NONORIENTABLE, INCOMPRESSIBLE SURFACES
A
OF GENUS 3INM,, (; ) MANIFOLDS
by
JOZEF H. PRZYTYCKI
In this paper we investigate nonorientable, incompressible surfaces of genus
)\ A\
3 in M¢< —) manifolds, that is manifolds which arise from punctured-torus
M
bundles over S' by Dehn surgery (see Part 3). We are interested especially in
A
M¢< —>manifolds which are irreducible and non-Haken. J. H. Rubinstein analyz-
M
ed the following problem [Ru]: Let M be an orientable, closed, irreducible, non-
Haken 3-manifold. How many pairwise non-isotopic, nonorientable, incompres-
sible, genus 3 surfaces which represent the same element of H, (M, Z,) can be
embedded in M ? It is proved in [Ru] that 3 is an upper bound, and that for

Seifert fibered spaces 1 is an upper bound. We generalise the last result for ma-

A
nifolds Mw( —), and we prove that, with the exception of

u

1 =2 0=2 p—
Mw T),80= —Q Ba 6“ ﬁ
1
(see 1.1 and Part 3), 1 is an upper bound. We examine closer the case of M,, ( —1->
1

and we prove that M¢< T> is not a Seifert fibered space. We give strong evidence

1
that M¢< T )contains three, pairwise non-isotopic, nonorientable incompressible,

genus 3 surfaces but we do not prove it and it is still an open problem.
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0. INTRODUCTION.

We work in the PL (or equivalently smooth) category. We refer to [H] or [J]
for basic terminology.

In the first part of the paper we state the results contained in [F — H] and
[P — 2] concerning the classification of incompressible, 3-incompressible (or
closed) surfaces (orientable or not) in M,-punctured torus bundles over S!. In
the second part we insert the tables containing all nonorientable, incompressible,
o-incompressible surfaces of genus < 3 embedded in M,,. In the third part we
find all nonorientable, incompressible surfaces of genus 3 in irreducible, non-
Haken manifolds obtained from M,, by Dehn surgery. In particular we prove the
following theorem:

A
Theorem 3.2. Let M, ( - )be an irreducible, non-Haken, orientable 3-manifold
u
A
obtained by Dehn surgery of type — from a punctured torus bundle over S*
M
with a monodromy map ¢ (see Part 3). Let K; and K, be nonorientable, incom-

A
pressible, genus 3 surfaces in M, (— ) such that the classes of K; and K, are
M
A
equal in H, (M,, ( - ), Z,). Then K, is isotopic to K, with the possible excep-
M
: 1
tion of the case of M, (T)with ¢ = —a® B Ba? B (see 1.1). We identify ¢

with its equivalence class defined by conjugation and taking the inverse.
In the fourth part of the paper we examine closer the case of genus 3 surfaces in

1
M, (T) for o= —a® pad Ba? B.
We give some evidence that the three constructed surfaces are not isotopic. We
1

1
prove that the manifold M¢(T) is not Seifert fibered. We divide M¢( " )by a

2 2
free Zz-action to get the manifold M , (g)with v=-a2B My ( 5) is an

irreducible, non-Haken, non-Seifert fibered manifold. On the other hand, the
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Y \u

Jgrgensen’s decomposition does not produce a hyperbolic structure on My (5)

[B—P-— i] however Thurston conjectures that this manifold posses a hyperbolic
structure [T; Conjecture 1.1] .

Now we recall the definition of an incompressible and 9-incompressible sur-
face (for S? and D? slightly different then that of [H] and [J]).

Definition 0.1.

a) Let M be a 3-manifold and F a surface which is either properly embedded
in M or contained in @ M. We say that F is compressible in M if one of the follow-
ing conditions is satisfied:

(i) Fisa2-sphere which bounds a 3-cell in M, or

(ii) Fisa2-cell and either F C @ M or there is a 3-cell XC M with 93X CFU9 M,
or

(iif) there is a 2-cell D C M with D N F =93 D and with 3 D not contractible in
F.

We say that F is incompressible if it is not compressible.

b) Let F be a submanifold of a manifold M. We say that F is m,-injective in
M if the inclusion-induced homomorphism from m; (F) to m; (M) is an injection.

c) Let F be a surface properly embedded in a compact 3-manifold M. We
say that F is d-incompressible in M if there is no a 2-disk D C M such that
DNF=aisanarcin dD,DNoM=gisanarcin o0 D, withaNf=0a=04
and a UB =3 D, and a is not parallel to @ F in F.

1. INCOMPRESSIBLE SURFACES IN PUNCTURED TORUS BUNDLES OVER S!.

The classification of orientable, incompressible, 8-incompressible surfaces in
punctured torus bundles over S! is done in [F—H] and [C—J—R] and the no-
norientable case is done in [P—2].

Let M, be a once-punctured torus bundle over S' with a hyperbolic mono-
dromy map ¢ € SL (2, Z): that is M, = F X R/ L&)~ (), t+ 1) where F
denotes a punctured torus. For convenience we shall usually not distinguish the
open manifold M, from its natural compactification obtained by adding a
boundary torus. Now we establish a coordinate system of Hy (3 M)

Definition 1.1.

The second generator (longitude), of H, (d M,) is determined by the
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boundary ofa fiber (with the clockwise orientation, see Fig. 1.1). To define the
first generator (meridian) of H, (3 M,,) we have to consider two cases:

a) tr ¢ > 0; 50 ¢ has two positive eigenvalues. Then the restriction of @ to
the boundary of a fiber (d F is understood to be the set of angles) has four fixed
points, say ¥ a; and ¥ a.

Fig. 1.1.

Now, the image under projection F X IR - M,, of the straight line in 3FX R
which joins (e, 0) and (ay, 1) is a circle which determines the first generator of
H; (0 M)

b) tr ¢ <0; 50 ¢ has two negative eigenvalues. Then the restriction of — ¢ to
0 F has four fixed points, say ¥ oy and ¥ o, 50 ¢ () =— ;. Let A be the curve
in @ F X R given by the equation z = e™t where z ¢  F and t € R (so Ajoins
(o1, 0) and (— @, 1) with a negative half twist with respect to the chosen
orientation of 3 F). The image of A under projection F X R - Mg determines
the first generator of H; (0 M¢). The slope of a curve on 9 My is defined to be
the quotient

second coordinate of the curve

first coordinate of the curve

Let v’e SL (2, Z) be a hyperbolic matrix, then ¢ is conjugate to the matrix ¢
such that

@ =+ a1 (%2 @73 24, g22k-1 B2k where k, a; > 1 1.1.
11 10
(i=1,2,...,k) and&:[ ] =[ ]
01 g 11

From now on, we assume that each hyperbolic ¢ is of the form 1.1.
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Definition 1.2.

a) By the diagram of PSL (2, Z) we will understand the following graph, W,
placed in a circle. The set of vertices of W is: W= Q U (e ). Two vertices

P1 P1 P2

qr Q2

- ,Eew are joined by an edge iffdet[ =F1
d1 92

(Fig. 1.2 a)) ;see [H — T] or [F — H].

2
3

-l

Figure 1.2.

b) Let W, = {E eW : pandqareodd},
q

W, =‘B eW : qisevenl, W, = {Bew > pisevent.
q q

We define W (respectively Wo, W, and W, ) to be the graph with vertices W (resp.
Wo, W; and W,) and such that two vertices

E,E_ew

q1 92

(resp. Wy, Wy and W, ) are joined by an edge iff

det [p‘ p’]=¢2
Q1 G2
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(Fig. 1.2b)). An edge-path

Pi—1 Pi Pi+l

Qi1 G el

in W is said to be minimal if for each i

Pi+1 + Pi—1

Qi+l qi-1

(i.e. we do not go back and forth). An edge path in the diagram of PSL (2, Z) is
said to be minimal if no two succesive edges lie in the same triangle of the
diagram. If ¢ € SL (2, Z) then the described graphs possess naturally defined

action of g, i.e. if
ab ay + bx
o Jaen e () =(277)
c d X cy + dx

1 a 0 b
(in particular the slope — goesto — and — to —)-
0 c 1 d

For each g-invariant edge-path 7 in W we can uniquely associate a closed surface,
say Sy (see Construction 2.9 [P — 2]). For each p-invariant edge-path v in the
diagram of PSL (2, Z) we can uniquely assign the surface Sy (orientable or not).
Let §, be the boundary of a regular neighborhood of S,, for y of odd length (so
S, nonorientable); see [P—2].

Definition 1.3.

Consider a symbol v [€;, . . ., €] where 7 is a minimal, p-invariant edge-
path in W of length k and (e;, .. ., €k) € (Z, )k. For such a symbol we have uni-
quely associated surface, say S, (€, . . ., €k), in M, ([P — 2; Construction

2.10]). Furthermore this symbol uniquely determines an invariant (minimal or
not) edge-path v’in the diagram of PSL (2, Z): -

If +y is defined by a sequence
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where

o ( aj _ 3j4+2k
bj bisok

then 7" is defined by the sequence of vertices

(%) manifolds 43

a_] g agk—1 axk
b1 by b1 byk
where
1
3 (a2i+2 — 22j)
1 if 6i+1 = 0:
3 (b2i+2 — byj)
42i+1 _
b2i+1 )
3 (azi+2 + a24)
N if €41 = 1.
2 (b2i+2 + byj)
This formula is valid for
ai  a2i+2
b2i  baix

We use the assumption that y* is ¢-invariant, to get all vertices of (¢ is of the
form 1.1). In facty” is associated with the boundary of a regular neighborhood

of S (€1,..., &) inMg.

. . . . . . aj
In considerations below we consider a period of y with vertices — > 0.

i

a; ay; asi  aj
1 if 2i+2 > 21 (i-e. the edge 221 , 2i+2 goes left on
b2is2 b2 bi  b2is2
Let 05 = the diagram of PSL (2,Z))
a; ay; ay;  ap;
1 f 22 2 (i.e. the edge 2 , 2i+2 goes right).
b2is2  byj b2i  baiuz
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We introduce an equivalence relation among symbols vy [€;, . . ., ex] by ele-
mentary equivalences:

yler, - €, €6+15---5€k] ~ vler,--., 1 —€,1 — €41y, €]
if
D+ i3 2
b2is2  b2j—2 *2byj
and either (i) ;= €j+1 =0 and g;_1 =— 0; or (ii) =1 — €, and 6;_1 = 0;.

Definition 14.

We define, here, a new graph, which we call the special graph. The set of
vertices of the special graph consists of ordered pairs of slopes

a , C ac a1 Cy a3 Co
(— , —) which satisfy: det[ d]= F 1. Two vertices (—— , —) and (— , —)
b’ d b 4 b, 4

are joined by an edge iff either

a, a ¢y ¢

(6)) o2 anddet| | 2]:?2 or
by b d; d,
¢, ¢ a, a

(i) —=—2>anddet] ' ’]: F 2.
d, d, b; by

An edge-path vy in the special graph defines two edge-paths in teh graph W.
Namely if

a; ¢ a, C
Y = <-L,—1>,<—2- ) —2—) then
b; 4 b, d;

a; 3 a3

71 = —_— —, —— e e
b; by bs (we allow here, for simplicity,
repetitions of consecutive
Ci C ¢C3 slopes)
72 = S

BT
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We say that an edge-patlt vy in the special graph is minimal if the associated edge-
paths v, and v, are minimal in W. We say that 1 is ¢-invariant if ¢ (y) =y or—v
(7 is obtained from v by changing the order of slopes in each vertex of ). For
each ¢-invariant, edge-path v in the special graph, we have uniquely associated
surface SJP in Mg ([P—2;Construction 2.12]). If ¢ (7) = v then S3P consists of
two components and if ¢ (y) =—y then S5P is connected.

Now we are ready to formulate the classification theorems.

Theorem 1.5 [P - 2].

Let Mg be a punctured-tous bundle over S! with a hyperbolic monodromy
map ¢. Then:
a) Each closed, connected, incompressible surface in Mg is either
(i) atorus parallel to the boundary, or :
(ii) isotopic to one of a finite number (0,1 or 3) nonorientable surfaces Sy,
where v is a minimal, ¢-invariant edge-path in W.
b) Each connected, incompressible, d-incompressible surface, S, in Mg with
0 S parallel to the boundary of a fiber is isotopic to a fiber.
c) Each connected, incompressible, 8-incompressible surface, S, in M¢ with
0 S (# ¢) transverse to each fiber is either
(i) isotopic to one of the surfaces S, indexed by a minimal, ¢-invariant
edge-path v in the diagram of PSL (2, Z) or to§.y where the length
of v is odd and 1 is minimal and ¢-invariant in the diagram of PSL (2,
Z), or
(i) isotopic to one of the surfaces S, (€, . . . , ), where 7 is a minimal,
¢-invariant edge-path in W, or
(iii) isotopic to a surface Ssyp associated to a minimal, ¢-invariant edge-
path v in the special graph with ¢ (v) =—1.

Theorem 1.6 [P — 2].

Let v be a minimal, ¢-invariant edge-path in the diagram of PSL (2, Z), W
or in the special graph. Then; surfaces S,, S, S, S, (€, - - - , €) and S3P are
incompressible, d-incompressible (or closed), if defined. Two surfaces from the
above are isotopic iff the following conditions are satisfied:

(i) the surfaces are associated with the same v (up to sign, in the case of

)
(i) they are in the same class (S, Sy, S5, Sy (€1, . - - , €x) or S3P) and
(iii) [e1,-.., exk] ~[€7,..., (] if we deal with surfaces of type Sy (€1-.-,€K)
(see Definition +.3).
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Proposition 1.7 [P - 2].

Let g (S) denote the genus of a surface S, b (S) the number of boundary
components of S and s1 (S) — the slope of @ S on 3 Mg. The following table
establishes dependences among <y (of length k), b (S), g (S), s1(S) . . . (compare
[F — H; Table 1]):

Table 1.1.
S k tr ¢ g(S) b (S) s1 (S) orientation
. L--R
positive 7
nonorien-
odd k+1 1 table
. L-R+2
negative 2
Sy
positive h.c.f. (L — R, 4) L ; R
even ]2(— b—;ﬂ +1 orientable
negative hef (L-R+2.4) | L= f: +2
" L-R
positive 2 2
g., odd k orientable
negative 2 L- f *+2
Sf; either [either |2 +k 0 .
i) : . 1
57 cither |either 2+k 1 0
k
s o
positive h.c.f. ((Z oje). 2) oy i€
2
. nonorien-
Sy(eqs....€k) |cither k+2-b(S) . table
) Z ojej +1
negative he.f (Zoje)) + 1,2)| =
2
s’P . ,
i positive L'"TR'“
- ; 1 , .4 nonorien-
d(v)=—7 either k+2-b(S) ) h.c.f. (Ly; _R‘Y1‘4’ table
c—Ry:+4
negative L”—g-'-”—
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2. NONORIENTABLE, INCOMPRESSIBLE SURFACES OF GENUS <3 IN M¢

The following lemma is the key lemma in the proof of Theorem 3.2.

Lemma 2.1.

The following Tables describe all nonorientable, incompressible, 9-in-
compressible surfaces of genus < 3 in manifolds Mg (¢-hyperbolic). If S; and
S, are surfaces in Mg associated to different edge-paths and if there exists a
homeomorphism f: Mg - Mg such that £(S;) =S,.

a) Table 2.1; nonorientable, incompressible, d-incompressible surfaces of
genus < 3 in Mg, associated with edge-paths v of length k < 2. We use the
terminology of previous sections, especially that of Proposition 1.7.

Table 1.2.
Does an orientable,
incompressible, 8-in-
compressible surface
of slope s1 (S) exists?
Type v (one S; exact IsSm; -injec- |If yes what is its
of S | k|g(S)|b(S) [} period) |s1(S)| description tive? minimal genus.
1
= ndy -
, b 01 |4 ,
Sy I 211 11 S, Yes Yes (1)
— 3
— az =4
af 4
Yesif a, >1 |Yes(0)if a; > 1
12 915, : _ :
1 No if a, =1 Noif a, =1
& g2
1
] 2 1 02 5 S, (1) Yes Yes (1)
11 . ‘
Yesif a; > 1 |Yes(1)if a; > 1
2|1 1 s,0 : )it e
2 Noif a; =1 Noif a; =1
—a? Ba
1 .
E 1 2 1 S, (D) Yes Yes (0)
: 2 2 % Sy (1.1)=5,(0,0) Yes (0)
€ i
s 31 |a?p? 7 | S0 Yes (1)
1
3 1 -= | S, (0,1 Yes (1
2 l. Q,Z 2 OV No =0
- 113 1
301 3 | Sy (1)=5,0.0) Yes (1)
2|2 |-a*p? % Sy (1,0) Yes (0)
0
20 2 n Sy (0, 1) Yes (0)
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Table 1.2. (Continuation)

Does an orientable,
incompressible,
9-incompressible
surface of slope sl
(S) exists? If yes
Type S;exact what is its minimal
of S |k | g(S)|b(S) ¢ 7 (one period) |s1 (S)| description IsSm — injective? | genus
Yes (0) if a; >1
2| 2 9 s, 0.0 No Oif 2
1 Noif a; =1
=4 pa
3| [ % $,(1,0=8,0.)| No No
1
2 -
212 024 1 S, (1,1) Yes Yes (1)
111
1 Yes (0) if a; > 1
311 3 S, (0.0) No Noif a; =1
2 | 2 |- ™ } $,(1,0)=S,0.)| No No
3
3 1 3 S, (1,1) Yes Yes (2)
0 Yesif a;,aq > 1 | Yes(1)if ap, a3>1
212 1 $4(0.0) Noif a, orag =1 [ Noif a; orag =1
& g2 7 s > s Yes Yes (2)
301 .
. ' 3 S, (1,0) Yes Yes (2)
& 1 N
1, 212 0 2 data| 1 S, (1,1) Yes es(1)
: 1" 1'2a,+1 . Yes (2 if o
& Yesif a;,a3 > 1 es (2)if a,, a,
EERE 1ls, 0.0 o o
2] 2 Noif a; orag=1 | Noifa, ora; =1
—&%ph2E? g % S, (0,1) Yes Yes (1)
2|2
% S, (1,0) Yes Yes (1)
3
2 1 3 Sy (1,1) Yes Yes (2)
1
311 3 S, (1,0) No Yes (1)
212 (ll $,(0,0)=S,(1,1)| No No
ap? aps
Yesif ag > 1 Yes (2)if a3 > 1
3 1 l 57 ©.1) 4 .( ) 4
2 Noif ag =1 Noifas =1
024
113 1
2|2 1[0 No Yes (0)
1
3 (1 — & ap 7 S,(0,0)=S,(1.| No No
Yesif ag > 1 Yes(1)if a4 >1
) 2 9 S«, ©.1) 4 A( ) 4
1 Noif a4 =1 Noif ag =1
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Table 1.2. (Continuation)
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Does an orientable,
incompressible,
d-incompressible .
S; surface of slope sl
exact (S) exists? If yes
Type descrip-| Is S my — injec- [ what is its minimal
of S | k[g(S)|b(S) ¢ 7y (one period) sI(S)| tion tive? genus
Yesifaz >1 |Yes(2)ifas>1
3| Ls,a [ 50% T
2 Noifaz=1 |Noifaz=1
0 S,(0,0)| Yes Yes (1)
2 | 2 |apa®spaps T
S,(1,1)] Yes Yes (1)
= 1 Yesifag >1 | Yes(2)ifag > 1
z ! T2 SO o 6—1 No if —16
1, 02 4a,+4 oifag = oifag =
T "1 23, +
< , s bl2a+3 s YT Yes (1) if ag > 1
A s Noifag=1 |Noifas=1
1 $,(0,0)| Yes Yes (2)
3 | 1 |—-apa?3pape 5
S, (1,1)] Yes Yes (2)
Yesifag >1 |Yes(l)ifag>1
22 2ls,on , ¢
1 Noifag=1 |Noifag=1
=~
| aﬁz l
'1 11 1 3} (5 3 ¢
=12 = =)l 2= 2) p—qSP Vi
<2 311 (0 l) (0 1) (2 1) ; sy No Yes (1)
S(X —ap? 3

b) Table 2.2. Nonorientable, incompressible, 8-incompressible surfaces of
genus 3 in Mg, associated with edge-path vy of length k = 3. In fact, under these
restrictions, the genus is always equal to 3, the edge-path always has length 3

and each surface S is of type S, (e, .

.., ex) with b (S)=2.
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Table 1.3.
Does an orientable,
incompressible,
d-incompressible
surface of slope sl
(S) exists? If yes
S; exact des- what is its minimal
¢ Y s1 (S)| cription IsSm - injective?| genus
o $,(0,0,0)=
- | =8,(1,1,0)= [ No Yes (0)
@ gt 1
=S, (1,0,1)
1
-1 S, (0,1,1) No Yes (1)
137 11
1135
- | 8,(1,0,0) No Yes (0)
—a2 g . S, (0,1,0)=
T =S’Y(l’1’1)= No No
=5,(0,0,1)
0 Yes (0) if a; >1
|00 No Noifa, =1
&6 az
b l 5,(,1,0)=
T |=8,(.0)=|No No
0246 =5OLD
V1
S, (1,0,0)=
1 |=8,0.1,0=|No No
—af g% =5,0.0.1)
2
1 Sy (1,1,1) Yes Yes (2)
$,(0,0,0)=
(T) =5,(0.1,1)= |No No
@t pa*3p =Sy (1.0.1)
1 Yesifaz > 1 Yes (2) ifag > 1
T |SML0 INoifa, =1 Noif az =1
1 3 5 10a3+13
U1 1 28343 |
1 $,(0,0,1) No Yes (0)
- pa?s S, (1,1, 1)=
pap v ) Yes (1) if a3 =2
- |=5,(1,0,00= | No
1 Noifa; # 2
=5,(0,1,0)
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Table 1.3. (Continuation) n

Does an orientable,
incompressible,
9-incompressible
surface of slope sl
(S) exists? If yes

S;exact des- what is its minimal
¢ b7 s1(S) | cription Is S m —injective? | genus
Yes (1) if a, and
9 5,000 |No a4 >1
Noifa, orag =1
@* g2t g4 S, (1,1,0)=
7 (1, 1.0) No Yes (2)
L |=sy(on
1
S,(0,1,1) Yes Yes (2)
0 2 4a,+4 8a,+6
11 2a,+1 4a,+1
S, (1,0,0) No Yes (1)
1
1 S, (0,1,0)=
52322 54 %4 v No Yes (1
@2p*2atp =5,(0,0,1) (1)
2
T 150LD Yes Yes (2)
$,(0,0,0)= N (1) ifag or
502 5R% 72 Rl6 g =S7(l‘1’0) ° ?6 -!
af’apea’p 1 5,0,1,1) Yes (2) if ag and
1 ag # 1
I S,(1,0,1) No Yes (1)
02 4 8a,+10
11 3 6a,+7 Yes (2) if either a4
1 S, 0,1,0) No and ag > 1 orif
1 v a Oorag =3
No in other cases
- @p* ap a2 pls Sy (1, 1,1)=
aptapas 7 ( ) No Yes (1)
1 =S5,(0,0,1)
1
S, (1,0,0) No Yes (1)
% $,(1,1,0) |No Yes (1)
apap 8, (1,0,1)=
2 |=s,0LD=|No No
=5,(0,0,
02410 7 (©.0.9
11 4
Sy(1,1,1)=
% =S, (1,0,0)=| No No
_&3 BZaBa‘; =S-y(0, 1,0)
Yes (1) if ag >1
9 1s,001) |No. (1) if 2
1 Noif ag=1
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Table 1.3. (Continuation)

Does an orientable,
incompressible,
8-incompressible
surface of slope sl
(S) exists? If yes
S; exact des- what is its minimal
¢ b s1(S) | cription Is S m; —injective?| genus
Yes ifaz > 1 Yes (2)ifaz > 1
L ls,a,1,0 ne (2)if s
1 Noifaz =1 Noifag =1
—3 p—aa p— S, (1,0,1)=
@ pa®s paps 7 ( )= No Yes (1)
0 |=5,(00,1,1)
1
,0, Yes (1
0 2 4 8a,+10 S, (0,0,0) |No es (1)
11 1'2a; +3
S, (1,1,1) | Yes
1 s (1)ifaz =1
1 |5,(1,0,0)= 2)ifas > 1
— 53352335336 No
a’patspup =$,(0,1,0)
Yes (1) ifag > 1
9 15,001 [No (1 ifa
1 Noifag =1
5. (0,0,0) Yes ifag > 1 Yes (2)
,0, es
l Noifag =1
% S, (1,1,0) | Yes Yes (2)
afa®3 fasfapss Yesifas > 1
Sv(1,0,1) Yes (2)
Noifaz =1
Yesifaz > 1 Yes(2) if ag > 1
1 s, (1,0, 1) ifas .() 8
1 Noifa; =1 Noifag =1
Yes if a3 and Yes (2) if a,
as>1. Noifas | and as > 1or
oras =1 aj=1 and aj=2
0 2 4a3+4 (Q) Yes (ag + 1) if
T 22,43 %7 1
=93 T 57(1,0,0) ai=l,aj=ag+1
Yes (ag +2) if
aj=1,a5=ag +3
({ijh=13,5})
— &pa3f? as pa e No otherwise
Sy(1,1,1) | Yes Yes (2)
0 s, (0.0,1) Yesifag > 1 Yes ()
T ,0, es
1 v Noifag =1
Yesifas > 1
S,(0,0,1 Yes (2
7( ) Noifag =1 @
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Table 1.3. (Continuation) H

Does an orientable,
incompressible,
9-incompressible
surface of slope sl
(S) exists? If yes

S; exact des- what is its minimal
[} % s1 (S) | cription Is S, —injective? | genus
S, (1,1,0) Yes Yes (2)
= [5,0,1,1) Yes Yes (2)
&7g% a2 e e S, (1,0,1) Yes Yes (2)
Yes if a,, a4 Yes (2) if either
0 and ag > 1; Noif| a,, a4 and ag > 1
1 $,(0,0,0) 2,84 Or ag =1 [oras,as orag =2
0 2 4a,+4 (0) No otherwise
T 2a,+1’¢ v,
T Sy (1, L1) Yes Yes (2)
Yesifa, > 1
S, (1,0,0) No if )
[¢) =
Taa Yes (2) if either
- a2 ple S, (0. 1,0) Yesifag > 1 a,,34 Orag > 1
T Noifag =1 Noifa, =a, =
=ag=1
5, (0,0, 1) Yesifa, >1
T Noifa, =1

Proof of Lemma 2.1. Remind, after [F — H] and [P — 2], that instead of analys-
ing full diagram of PSL (2, Z) or W it is enough to consider the infinite strip as-

sociated with ¢ (given by 1.1) as on Fig. 2.1.
1 1
0 ap ask ¢(0)
L N )
e o o L2 N ) o o0
0 a 0
T ' ¢ (%)
Fig. 2.1.

Now we use Theorems 1.5 and 1.6, and most importantly the table of Proposi-
tion 1.7. It follows from this table that we have the following possibilities:

1. Sis of type S, so the inequality k 4+ 1 < 3 with k odd is satisfied, hence
k=1 and S is a Klein bottle with a hole and ¢ must be equal to + & $22. Con-

sider the diagram associated to ¢:
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1 8.2+1
0/ 2/
e e e ‘o.-l’\
A KA
\\ ///
\ \\V//
/

~&-
(=]

1
1
Fig. 2.2.

The analysis of this diagram yields the first part of Table 2.1.

2. Sis of type Sy (€1, - . ., €k) so the inequality k +2 — b (8) <3 is sat-
isfied. We have several cases:

a) k= 1; ¢ must be equal to & f2 Consider the diagram associated to ¢:

1 2 a+1
0 ay
\ LN ] \
\
\ | \\
\ \
¥
0 1 2
1 1 1
Fig. 2.3.

If a, # 2 then the only minimal invariant edge-path vy of length 1 is determined

0 2 15
by vertices — , 1" If a, =2 we have the edge-path determined by vertices- 6 , 5

but we will not consider this edge-path (see the remark before Table 2.1).
0,2

y=... 1°T leads us to four surfaces: (i) (if ¢ = & B22) S, (0) with the

0 1

slope equal to n and S, (1) with the slope 3 and (ii) (if ¢ = — @ §22) Sy (0) with
1 1

the slope 3 and S., (1) with the slope T In order to recognize whether S is

7y -injective we analyse the boundary of the tubular neighborhood of S {see Def.
1.3). To fill the last column in Table 2.1, we analyse Fig. 2.3 using the [F — H]
theorem.
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b) k = 2. We have several possibilities. Their analysis yields the remaining
parts of Table 2.1.

1 3 7
() o=zap? with*y:...T, 773 and surfaces Sy (1, 1) = S, (0, 0)
S, (1,0)and S, (0, 1).
1 3 S
0 1 2
Y
\ |
\
0 1 2
1 1 1
Fig. 2.4.
(i) p=+a?p2 and 02 4
i) p=+ ==, =, —..
v 1 1 1
1
0

0 2 4a,+4
(i) p=+ @ %2 3% % and y=... -, =, -2
1 1 232+1
_1_ 232+1
0 a,
1\
% \y)
0 1 2 4a, +4
11 1 2a; F1
Fig. 2.6.
0 2 4
(iv) =tap? @B and 7:,_,_1_,_1,_5._
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102 3
0 1 2
Y M
0 1 4
1 1 3 Fig. 2.7.
+
(V) ¢=+apa gagie and y=. . o 2 T=t4
1'1 22, +3
1 2
0 1

e (=]
—

233+1 4a3+4

=

asz +1 2 az +3
Fig. 2.8.

c) k=3. We have several possibilities. Their analysis yields Table 2.2.

1 3 7 11
(i) ¢=2ap* and y=...-, >, -, —
1 1 3 5§
13 579
01T 23 4
\
{ \
\\/y |
0 1 2 4
1 1 1 5 Fig. 2.9.
0 2 4 6
(i) ¢=%a%B% and y=...—, =, - = .
1 171 1
1
0

0123456
1111111

Fig. 2.10.
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1 3 5 10a; +13
(iii) ¢p=*a*pa? B and 7=..._,T,T,__ai_...

1 2a3 +3
1 3
0 1
(/A
/1\N
Y N /'\
\
0 12 3 4 5a3+4 10a3+13
1 11 1 1 a3+ 1 2a342
Fig. 2.11.
0 2 4a2+4 832""6
iv) ¢=+a?22G* %4 and y=...—, = ,
¢ T T 2 1 4, 41
282+1

(=1
»
)

Y
0 1 2 4a,+4 8a+6
1 1 1 28, F1 %3, ¥1
Fig. 2.12.
0 2 4 8a,+10
v =tapf?apa?f and y=...—, —, —,
v) ¢ B ap Y ' 13 6mt7
1 2 3 4a4+3
0 1 2 3ag+2
Y
0 1 4 8a4 +10
1 1 3 6a4 +7
Fig. 2.13.
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1 4 1
0 1 2
Y
01 23 10
1 1 1 1 3
Fig. 2.14
0 2 4 8a;+10
(vii) =+ @ BE3 BaP? and y=... —, —, —, ——
17171 2a3 + 3

Ol
—|

0 1 2 3 4a; +3 8 a3 + 10
1 1 11 az +1 2a3+3
Fig. 2.15.
0 2 4a,+4
viii) =t af @ B2 a*5 fap®® and y=... —, =,
(viii) ¢ 11 22, +3
L l 4a3+4
0 1 2a3+3

(=]
)--|»—A




Nonorientable, incompressible surfaces of genus 3 in M, (%) manifolds 59

l 232+1
0 2]
Y
[} 1 2 4a, +4 0
11 1 Ta; +1 2(3)
Fig. 2.17.

This ends the list of all ¢ for _which there exists an invariant, minimal edge-path
of length less or equal to 3 in W.

3. Sis of type S}P (¢ (y) =— 7). Therefore the equality k + 2 — b (S) <3 is
satisfied (see Table 1.1). We have to consider three cases:

(a) k= 1; this case cannot happen because of hyperbolicity of ¢.

1 1 1 3
(b) k =2;¢ must be equal to i'&’ﬁandy:...(—, —),(—,—),<i,z>,,,,
0 1/\0 1/\2°1

We can fill the last row of Table 2.1 analysing the diagram associated to ¢ (Fig.
2.18).

1 3
0 1
\»,
™I W
1 /\ /N
\ \ /
\ \ /
V)
] 1 2 S
1 1 1 2
Fig. 2.18.

¢) k = 3; the only possibilities for ¢ are + @*> 8 @ 8 and = @*  but in both
cases S3P have the genus equal to 4.
This ends the proof of Lemma 2.1.

3. NONORIENTABLE, INCOMPRESSIBLE SURFACES OF GENUS 3 IN IRREDUCIBLE,

A
NON-HAKEN MANIFOLDS M¢(—)
u

' A
In this part we consider manifolds Mg (—) obtained from Mg by Dehn
u
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A
surgery along a curve on d Mg of slope—(i.e. we glue together Mg and S* X D?
M
A
along boundaries in such a way that the meridian of S! X D? has the slope —
on d Mg).
Remark 3.1.

A
The manifold M¢(—)is obtained from Mg by the operation which is in fact
M

only the second part of the original Dehn surgery (which consists of drilling and
filling) and, perhaps, should be called Dehn filling.

Theorem 3.2.

A
Let Mg (—) be an irreducible, non-Haken, orientable 3-manifold obtained
u

by Dehn surgery of type — from a punctured torus bundle over S* with a mo-
u
nodromy map ¢. Let K; and K, be nonorientable, incompressible, genus 3

A
surfaces in Mg — such that the classes of K; and K, are equal in
U

Hz(%(%):zz)-

1
Then K; is isotopic to K, with the possible exception of the case of Mg (I)with

¢ = — @ o’ Ba’p. We identify ¢ with its equivalence class defined by conjuga-
tion and taking the inverse.

A
Proof: 1f ¢ is periodic then Mg (—) is a Seifert fibered space and Theorem 3.2
u

follows from results of [Ru] and [P-3; Appendix II] in this case. If ¢ is parabolic
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A

then M¢., and so M¢ ( - ) , contains either an embedded torus which does not
u

disconnect the manifold or a Klein bottle. In this case we can conclude that

A A
M¢ ( - )is a Haken, Seifert or reducible manifold. For this let M¢ (—) be a non-
M M
A
Haken, irreducible manifold. Then M¢ (— ) constains a Klein bottle which de-
u

A
termines a one-sided Heegaard splitting of genus 2, but then Mg (— ) is a Seifert
u

fibered space. Therefore we can limit our investigation to the case of hyperbolic
¢. Now, in order to prove Theorem 3.2, it is necessary to use the “‘composition”
theorem which is very similar to Proposition 2.8 [P-2].

Proposition 3.3. (Composition theorem).

Let My be a compact, irreducible 3-manifold with @ M,y equal to a collec-
tion of tori Ty, Tp, ..., Tx. Let Wy, W,, ..., Wy be a collection of solid tori.
L2t 7,72, . . ., 7k be a collection of nontrivial, simple cosed curves 7v; CTj. Let
M be a manifold obtained from M, by gluing Wy, . .., Wy to M, along the
boundaries (3 W; is identified with T; in such a way that v; becomes a meridian
of Wj).

Then each incompressible surface S in M can be obtained by gluing togeher
and incompressible, d-incompressible, non-parallel to the boundary surface So in
Mo, and incompressible surfaces S; C W; (described in Lemma 3.4 below) such
that So NT;=a S; (if So N T; =¢ then S; = ¢). Furthermore if Sy N Tj has more
than one component then S; is a collection of meridian disks in Wi.

Proof. It seems to be a known “folk” theorem, and can be derived from Propo-
sition 2.8 [P-2] and Lemma 3 4.

Lemma 3.4. (See [P-2]).

Each incompressible, non-parallel to the boundary surface in solid torus
S' X D? is determined, up to isotopy, by slope

1
Eewl <B$_)
q q O
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or is a collection of meridian disks. Genus of such a surface is equal to the
_ 1 '
length of the minimal edge-path in W; from 3 to P . If the length is > 0 then
q
the surface is nonorientable and 9-compressible.

In light of Proposition 3.3, in order to construct all nonorientable, incom-

A
pressible surfaces of genus 3 in My (— ) , it is enough to find all incompressible
u

surfaces in M¢ which are either

(i) orientable, 9-incompressible, of genus 1, with one boundary com-
ponent, or

(ii) closed, nonorientable of genus 3, or

(iii) nonorientable, 8-incompressible of genus 3, or

(iv) nonorientable, d-incompressible, of genus < 2 with one boundary
component.

Lemma 3.5.
Let S be an orientable, incompressible, d-incompressible surface of genus

g (S) < 1 with one boundary component in Mg. Then S is a puntured torus
parallel to the fiber.

Proof. Lemma 3.5 follows from the Main Theorem of [F-H] (compare Theorem
1.5); Table 1.1 is usefull for the necessary computations.
Lemma 3.6.

Let S be a closed, nonorientable, incompressible surface of genus <3 in M¢.

Then S is on genus 3 and ¢ = * & 22 (a, > 1). Furthermore S is unique, up to
isotopy, in the class of H, (Mg, Z,) determined by S.

Proof. Lemma 3.6 follows from Theorems 1.5, 1.6 and Proposition 1.7.

Now we can end the proof of Theorem 3.2. Each closed, nonorientable
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A L A

surface S in M¢ ( ) defines an element of H (M¢ ( - ) s Z,) . This element
u

A
associates each simple closed curve in Mg (—) with intersection number of the
u
curve and S. This allows us to make some easy but important observations:
A
1.IfS; and S, C Mg ( ) are constructed by using different minimal, in-

variant edge-paths in W then they represent different elements of

A
H' (Mg(~).22)
M
so they are not isotopic.

2. If S was constructed from a surface with an odd (hence one) number of
boundary components then it represents a different element of

L
(M¢(;)’22)

(so isotopy class) than one obtained from a surface with an even number (hence
0 or 2) of boundary components.

A
Now assume that M¢( —)is an irreducible, non-Haken manifold. It restricts
u

drastically the number of possibilities and by using Lemmas 3.5 and 3.6 and Ta-
bles 2.1 and 2.2 we can verify that the only surfaces which yield the same

A

element of H? ( M¢( - ) , Zz) but are possibly not isotopic are surfaces which
u

arise from S, (1,0, 0), Sy (0, 1,0) and

30

0 8
‘1_ 5 e,

S, (0,0, 1) inM¢,(%) forp=—a2Ba? a’p , y=...

»--]l\)

The verification is tedious but not difficult. In Table 3.1 we list all possible
surfaces of genus 3 embedded in an irreducible, non-Haken Mg ()\/ ). Fur-
thermore we analyse closer threee special cases (*‘infinite classes™). To do this we
introduce new notation; namely:
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Let S be a surface in Mg. Then S® denotes a surface in Mg (N ”) =Mg U (a
solid torus) where S js obtained grom S by the construction of Proposition 3.3
by using S in M¢ and a surface of genus i in the solid torus.

“Infinite classes’’:

1. We start with a fiber Fo in Mg. The construction of Proposition 3.3
allows us to obtain the nonorientable surfaces K =F (()1) of genus 3 in

M¢(2 k2+ 1)

where k is an integer. K is incompressible because Mg (

2k+1

) contains no

projective planes (see Table 2.1). One can verify whether a given manifold

M¢(2k2+ l)

is Haken by analysing the diagram of ¢. K represents the element of

" (M¢( 2 k2+ 1 ) 2)

in such a way that

1 if 2 is a core of the attached solid torus;
K] ® =
0 if Q lies in the fiber of Mg.

This distinguishes K from any other possible nonorientable surface of genus 3 in

WES)

with possible exception of these surfaces which come from S, (see case 3 b)).
Then we refer to Theorem 7 of [Ru]. One can expect that if Mg (N/ #) inl,is
the same as that in 3b) then Mg O‘/M) is a Seifert fibered space.
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2. We start with a closed surface S5 in My. By Lemma 3.6 ¢ =+ a* g2, If
Mg (k/#) does not contain any projective plane then S5 is incompressible in
Mg (A/)- If Mg (A/y) is irreducible and contains a projective plane then ¢ =& £
and

Tl >
Il
-] O

Mg (3)=rP

hence Sf; is compressible in this case. From Fig. 2.3 we can conclude that
Mg ()\/”) is irreducible, non-Haken iff (see Corollary 2.2 [P-1]) either

spamat L]
=Q anda — _— ==, = or
a) ¢ u 2 4 0
b 2 o) g Nl O Tl
= a and — # -, -, —, — or
¢ 2 w2717 40
A I 1 1
) ¢ =-a’Band — % -, —  — or
M 1 4°0

' A1l a2 1
d) ¢ = —a?p®2 (a, > 1) and — % -, — 2= 2
u

SEY can be distinguished from any other possible nonorientable surface of genus
3inMg ()\/u) by considering its class in H! Mg O\/#)’ Z,). Namely Sf’ intersects

1 .
a simple cosed curve of slope 5 at one point and is disjoint from the curve of

0
slope T in the fiber, and from the core of the attached solid torus.

3. We start with a Klein bottle, Ky, with one boundary component in Mg.
Hence (see Table 2.1) either:

a) ¢ = x@*p? and K= Kl()l) is a nonorientable surface of genus 3 in

M 2c+1 )
¢(4c+2i'2

where c is an integer. Similarly as in the case 2 we see that K is incompressible.
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By using Table 2.1 one can find out whether

M < 2c+1 )
¢ 4c+2=%2

is irreducible and non-Haken. K can be distinguished from any other possible
monorientable surface of genus 3 in

" ( 2¢+1 )
P\ict222

by considering its class in

H! (M¢<_2‘£ ),zz).

4c+2+2
b) ¢ = +ap*

(i) ¢ =ap? and K= Kgl) is a nonorientable surface of genus 3 in

M < 2¢c+1 )
¢ 8c+4+£2

where c is an integer.
(ii) ¢ =—af?? and K= Kl()l) is a nonorientable surface of genus 3 in

31

3c+

(
M¢ 4c+2

+

3
wherecisanintegersuchthat(3c+ .- 4c+2)= 1.

K in (i) (and (ii)) is incompressible and Mg (7\/“) is irreducible, non-
Haken iff:

2¢+1 —a,
+
8c+4+2 4

In the case (i):

)
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3%1

3c+
~—a2+

In the case (ii): 2

see Fig. 2.2).
c+2 ( & )

Table 3.1.

Nonorientable, incompressible surfaces of genus 3 in irreducible, non-Haken
manifolds Mg (A/u). (The possibility of repetitions are not excluded).

Table 4.1.
Exact des-
cription of l
No. | 7y (one period) ¢ the surface u Remarks
1. 2k+1 -
with finite number
(1)
- any (fiber) of exclusions for each ¢.
These exceptions can be read
off the diagram of ¢.
2. F2622 c 1z 10
a’p s, * a0
02 = 56 LLLL
T f Y 140 M¢(%)isa
_ =233, c l-a,+2 11 Seifert fibered
B*2(a;>1)| S5 #* T4 03 space
3. —2 na, (1) 2c+1 — a
0 2 «p S» () 4c+2:27 4
Y v 2c+1 +2
_=2pa (1) c —d
ap Sy (0) Ict+2:2 4
—nay (1) 2c¢+1 — dy
of S 8ct+dt2” 4
01 3+
b) | =~
) 11 3et 2 —a; +2
—ap? s, () 4c+2 4
+
where 3¢ + 351 is odd
4. _ o |1
a*p* S, (1,0)® 2
0 2
1171 1
54 o [ 2
a § S, (0.0) 2
510 24a%4 | o —25a, o |1
112241 | ¥R $y(0.0) 2
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Table 4.1.
Exact des-
cription of the l
No v (one period) ¢ surface n Remarks
6.
apap S, (0, 1)@ %
02 4
1713 |
-a fape S, (0,0)© 5
7.
apafaps Sy (1,0) (0 %
0 2 4a;+4
11 2a; +3
— 0 1
&Ba3pa Sy (0.1)©® -3
8. 11371 =204 o) 0
T3S 8 S, (0, 1.0) ]
9.
ap S, (0,0,0) (0 . %
0246 =632, . (0) 1
T asp S, (1,1.0) ;
- gop2 S, (1,0,0)© 1
10. & Bas3p $,(0.0,0)© %
13 5 10a,+13] 5455 S (1.1.0)©® 1
1'1 1 2a3+3 pep 7 (110 1
—a*Ba3P;a; £2 S, (1.1, 1)@ T
11.1 0 2 8 14 =20 =402, 0) 0
R apatp S, (0.0,0) T
12.10 2 4 18 _ =02 = a2l (0) 0
2.2 228 affafa 3, #3 [ S, (0. 1.0 =
1’13 13 B B B 69& 'y( ) 1
> &pape $,(1,0,1)© %
02410 _ =332 = nag 0) 1
T3 a’ffa B Sy (L, L) 1
-&’fap S, (0,0, 1)©® %
14102 4 18 —30= 0= oag (0) 1
TS a’fafaf Sy (1,1,0) 1
02 48a3+10 | _ 3570352 S (0) 0
ARSI a’pa3pap S, (0,0, 1) .
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Table 4.1. (Continuation)

Exact des-
cription of the }
No. v (one period) ¢ surface I Remarks
P02 dastd 0| Gaeb paagsg (s, 01,1)© 1
1 1 2a;+3 1 R 1
_mZRER2 H35 R R
02,8 1oas+1a | “EPRFEEIEE ) 0 | L
175 10a5+9 YR 1
as #2,ag +1,ag+3
16. —26—21334&2‘336
0,28 162, +14] @ P& S, (0,0,0) © 9
113 "6as +5 | a,,a0 #2 L 1
S, (1,0,0) @ |
Mg (T) is not
028 30 22 g 1 i
T30 -a*patpa’p S, (0,1,0) © 1 a Seifert fibered
space (see Co-
rollary 4.4)
S, (0,0, 1)@

1
4. Manifold Mg (T) for ¢ =—a2Ba2pazp.

In this part we examine closer the case of surfaces
1
Ko =S, (0,0, D@, K, =S, (1,0,0)*) and K, =S, (0, 1,0 in M¢(-1—)

where ¢ =—a? fa? f@?f and vy = - -

0 2
T - -. We have the fol-

8 30
371

lowing:
Proposition 4.1.
1
Each incompressible, nonorientable surface of genus 3 in Mg (-1—) is isotopic

1
to Ko, K; or K. Furthermore there exists a free action of Z3 on Mg (T) with a

generator T such that T (K;) =Kj, 1 (i is taken modulo 3) and
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Mo(7) =M (5]

where y =—a? 8.

Proof. The first part follows from Table 3.1; compare also Theorem 6 of [Ru].
The action of Z5 is constructed as follows;

Mg = RXFo/ . (t,Xx) ~ (t+3, 9 (x)).
Let T (t, x) = (t + 1, Y (x)). T is well defined homeomorphism of order 3 and

1
can be naturally extended to the action of Z3 on Mg (T) with the orbit space-

My ()

Conjecture 4.2.

Ko, K; and K, are not isotopic. If it is the case then we have an example
showing that Rubinstein’s Theorem 6 [Ru] can not be improved. On the other
hand if Conjecture 4.2 is not true then we have an example of incompressible,

0-incompressible surfaces which are not isotopic in Mg, but isotopic after Dehn

1
surgery ie.in Mg (T)) .

There is some evidence that K, K;, K, are not isotopic. Namely:

Proposition 4.3.

Ki (i=0, 1, 2) can be isotoped in such a way that (i) K; are pairwise trans-
versal and Ko N K; =K; NK, =K, NK, =asimple closed curve C, and (ii). If
Y, = (the complement of the interior of a small regular neighborhoood of K, in

1
My (T )) , then the punctured tori S; NY, and S; N'Y, are not parallel (even

isotopic modulo boundary) neither one to another nor to 9 Y.
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Corollary 4.4.

1
Mg (-1— ) is not a Seifert fibered space.

Remark 4.5.

2
My (5) is an irreducible, non-Haken, non-Seifert fibered manifold. Fur-
2
thermore the Jgrgensen’s decomposition does not provide M, ( 3 )with hyper-

. 2
bolic structure [B-P-Z]. M, (5) seems to be a good candidate for testing

Thurston Conjecture that the interior of every compact 3-manifold has a cano-
nical decomposition into pieces which have geometric structures [T].

Proof. of Proposition 4.3.

1
Part (i) follows from Theorem 6 [Ru] because My (T) is an irreducible,
1 .
non-Haken manifold with H! (M¢ (T) , Zz) =Z,. The proof of the part (ii)

will be divided into several steps:

Step L

Description of a one sided Heegaard splitting determined by K.

Let N (Sy (0, 0, 1)) be a small regular neighborhood of S, (0, 0, 1) in Mg.
9 N (S, (0, 0, 1)) is an unknotted but compressible surface in M, with four
boundary components. We will use the method of the proof of Corollary 2.2
[P-1]. @ N (S, (0, 0, 1)) is associated with the invariant edge-path (not minimal)

see Definition 1.3 and Fig. 4.1.
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1 3 11 41
0 1 4 15
N
)
0 1 2 3 g8 1 30
1 1 1 2 3 7 11
Fig. 4.1.

3N (Sy (0,0, 1)) cuts Mg into two handlebodies H® and H® =N (S, (0, 0, 1))
of genus 4 (see Fig. 4.2). It is important to recognize the ““trace” of the bound-
ary of 3 N (S, (0, 0, 1)) in H® and H® (i.e. 9 N (S, (0,0, 1)) Nd Mg NH® and
3N (S, (0,0, 1)) Nd Mg NH®). In both cases it consists of two pairs of parallel
curves 71, v{ and 7y,, 5 in H® (resp. 4, 75 and 7,, v; in H®). One curve from
each pair is sketched in Fig. 4.2. The way the curves aré identified in Mg is
shown in Fig. 4.2 too. Additionally we should remember that H® and H® are
glued together in Mg by a level preserving map. To find the curves we use the
ideas of Corollary 2.2 [P-1]. In particular we have to find the numbers c;

a
as in Corollary 2.2 [P-1] f

2 0+C21
—_— SO
1 1+020
1+c¢32
—_—_— e — SO
1 O+csl
8 2+C43
—_— = Nej
1+C41
19 3+C58
-_— SO
1+C53
30 8+cg 19
e e — Nej
11 3+ Ce 7
41 19+c¢,30
= SO

15 T+4c, 11

1

C2

C3

Ca

Cs

Ce

Ci

aj.3 + ¢j .1

bi +¢j bj-g

=cq =—12.



"1

= (=1L
/7 | /
i /
i /ol ] ! 0 = Ly r 1t ]
[ ] ;o o ! I 1! 1
[0 I.“.l P N | H 1 & | i ] 1
- - - -1 S
VI VAN v, Tl \|.Gw ry jvanN7gl wlnwwl
\ \ —-lo /1_0
o M N A
o) LN Y
N A o
| I
e L g3 3 g 8
o o
-t © ° & S
5 3 5
(=100

72

71

72

Fig. 4.2.
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The number lc;| defines the number of twists of the i-th segment of the respective
curves. The direction is defined by the determinant

3.1 2
bi-1 bj

(i.e. it is positive iff the i-th edge tums right on the diagram of PSL (2, Z) or
equivalently starts on the top of the strip of Fig. 4.1.).

Recall that C C K, is a unique, up to isotopy, simple closed curve such that

1
Ko — C is orientable. N (Ko) (i.e. a regular neighborhood of K, in Mg (I) can

be identified with an I-bundle over Kq, so @ N (Kq) is an orientable double cover
of So. Let C’ denote the lifting of C to N (Kp). C’ can be assumed to lie in
9 HE and to be disjoint from the annuli defined by 7;, 5. and ,, v, . Hence C’
lies in @ H®. The position of C’ in @ H® and @ HE is described in Fig. 4.4. Addi-
tionally Fig. 4.3 shows the position of C in S, (0, 0, 1) =Ko NH®:

®

- Fig. 4.3.

From Fig. 4.4 we can partially recover the structure of the one-sided Hee-
1
. . 0 — .
gaard splitting of Mg (—1—) . Namely H 1, 72)= H, i.e. genus two handlebody (as

in [P-1; Definition 1.2] H‘ih y,) means H® with two 2-handles glued to H°

along v, and v,), and Fig. 4.4 allows us to draw the picture of C’ in @ H,. It is
done in Fig. 4.5.



Hc
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Fig. 4.5.

Algebraically C’ C H, can be described as

[C1 = xi x3 x} x§ x? x3? X x5 emy (Hy).

1
To finish the description of Mg 1 as a one sided Heegaard splitting one should

know how the free involution on @ H, looks like. We omit it because for our
purposes it is enough to know that C’ is invariant under this involution and that
the sides of C’ in @ H, are interchanged.

Step II.

Incompressible, punctured tori in H, bounded by C’. This situation was
studied in M. Kuperwaser’s PhD-thesis [K].

Consider the decomposition of H, into two solid tori H; and H; and the
handlebody H, of genus 2 as follows:

H{ Fig. 4.6. HY
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H, = H{ U H; U H7;we glue H; with H; by identifying A’ with the annulus
which constituts a regular neighborhood of y”in 9H;. Similarly we glue H; with
H; (using y"’and A”). Punctured tori bounded by C could be placed in d H; as
follows: Ty,; contains A”and is equal to a part of 3 H; bounded by C". T{,
contains A” and is equal to a part of 3 H; bounded by C". To prove that T; ,
(and Ty);) is not parallel to the boundary of H, we compute the length of a
minimal word in my (Hy) and in m; (H; U Hj) given by C” (see [L-S], [L] and
[S]). With a natural choice of basis we have:

In 7, (Hy): [CT = %% x% x} x} x? x3? x3? x2, it is a minimal word in
m; (Hz) so minimal length of [C*] = 16,

Inmy (H; UH{):  [C] = x3 yx} yx? y! x3! y?, substitute z=x3y then

[C] = 2% x? 2% x} , it is a minimal word in 7r; (H; U-Hj)

so minimal length of [C ] = 8,

In m; (H; U Hi") the minimal length of [C’] is equal to 8 and in m, (H,) the

minimal length of [C’] is equal to 6. Additionally we can observe that if we iso-

tope Ty ; (resp. Ti ;) so as to be properly embedded in H, then the segment

cut out by Ty ; (resp. T{};) is a handlebody of genus 2. Minimal length of

[C'] in the fundamental group of the segment is equal to 6. This information is

enough to conclude that T; ; and Ty ; are not parallel to the boundary of H,
and T, is not parallel (even isotopic) to T1";.

Step IIL

To end the proof of Proposition 4.3 we have to consider two possibilities.

1. K, is isotopic to K; (so to K, ) in Mg (%) . Then each incompressible,
nonorientable surface of genus 3 in Mg ( —i—) is isotopic to Ky. Hence the surfaces
in Mg (%) which come grom Si ; and S{’; in H, are isotopic to K so to K;

and K,.

2. K, is not isotopic to K; (so K, is not isotopic to K, and K; is not iso-
topic to K, ). We can assume (part (i) of Proposition 4.3) that
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Ko NK; =K; NK, =Ko NK, = C.

Hence we conclude that K; N Y, is not isotopic neither to K, N Y, nor to the
boundary of Y,. On the other hand we know [Ru] or [K] that a given curve in
9 H, can bound at most two non-isotopic, non-isotopic ot the boundary, incom-
pressible punctured tori. So K; N'Y, and K, NY), are isotopic to Sy ; and S7);.
This concludes the proof of Proposition 4.3.

Proof of Corollary 4.4. We need the classification of incompressible, nono-
rientable surfaces of genus 3 in non-Haken Seifert fiber spaces. It is almost done
in [R]. The classification is completed in [P-3; Appendix II]. This classification

implies that the pair (H,, C°) as on Fig. 4.5 will never occur in any Seifert fi-
bered space.
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