onto (JX, B (X3¥. X3) 1 yx ) and also from
X.T%)onto (JX, TF ;x).
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Proof: In order 1o show that Jx € X3¥ for x € X, consideranct {fs: 6 ¢ Atin
X% such that (5 o0 ink-Xp. Then {fy} is B(X*, X) -bounded and

1
(*) 5 (xj)) — 0,Vx;eMjandj=>1
by Lemma 3.2, Since (X,T) is infrabarrelled, there cxists a p € 1> such thal

(%) g (x)I<p(x),VxeXand ¢ A.

Also, forx = 2 xj, x5 ¢ Mj. j = 1 and lor p in (**), there exists Ng ¢ [N with

j#&1
. c
pl_ 2 x<
j%No'i' 1 2
From (%), there exists 8¢ € A such that

fs (x)| <—=- .ford>8gandj=1,-- -, N,.
2Ny

Hence
[fy (x)1<e. Vb >d.

Thus (Jx) (I5) =Ty (x) — O and so Jx ¢ XF3.

For showing the T - B(XZ¥, X¥) continuity ol J. let us consider a net
{x5: 8 ¢ A} in X such that xs — 0in 1. Let v be a B (X§7, XF) neighborhood
of origin. Then there exists a § (X¥, X)- bounded subset B of X¥ such that
B® Cv. As (X,T) is infrabarrelied, B is equicontinuous and so therce exists a
T-neighborhood u of origin such that B C u®. the polar of u relative to the dual
pair <X, X.’;f). Consequently, considering the polarity relative to the dual pair
(X5. X3 we have

u®t . B Cv.
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Also there exists 6 € A such that xg e u. V & 2 8,. llence
1(Ixg) (N1=11(xs)l <1,V leu®ands>8,.

Thus Jxg ¢ v for § 28, and the required continuity of J follows.

For proving the continuity of J™!, consider a net {vg: 8 € A} in JX such
that ys—0 in g (X3%, X3). Write x; =J"1 (y5), 8 € A. By Propositions 2.8 and
2.12, there exists a lamily Dy of seminorms generating T such that for cach
peDy,wegetaqin Dy such that for x in X,

(34) p (x)<sup { IF(x)1:FeX3 ﬁ\'g } =pgp= (Jx)

where B* = X¥ N \-'f;, is a B (X¥, X)ybounded subset of X3. Consequently,
p (xs) < pgs (Uxg)—0 = I is 3 (X357 X3 1yx T continuous. Thus J isa
T 8 (X;‘l" X%)13x topological isomorphism.
In order to show that Jisa T* T | yx topological isomorphism, consider
first a seminorm pg € D= and x € X. Now
b 2

Py« (PE(1x))
E o(IX)= % — .
Pi= (JX) =

By Lemma 3.2, l’j"‘* (Jx)=Jx;.j=1 and so

. ‘ . P~ (,‘(J)
ppa(=2 — - o=

i=1 2

Mp (%))

<Z — =Mp*(x)

=t 2

for some pe Dy and M > 0as Jis T B (X7, X3) | i continuous. Ilence ) is
T* 151y continuous. Similarly, one can establish the continuity of It by
making use of the inequality (3.4). Hence the result follows,

The above theorem leads us to
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Definition 3.5: Let (X,1) be a Mazur infrabarretied space with an e-S.D.
{Mp:Pn} such that { X3, 8 (XF, X)1 =t is a Mazur space. Then the corres-
ponding canonical bi-1.c. TVS Xy, & (XT,1T%) is calied k-reflexive if the embed-
ding J as delined above from X 1o X2 is onto.

Note: In the sequel, unless otherwise specified we shall consider an 1.¢c. TVS
(X,T) which is Mazur, infrabarrelled with an ¢-S.D. { M Py} such that
(X3 B(XT. X)) x.’-;) is a Mazur space.

For our next result, we need the following genceral result contained in

Lemma 3.6: It R: (X#, B (X* X)) — (Y*, §(Y*, Y))is a topological isomor-

re X** and Y** are respectively the topological duals of (X*, 8 (X*. X)) and
(Y*.B(Y*.Y)).

Proof: Vor the 8 (Y*¥, Y*)  f(X** X*) continuity of R* we refer o]0, p.
256]- The onc-to-one character of R* follows from the ontoness of R. For

Y* defined as
(R = x** (), V e X*

is a member of Y** such that R¥(IF) = x*#%_ Ilence R* is onto.
Since (R*)? = (R™)*, the 8 (X*%, X*) B (Y** Y*) continuity of (R¥)"!
{ollows and hence the result is established.

Next, we prove

Proposition 3.7: Il {Mp:Pp b, {PF (XF)PE} and {PF* (XEX): PE* ) arc res-
pectively ¢-S.D. of (X,T1). (X3, 8 (X7, X) i X;‘;) and (X33, B(X3¥. X3 Xfﬁ)’
then for cach j 2 1 there exists a topological isomorphism
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a7 (=B (P, MP) — (P OX5). 8 K- X3 | pre )
such that j | IM; is an identity mapping.

Proof: For proving the result we first show that (.\1]5’: B (Mi*; M;)) is topologically

isomorphic to (PJ?*'(XT), B(XT. X)1 by (X*)) forcachj= 1. l'ix j 2 | and define
% * F !

R: Mg - l’j-(xl-) by

Ty =P () [ \*
R{r) = P (1), f e \;

where fis the continuous extension of [ from M; to the whole space X. Clearly R
is well-defined, lincar and one-to-one. Further, R is 8 (Mj’-‘,Mj) B (X7F.X) 'P-*(X’;‘)
continuous for if B is ¢ (X.XT)-bounded or equivalently T-bounded subsef of X,
then there exists a TIM.i, bounded subset B, = Pj (B) of Mj such that

Py (R())=py (D V FeMs

Also, i Ais o (M;, ;\lj*)-bounded subset of Mj, then itis o (X, XT)-bounded (cf.
{6], p. 262) and so the cquality

pay (R (PFD)=p, (7] wh v FeX}

implies that R™! is 8 (X3. X) g (Mj*, M;) continuous. Hence

PE(XF)

—~
o

) R: (M B (M) — (P (XD BXE-X) 1 e x 7))
is a topological isomorphism. Consequently, by Lemma 3.6
R=: ((PRXE)®, B((PFXE)*, PRXE)) — (MF*, B (MF*. M)

4°



180 Manjul Gupta and N. R. Das

is a topolgocial isomorphism where Mi*’:‘ is the topological dual of
(Mj":‘, B (!\-Ij*. M;)).
Applying (%) to the S.D. I’j*(Xj‘); P bin (X* 8 (XT. X) 1 5). we can
’Y .,
find a wopological isomorphism S from the space ((l’j* (XFN* 8 (‘(I’j" (X))
PJ (X§)) 1o the space (l’ji‘* (X33). B(X5F, X3)i Py *:(X’{:f-;))' Deline

wj=So0 (R#)

Them g is the required topological isomorphisim and this completes the prool of
the first part.
v

(ii) IM; & ('I-‘Jf=‘ (XTI (iii) IM; T Mj"”"'; and (iv) Si]-“i and (R¥)1 I are iden-
Lity mappings. ’ ’

Indeed, the containment (i) follows from Lemma 3.2, The relations (ii), (iii)
and the first part of (iv) can be easyly verilied. For the second part of (iv), it
suffices 1o show that R*-J_“j is an identity and this follows from the lact that

: droneineg a feam ettty manmg wheoary o 111a1 (i L PRIX EEY.
For showing @ jay. is an identity mapping, observe that (i) JM; C Ij"(X.n. :

forfe :\Ij* and x;j € My
(R (Ix))) (1) = (%) (l’j"“ (l")) = £(xj) = JIx;) (D).

Thus Zjl IM; is an identity and the result is now completely proved.

Using Proposition 3.7, we characterize k-reflexive bi-1.c. TVS as follows:

Theorem 3.8: H (X.T) is sequentially complete. then Xy, = (X,T,T%) is k-refle-
xive iMand only it cach My is reflexive.

Proof: Let us lirst prove the equivalence ol the following two statements.
namely,

(i) J: X — XZ% is onlo,
(i) J: M- — PF* (X33) is onto foreach j = 1.

(i) = (ii). let F e I’J-":‘*(X', #). Since I’j’:“f:( ¥¥) C X3¥, there exists an x € X such
that Jx = I*, Therefore. I’j'-"-'(.lx) = Ix and so T (Pjx) = 1(x). ¥ ['e X3, Hence
x = Pjx € Mj and (ii) follows.
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(i1) = (i). Consider an F e X33. Then there exist xj € Mj such that Jx; = PF*(F),
j 2 1. Conscquently,

S = N )_:s::i: 15y = . ‘.
I _>_>‘lj ()= 2 Iy

1# 1=
where Lhe convergence of the series is being celative o 8 (X.,“; X:f) I § ke By the
Y
N n‘ .
incquality (3.4) in the proof of Theorem 3.3, it follows that { 2 Xpnz=l } is
=1
a T-Cauchy sequence and therefore there exists an x € X such that

Thus F =Jx. for some x ¢ X and (i) follows.
Now il X, is k-reflexive, J: M_i—-Xﬁf.";“.'j is a TIMi B (X5 X3 Xi"’;j

topological isomorphism. Since JMj = X5, = Mf* by the preceding result,
Jo M, -——.\lj’:‘* is i TI.Mi - B (.\Ij**, :\Ij’:)-t()pologicul isomorphism and henece M;
is reflexive for cach j = 1.

Conversely, i’ M; is reflexive. then the map J maps X onto X¥¥ by the
above arguments. llence Xy is k-rellexive.

4. CANONICAL v-COMPLETION

In this section we construct a VVSS equipped with two locally convex topo-
logies corresponding to a canonical bi-1.c. TVS, that behaves like a y-completion
of a bi-1.c. TVS in the sense of the following

Definition 4.1: Let Xy, = (X, 17,13) be a bi-l.c. TVS. I there exists a normal
Y-complete bi-l.e. TVS Xy, = (X, 7, 7%) containing X, as a y-dense subspace,
then Xy, is known as a Y-completion of Xy,. We call the y-completion ol a cano-
nical bi-1.c. TVS as the canonical y-completion.

Recalling the map J: X — XI¥ as well as the restrictions on the space

(X, T,1%) and its y-dual from the preceding section, namely, (X.T) is a Mazur,
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infrabarrclled space with an e-S.D. {My;Py} such that the y-dual X3 of the

corresponding canonical bi-1.c. TVS is Mazur relative to § (X¥. X) | X W first
Y

prove

Proposition 4.2: ot a given xj € M;.j = 1, the scrics]él Jx; is o (X3%, XF)-con-

n
vergent provided { 2 Jxjinz| } is B (X, X) | 5 - cquicontinuous.
-t v

n
Proof: Write Gy = 2 Jxj;,n=1.8ince {Gpin 21 b isg (X}, X1)ixx con-
il Y

tinuous, there exists a T-hounded set 13 in X such that
(*) LG [Spy (), VnzTand fe X3,

Iy =spuy P (X¥), then Gy (g) donverges for all g in Y and so we can delinc a
linear map I': Y — K as follows:

(%%) I (g)=1lim G, (g), VgeY.
n+

By (). Fis 8 (XI. X)I y continuous. Therefore, we can extend I to a
B (X X)I Xz continuous linear functional IF on Xx.

For showing o (X3%*, X¥)-convergence of

2 Jxj, consider I'e X3. Then for
>
1Z

B in (=), there exists ng in N such that

“0 c
" [
py (f .i_zl I r)<3 .
Also by (%), for g ¢ Y, there exists ing in [N such that

.M o €
LE(Z P G (2 P*O1 <S . vn>m,.
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Conscequently,

n n n

N 0 . 0 0
() Ga(Hi < Py F X l"j-’l') + [ (Gp-T) (2 P?‘I) | + Py (2 l"*i‘f-l")
il i il
<6 Vnzmg.
This completes the proof.

Note: Let us note that il (X%, 8 (X7.X) | x ) is infrabarrelled, then the conver-

gence of the series _251 Jxj in the topology o (X3T.X¥) implies the
1

n
B (XTX)y+) equicontinuity <)["{ 2 Jxion = | } ; for in this case
¥ i1
(X%. B (X5, X)| x x)- being complete. is a barrelled space (¢l |9], p 368). Conse-
Y
quently, { % Ixjizn =1 } is B8 (X3{. X¥)-bounded. This fact yields the cons-
iy

truction of a VVSS equipped with two locally convex topologices in the lollo-
wing.

Definition 4.3: In addition to our ecarlicr restrictions, let us also assume that
(X% B(X*X) |y ) is inlrabarrelled and set
Y 1 X3

Y

X= { {I%1 ¢ jgl Jxj converges in o (X357, X*)} .

Then X is a vector space with resepet Lo usual pointwise addition and scalar mul-
tiplication. Further, it can be equipped with two locally convex topologics 7 and
7* defined respectively bu the families of seminorms

D, = { Qyy = - B* varics over B(X7.X) !y« bounded subsets of X3 and
v

n
agx (I )=5h|p Py (_El Jxj) for ¢ dx; eX };and
i

6*
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Dyw = { qB* : B¥ varies over (X;",X)I X bounded subscts of X% and
Y

Py« (%)

> ' { s c
2 ) lorg.lx]}cX}.

q“* ( {-lxj } )=J

One can casily check that #* C 7 and so the triplet (%,T:T*:). is a bi-l.c. TVS
denoted by Xy, that is Xy, = (X,,7*). Concerning its basic structural propertics
we have

Proposition 4.4: The VVSS (i,,—) and (2,7’-‘) are GK-spaces.

Proof: Since 7 C 7, it is enough to show that (3\(',1*) is a GK-space. So consider
anet {Fg:8 e A} and a point F in X with Fg = {Jx;.s .0 cAand IF = {Jx }

such that Fg —1" in 7*. Then for § (X}. X) | xx bounded subset B* of X3,
¥

[
) . . . Pyx (ij -J%3)
Gy« 's ) _jgl Y

8
= Pyps (.li.é -Jxj) = Oforcachj=>1.
Thus (')\\;,T*) is a GK-space.

Note: IEN; = {8]% : x e X }.i>1, { \j} is clearly an S.D. for (X, 7%). Also it
is an S.D. for (z,o(')\(',\l)(Xﬁ). Huwcvcrit would be interesting to investigaic the
form of the generalized Kéthe dual of X and establish realtrionship with its to-
pological duals (cf. [3]) so as to have an insight into the various structural pro-
perties of the space X and the role played by { Nj} in view of the results of [4].

Proposition 4.5: ’ib = (')Z,T,T*) is a normal bi-1.c. TVS.
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Proof: Let us consider a net {Fg: 8 ¢ A} and an F in ib with Iy = {Jx5 },

8 € Nand IF ={Jx; } such that I's—F in (X,7*). Then by Proposition 4.4,

P+ (fo) — Py« (Jxj) for cach B (X%.X)i xx -bounded subsei B* of X3
7

and j = 1. We now fix a g (X}.X)I xx -boundedset B¥ in X§. Then for IF ¢ B*
and n e [N, K

n n
| X (x) (D) =lim| % J(x) ()]
il s -1 3

b J

0
<lim py. () (.\({5 )

- i

5 i

<lim gy (F5)

&
Since the right hand side is independent of fe B* and n e [N, we get
qB* (l:)< l'ﬂ qli* (Fﬁ )
8

Hence ’)\('b is a normal bi-1.c. TVS.

Preposition 4.6: 1f (X.T) is complete, ib is a v-complete bi-1.c. TVS.

Proof: Let us consider a v-Cauchy net {Fg: 8 e At in F('b where Fg = { Ix® |,

8 € \. Then for a given B(XT. X) | ¢« bounded set B* and € > 0 there exists a
%

positive constant M depending on B* and a §4 ¢ .\ such that

(*) dps (Fs) <M. V8¢ A;
('»‘.:i:) qB* (lb l:n)<G, V6.n>60

Consequently, from (#%), {Jx8: 6 € A} is a Cauchy net in IM; for cach j > 1.
Now. by the completene of each (M;, 'I'!Mj) and Theorem 3.3 the comple-
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t;:ness of (JM;. B (X3¥, X%) l.l.\lj) follows. Hence there exist xj € Mj, j 2 1 such
that

{1} — Ixjin B(XFF. X3)1 avj andj>1.
In order 1o dispose of the proof completely, we need to show that
(a) I'={Jx;} e X;and
(b) I'g D tin Xp-

For proving (a) let us consider a B (XF, X) !y« bounded subset B* of XZ.
v

Then for ne N and f ¢ B*,

n
P2 (x) )< lim gy. (Fs)<M
j= | 5
n
= pgs (2 IX)<SM. ¥n=|
iml
or, qgs (F)< M.

Hence (a) follows.

I'or proving (b), it is sufficient to show that I'y — I in ()'\(', 7*)in view of
(*) and (a). Therelore consider a 8 (X¥. X)-bounded subsct B* of X¥. Then by
(*) and (a).

g« (Fs F)<ZM, Vée A
and so

P+ (fo J5)<4M. VEeAj> 1.

Now for given ¢ > 0 there exist N ¢ [N and a §¢in A depending on € and N such
that
¥ L < £
j>N 2 8M
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and

pB*(Jx;5 Ixj) < 2_61\_ V& >8pand 1 <j<N.

Consequently.

. N T “‘f I%j) Lo
dga (Fs )< 2 27— 4y 5
ji=1 2] >N 2l

<e¢ V>0
and hence (b) holds. This completes the proof.

Finally. we have

Proposition 4.7: let (X,T) be also scquenfially complete. Then the space

Xb = (X.r,7) is the canonical y-completion of Xy, = (X1, T%).

Proof: FFor x ¢ X, let us note that the serics 2>‘ Jxj where x = 2>- xj in (X.T).
j/]. j/l

o (X357, X3) converges by Theorem 3.3. Thus we can definc a map F: X — X by
F(x)= {Jx; }

where x ¢ X with x =jgl Xj. Xj € Mj. j = 1. Clearly F is lincar and onc-to-one.

In order to prove the result, we need show

(i) il, = (i,'r,.'*) is normal and y-complete;

(i) E:X.)— ()?,'r) and Ii: (X,T%) — ()7,7”‘) are topological isomor-
phisms into: and

(iit) LX) is y-dense in X.
We have already proved (i) in Propositions 4.5 and 4.6.

For proving (ii), let us first show the T-7 continuity of L. Therelore, consi-
der a seminorm gy 5 of 7 and x in X with x =jél Xj, Xj € Mj. j = 1. Since J is
T-8 (X535 X3) | jx continuous by Theorem 3.3, there exist a constant M > 0

and p ¢ Dy such that

() Py (Jx) SMp (x), VxeX.
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Consequently,

n
Lix) = su « (2 Jx
(]B*( ) SLIPPB (j'-l _1)
n "
SMsupp (2 x)=Mp (x).
n i1

Since the topologies T and T are equivalent by Proposition 2.4, the T-: conti-
nuity of L follows.

Lot showing the T continuity of E™', consider a seminorm p € D. By
Theorem 3.3, there exists a seminorm pBT of B (X537, X3) such that

() p(x) Spy« (Jx), VxeX
1
" "_ - "
= p(x) < sup Py ( _Zl Ixj) = A (I:x)
-

forx= %

. Xj. Xj € M;.j 2 1. Hence L is a T-7 topological isomorphism from X
=Y ) 2 }

into X,
For T*-* continuity of E, note that for cach g

dg+ (Ex)=M p* (x). VxeX

for some p ¢ Dr and some M >0 by (*); and for the 7-T* continuity of E™ we
have from (+)

P* (1) < gy (x), x € X.

Hence E is a T*-7* topological isomorphism.
To prove (iii), consider an [ = | Jx; } ¢ X. Forn> 1, define

Fn = {Jxlr : '7an,0907 ot '} .
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Then ¥ € E(X), for cach n 2 1 and the sequence { T} is 7-bounded, for
qB st (Fﬂ) = (]B* (F), Vnzl.

Also. for an arbitrary B (X%, X) 1y, bounded subset B* and given ¢ >0, there
]
exists ng depending on B* and e such that
Pp= (lX])

— < VnZ=n,.
j=n +1 2)

Consequently,
Qyy = (Fn - F)<e. ¥n2n,.

Thus L:(X) is v-sequentially dense in il, and the result is completely proved.

5. RELATIONSHIP BI-TWEEN k-REFLEXIVITY AND v-REFLEXIVITY

In this scction we prove results which lead us 1o establish the relationship
between k- and 7-rellesivities of a canonical bi-l.c. TVS and deduce a known
result in the basis theory. As mentioned earlier, (X,T) is a Mazur infrabarrelled
space with e-S.D. { My;Pp}, and the v-dual (X%, g (X*, X) | X,’;) of the corres-
ponding canonical bi-1.c. TVS is a Mazur infrabarrelled space. Let us also recall
the map E introduced in Proposition 4.7, namely, E: X — 3(, with L(x) =

{Ixjh x =j§l Xj, Xj € Mj,j = 1. Define e: X — X3% by

c({Ixi})=2 JIx;, V {Jx;i}eX,
(og1)= 2 I, v (g1 e,

A s ‘o C the sert ny sMlative &k L
the convergence of the series being relative to o (X3%, X¥).
In terms of the map e, we characterize k-reflexivity in
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Proposition 5.1: TFor a sequentially complete space (X,T), the canonical bi-] .c.
TVS Xy, =(X,T,T#) is k-reflexive if and only if ¢ is onto.

Proof: Let Xp be k-reflexive. Then by Proposition 3.8 cach M;j is reflexive. For
showing that ¢ is onto, let us consider an I in X;’;‘ Then

F= ¥ Pp () in o (X3, X3).

Since JM; = M** by reflexivity of M;j and the map gj in Proposition 3.7 is idcn-
tity on J\IJ it follows that J(M;) = P‘* (X%¥). Hence there exist x; € My, j =
such that

PE% (1) =Jx;, j>1

Therefore

F=3 Jx in o (X51.X5)

1
=l =c( 1Jx; }). that is, ¢ is onto.
Conversely, let ¢ be onto, Then for I e X3%,
F=2X Jx in o(X3%* X3).
j=1

Also by Proposition 2.13,

=2 Pe(F) in B(X37

_‘/

55X,

flence

Jxp= PR (), V>
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Thus J is an onto map from M;j to Pj**(Xiﬁ). Now invoking the proof of Theo-
rem 3.8, J maps X onto X3¥, that is Xy, is k-reflexite.
As an immediate consequence of the preceding result, we have

Proposition 5.2: [ the S.1D. of a sequentially complete space (X,T) is shrinking,
then e: X — X77¥ is onto if and only if cach M; is reflexive.

Proof: Since the S.D. is shrinking, X3 = X¥ by Proposition 2.13 and therefore
X3¥ = X¥F. Now the result is immediate from the preceding proposition and
Theorem 3.8.

For our next result concerning the characterization of boundedly complete
S.D., we need

Lemma 5.3: 1If (X,T) is sequentially complete, then

L(X)= { {Jx b xjeM.j=1 zmdj%1 Jx;j converges in 8 (X5Y, X3) } .

Proof: In view of Proposition 3.3, it is sufficient to show the existence of a

point x in X for each sequence {x;} with xj € Mj,j = 1 and Z Jx; converges
(N 1 ) i>1 ]

n
in B(X¥7. X¥) such that X xj-— x in (X.T). Therefore, consider such a se-
ji—1

n

quence {Ixjt. Then § £ Jxin > l} is a B (XF7. X3)-Cauchy sequence in
j-1

1

Z xin>1 } is a T-Cauchy sequence in (X,T) by the inequality

j-1

(3.4) in the proof of Theorem 3.3. Hence there exists an x in X such that

x = % Xj. This completes the proof.

j=1

X*%{. Hence {

Theorem 5.4: The S.D. {M,;P,} for a sequentially complete space (X,T) is
boundedly complete if and only if E is onto.

Proof: Let { Myt be boundedly complete. Then it follows from Theorem 3.3

that {JMu ! is also boundedly complete for (JX, B (X35, X3) 1yx)- Now to
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prove the cquality X= E(X), we need show that X C E(X) as the other inclusion
o . ) > n .
is trivially true. Therelore, consider Jx; e X. Then { 2 IJxpn= l} is
i i1

B (X3*. X%)bounded by the note following Proposition 4.2. 'l'husjE] Jx; con-
verges in B (X3¥, X¥) by the above arguments and hence { Jx; | elli(X).

. . I

For the converse, let us consider a T-bounded sequence { L X:n=1yp,

ji- 1

xj € Mj, j = 1. Then applying Theorem 3.3, we get {Jxj} € X = E(X). Ience
there exists an x in X such that x = % Xj. This establishes the result com-
pletely. i

An immediate consequence of this result is

Corollary 5.5: Vor a sequentially complete 1.c. TVS (X,T). Xy, is y-complete if
and only ii' X == 1i(X).

Proof: Follows immediately from Proposition 2,14 and 5.4.

We are now prepared to prove the main result of this section, namely,

Theorem 5.6: 1 (X,T) is sequentially complete. then Xy is v-reflexive if and
only if Xy, is k-reflexive and y-complete.

Proof: et X;, be v-reflexive. Then J: X — X¥* is onto. Consequently, J:
X — X37% is onlo. Hence X, is k-reflexive. N

For showing the y-completeness ol Xp,, it is enough to show that X C 1:(X)
in view of Corollary 5.5. So, consider {.lx_i b e X. Then P2 JXj convérges in

i=l
o (X537, X3) to some clement, say I, in X37. Hence by the -reflexivity of Xy,
there exists a v in X such that

(*) Ii=ly.
Since y rjél ¥j- vj € Mj.j = Lin (X.T). applying Theorem 3.3, we have
J} = 2 l_\,’j
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the convergence of the series being relative to 8 (X3¥. X3) and hence also rela-
e ¢ ek Y I'hre
tive to o (X3¥, X3). Thus

r1°
P I PYESD SR LU
oy 1.3 L
j=1 j==1

Now operating both sides on I’j*(l'), (e Xi*, we obtain

X 7Y Vijzl.

Conscquently, E Jxj converges in B (X3¥.X3). Hence by Lemma 5.3.
j=1 ’

HIxjt e E(X)and X C E(X).
Conversely, let Xy, be k-reflexive and y-complete. For showing v-reflexivity
of Xp. consider an IF in XZ¥F. Then applying Proposition 5.1,

F=e({lx)) = ¥

> .|Xi
j#1

for some {Jx; } ¢ X. Also by Theorem 5.4. X = L(X) and so there exists an
x € X such that

Jx=2 ij.
i=1

Thus F =Jx {or some x € X and hence X, is v-retlexive.

As an immnediate consequence. we have

Corollary 5.6: Let (X,T) be a sequentially complete infrabarrelled space with a
Schauder basis { x: {5} such that (X3. 8 (XF. X) | ¢ ) is a barrelled space. Then
Y

Xy, is y-reflexive if and only it Xy, is y-complete.

Proof: Since a sequentially complete infrabarrelled space is barrelled, (X, 1) is a
Mazur space by Proposition 2.2. Now the result follows immediately {rom
‘Theorem 5.6 as cach Mj, being one dimensional space, is reflexive.
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Finally, we deduce the following result due to Retherford (14, Theorem 2.3.
p. 281) by using the techniques ol bi-locally convex spaces as follows:

Theorem 5.7: If (X,1) is a barrelled. semireflexive (and hence reflexive) com-
plete space with a Schauder basis {x;; {j }, then {xg; 5} is both shrinking and
boundedly complete.

Proof: The space Xy, is y-reflexive and saturated by Proposition 2.10 and hence
(X3, B (XF, X)) yx) is barrelied (6, p. 228). Consequently, Xy, is y-complete by
¥

Corollary 5.6. The result now follows [rom Propositions 2.13 and 2.14.

The authors gratefully acknowledge their thanks 1o Professor P. K. Kamthan
for his useful suggestions and comments during the preparation of this paper.
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