SOBRE ESPACIOS (LF) METRIZABLES

рог

MANUEL VALDIVIA y PEDRO PÉREZ CARRERAS

Summary: Every non normable Fréchet space contains a proper dense subspace which is an (LF)-space.

Los espacios vectoriales que usaremos están definidos sobre el cuerpo K de los números reales o complejos. Bajo espacio entenderemos espacio vectorial topológico localmente convexo de Hausdorff. ω será el producto numerable de rectas provisto de su topología habitual. Si a, b son números reales, a \vee b es su maximo. Un espacio E $[\tau]$ es un espacio (LF) si existe una sucesión estrictamente creciente de espacios de Fréchet (E_n $[\tau_n]$) con $E = \bigcup$ (E_n : $n = 1, 2, \ldots$) y $\tau_{n+1}/E_n \leqslant \tau_n$, $n = 1, 2, \ldots$ tal que τ es la topología localmente convexa más fina que induce sobre cada E_n una topología menos fina que τ_n . Escribimos $E = \operatorname{ind} E_n [\tau_n]$.

Utilizaremos los siguientes resultados contenidos en [5]: (a) "Dos topologías comparables τ y "U sobre un espacio E coinciden si existe un subespacio L tal que τ y "U coinciden sobre L y si coinciden sus topologías cocientes sobre E/L." Bajo un problema de los tres espacios, entenderemos la siguiente situación: Sea E un espacio y sea L un subespacio cerrado de E tal que L y E/L satisfacen una cierta propiedad P. ¿Satisface la propiedad P? (b) "Sea E un espacio de Fréchet de dimensión infinita. Entonces, el problema de los tres espacios es afirmativo si E es reflexivo, Montel, Schwartz o nuclear."

Teorema: Sea E. [U] un espacio de Fréchet que no es normable. Entonces, existe un subespacio propio denso G de E [U] que es un espacio (LF).

Demostración:

Debido a [1] (ver también [4], p. 435), existe un subespacio cerrado F de E [U,]/F es topológicamente isomorfo a ω . Usaremos un método

debido a Grothendieck, [2] (ver también [3], p. 195, Problem D) para construir un subespacio denso propio M de ω que sea un espacio (LF), utilizando los espacios ω y s en lugar de 1^p y 1^q, $1 < q < p < \infty$, respectivamente. Sea M_n el subespacio de ω^N de todas las sucesiones dobles $x = (x_{ij})$ con

$$p_{n,r,k}(x) = \sup \{ |x_{ij}|: i = 1, 2, ..., n ,$$

$$j=1,\,2,\,\ldots,\,r\,\}\,V\left\{\begin{array}{ll} n+r & \infty \\ \sum & \sum \\ i=n+1 & j=1 \end{array}\right.\,j^k\,\left|x_{ij}\right|\,\right\}$$

finito para r = 1, 2, ..., k = 0, 1, 2, ...La sucesión (M_n) es creciente y

$$M = \bigcup (M_n : n = 1, 2, ...)$$

es denso en ω^N . Sea \mathfrak{U}_n la topología sobre M_n definida por la familia de seminormas $(p_{n,r,k}\colon r=1,\,2,\,\ldots\,;k=0,\,1,\,2,\,\ldots)$. Claramente, M_n [\mathfrak{U}_n] es isomorfo topológicamente a

$$\omega \times \omega \times \dots \times \omega \times S^{N}$$

y, por lo tanto, un espacio de Fréchet. Además, la topología inducida por \mathfrak{U}_{n+1} es menos fina que \mathfrak{U}_n sobre M_n . Por el método de construcción citado anteriormente $M=\operatorname{ind} M_n$ [\mathfrak{U}_n]. Además cada M_n es denso en M_{n+1} [\mathfrak{U}_{n+1}] y, para cada n, existe una sucesión fundamental decreciente de entornos del origen $\mathfrak{G}_n=(V_p^n\colon p=1,\,2,\,\ldots)$ en M_n [\mathfrak{U}_n] que son cerrados en M_n como subespacio de ω^N . Como ω^N es isomorfo a ω , los supondremos identificados y así hemos construido el subespacio de ω buscado. Sea $G_n=T^{-1}(M_n), n=1,\,2,\,\ldots$, siendo $T: E [\mathfrak{U}] \to E [\mathfrak{U}]/F$ la sobreyección canónica, y sea $G=\cup (G_n\colon n=1,2,\ldots)$. Claramente, G es denso en $E [\mathfrak{U}]$. Sea $(R_p\colon p=1,\,2,\,\ldots)$ una sucesión fundamental decreciente de entornos del origen de $E [\mathfrak{U}]$, que sean absolutamente convexos y cerrados. Escribamos

$$W_p^n = T^{-1}(V_p^n) \cap R_p$$
 para $n, p = 1, 2, ...$

Fijado n, $(W_p^n: p = 1, 2, ...)$ es un sistema fundamental de entornos del origen absolutamente convexos y cerrados para una cierta topología localmente convexa metrizable τ_n sobre G_n , que son cerrados en G_n , como subespacio de E[U].

Para cada natural n, si x es un vector de ω^N que no pertenece a M_n , existe

un entorno del origen $V \in \mathcal{B}_n$ tal que x no pertenece a la envoltura lineal [V] de V, en donde la clausura ha sido tomada en ω^N . En efecto, existen naturales

$$r_0 > n$$
 y k_0 tales que $\sum_{j=1}^{\infty} j^{k_0} |y_{r_0 j}| = \infty$

Si llamamos V a { $y=(y_{ij}): p_{n,r_0,k_0}(y) \leq 1$ }, todos los elementos y de V así como los elementos y de la clausura \overline{V} de V en ω^N , satisfacen

$$\sum_{j=1}^{\infty} j^{k_0} |y_{r_0 j}| \leq 1$$

Q.E.D.

Demostración:

Existe un subespacio cerrado F de E [\mathfrak{U}] tal que E [\mathfrak{U}]/F es isomorfo a ω . Sea T: E [\mathfrak{U}] \rightarrow E [\mathfrak{U}]/F la sobreyección canónica. Manteniendo las nota-

ciones introducidas en la prueba anterior, construimos $G = \operatorname{ind} G_n [\tau_n]$, G provisto con la topología inducida por $E [\mathcal{U}]$. La topología inducida por τ_n sobre F coincide con la inducida por $E [\mathcal{U}]$. Además, la aplicación restringida

$$T: G_n [\tau_n] \rightarrow M_n [\mathfrak{A}_n]$$

es un homomorfismo, debido al teorema del homomorfismo de Banach. Así U_n es la topología cociente G_n [τ_n] T. Entonces, G_n [τ_n] tiene un subespacio cerrado T que es obviamente reflexivo (Montel, Schwartz, nuclear) y un cociente G_n [τ_n] T que es reflexivo (Montel, Schwartz, nuclear) pues

$$M_n [\mathcal{U}_n] = \omega \times \omega \times \dots \times \omega \times s^N.$$

Aplicando el resultado (b), $G_n[\tau_n]$ es reflexivo (Montel, Schwartz, nuclear).

Q.E.D.

BIBLIOGRAFIA

- [1] Eidelheit, M. (1936): Zur Theorie der Systeme linearer Gleichungen. Studia Math., 6, 139-148.
- [2] Grothendieck, A. (1954): Sur les espaces (F) et (DF). Summa Brasil. Math., 3, 57-123.
- [3] Kelley, J. L., Namioka, I. (1963): "Linear Topological Spaces" van Nostrand.
- [4] Köthe, G. (1966): "Topologische Lineare Räume I" Springer.
- [5] Roelcke, W., Dierolf, S. (1981): On the three-space-problem for topological vector spaces. Collect. Math. Vol. XXXII Fasc. 19, 3-25.

Dirección de los autores:

Departamento de Teoría de Funciones Facultad de Matemáticas BURJASOT (Vajencia)

Departamento de Matemáticas E.T.S.I. Industriales C/. de Vera (Valencia)

		·	
	•		