REFLEXIVITY OF PROJECTIVE TENSOR PRODUCTS OF ECHELON AND COECHELON KÖTHE SPACES

by

J. A. LÓPEZ MOLINA*

ABSTRACT.

Let λ^p , μ^r , $p \ge 1$, $r \ge 1$, be sequence echelon Köthe spaces. We show: a) $\lambda^1 \underset{\pi}{\hat{\otimes}} \mu^1$, $\lambda^1 \underset{\pi}{\hat{\otimes}} (\mu^1)^\alpha$ and $(\lambda^1)^\alpha \underset{\pi}{\hat{\otimes}} (\mu^1)^\alpha$ are reflexive iff λ^1 and μ^1 are reflexive. b) If r > 1, $\lambda^1 \underset{\pi}{\hat{\otimes}} \mu^r$, $\lambda^1 \underset{\pi}{\hat{\otimes}} (\mu^r)^\alpha$ and $(\lambda^1)^\alpha \underset{\pi}{\hat{\otimes}} (\mu^r)^\alpha$ are reflexive iff λ^l is reflexive. c) If p > 1, r > 1, p > r/(r-1), then $\lambda^p \underset{\pi}{\hat{\otimes}} \mu^r$ is reflexive; if p > r, then $\lambda^p \underset{\pi}{\hat{\otimes}} (\mu^r)^\alpha$ is reflexive. d) In all other cases, $\lambda^p \underset{\pi}{\hat{\otimes}} \mu^r$, $\lambda^p \underset{\pi}{\hat{\otimes}} (\mu^r)^\alpha$ and $(\lambda^p)^\alpha \underset{\pi}{\hat{\otimes}} (\mu^r)^\alpha$ are reflexive iff λ^p or μ^r is a Montel space.

1. INTRODUCTION.

In [2], Holub has characterized the spaces $\ell^p \underset{\pi}{\hat{\otimes}} \ell^r$ which are reflexive. Here we characterize the reflexivity of the projective tensor product $E \underset{\pi}{\hat{\otimes}} F$ when E and F are sequence echelon or coechelon Köthe spaces as consequence of a previous study of the canonical Schauder basis on these spaces.

A separated locally convex space $E[\mathcal{C}_E]$ on the field \mathbb{K} of real or complex numbers, will be called, simply, a space. Notation and concepts not explicitly defined are standard in topological vector spaces theory (see [3]). In particular, \overline{aco} (A) will be the closed absolutely convex hull of the set A of the space

^{*} Supported in part by the Comision Asssora de Investigación Cientílica y Técnica, proyecto Nº 0258/81.

E [\mathcal{C}_E] and \mathcal{B} (E, F) will be the set of all continuous bilinear forms on the product ExF of the spaces E [\mathcal{C}_E] and F [\mathcal{C}_F]. If it is neccessary, each $f \in \mathcal{B}$ (E, F) will be identified in the canonical form, without previous advertence and without change of notation, with an element of the set \mathcal{L} (E, F' σ) of all continuous linear maps from E [\mathcal{C}_E] into the topological weak dual [F', o (F', F)] of F [\mathcal{C}_F].

The Minkowski functional of a neighbourhood U of zero in the space $E [\mathcal{C}_E]$, will be denoted by p_U . The completion of the projective tensor product $E \underset{\pi}{\otimes} F$ of the spaces $E [\mathcal{C}_E]$ and $F [\mathcal{C}_F]$ will be represented by $E \underset{\pi}{\otimes} F$. The seminorm on $E \underset{\pi}{\otimes} F$ assocciated with the continuous seminorms α and β of $E [\mathcal{C}_E]$ and $F [\mathcal{C}_F]$ respectively, will be denoted by $\alpha \otimes \beta$.

N will be the set of non zero natural numbers. If there is not a risk of confusion, the topological projective limit of a projective system of spaces

$$\{E_n [\mathcal{C}_n], I_{nm}\}$$
 $n \ge m$, n, m in a directed set D,

will be written lim E_n. Analogously, given an increasing sequence

$$\{E_n\}_{n=1}^{\infty}$$

of vector spaces and a Hausdorff locally convex topology \mathcal{C}_n on each E_n , $n \in \mathbb{N}$, such that the canonical inclusion $l_{nm} : E_n \left[\mathcal{C}_n \right] \to E_m \left[\mathcal{C}_m \right]$ is continuous for every $n \leq m$ in \mathbb{N} , the vector space

$$E = \bigcup_{n=1}^{\infty} E_n$$

with the locally convex inductive limit topology of the inductive system

$$\{E_n \mid \mathcal{C}_n\}, I_{nm}\}, n \leq m, n, m \in \mathbb{N},$$

will be denoted by $\lim_{n \to \infty} E_n$.

Concerning sequence spaces, we shall use the notations and definitions of [4]. By example: ω will be the set of all sequences $x = (x_i) = (x_i)_{i=1}^{\infty}$ of elements of \mathbb{K} and e_n , $n \in \mathbb{N}$, will be the sequence with all its components equal to 0, except the number n component, which is equal to 1. A notation such as (x_{ij}^{nk}) or similar, will represent a family of sequences indexed by the parameters n, k, j, each sequence of this family having x_{ij}^{nk} as i-component. In some cases we shall write $(x_{ij}^{nk})_{i=1}^{\infty}$ for remark the index i of the components of each sequence.

Let $a^k = (a_i^k)$ a sequence of sequences of non negative real numbers such that $a_i^k \le a_i^{k+1}$ for each i, $k \in \mathbb{N}$ and such that for each i $\epsilon \mathbb{N}$, there is $k \in \mathbb{N}$ with $a_i^k \ne 0$. For each real number $p \ge 1$, we define the echelon Köthe space of order p

$$\lambda^{p} = \{ (x_{i}) \in \omega / N_{k} ((x_{i})) = (\sum_{n=1}^{\infty} |x_{i}|^{p} a_{i}^{k})^{1/p} < \infty, \forall k \in \mathbb{N} \}$$
 (1)

The coechelon Köthe space of order p is the α -dual of λ^p :

$$(\lambda^p)^{\alpha} = \{(x_i) \in \omega / \sum_{n=1}^{\infty} |x_i y_i| < \infty, \ \forall (y_i) \in \lambda^p \}$$

Unless it is otherwise clearly stated, we shall always consider on λ^p the topology defined by the family of seminorms $\{N_k, k \in \mathbb{N}\}$. Then λ^p is a Frechet space whose topological dual is $(\lambda^p)^\alpha$; with the exceptions before cited, we shall always consider on $(\lambda^p)^\alpha$ the strong topology β $((\lambda^p)^\alpha, \lambda^p)$. When $a_i^k = 1$ for every $k, i \in \mathbb{N}$, we obtain the classical space ℓ^p .

If λ is a locally convex sequence space and $J \subset \mathbb{N}$, the subspace of λ

$$\lambda_{J} = \{ (x_i) \in \lambda / x_i = 0 \text{ if } i \notin J \}$$

is called a sectional subspace of λ . If J' = |N| J it is clear that we have

$$\lambda^p = \lambda^p_j \odot \lambda^p_{J'} \text{ and } (\lambda^p)^\alpha = (\lambda^p)^\alpha_J \oplus (\lambda^p)^\alpha_{J'}.$$

for every echelon space λ^p and coechelon space $(\lambda^p)^\alpha$. The sequence of echelons $a^k=(a_i^k)$ is called strongly increasing if there is no infinite set $J\subset \mathbb{N}$ such that there is k_0 with the property that, for every $k\geqslant k_0$ in \mathbb{N} , there is $M_k>0$ such that

$$\forall i \in J$$
, $a_i^k \leq M_k a_i^{k_0}$

It is known that the echelon space λ^p , $p \ge 1$, determined by $\{a^k\}_{k=1}^\infty$ is Montel if and only if the sequence $\{a^k\}_{k=1}^\infty$ is strongly increasing, that is, if λ^p has no sectional subspace isomorphic to ℓ^p . If p > 1, every λ^p is reflexive, but λ^1 is reflexive if and only if λ^1 is a Montel space.

Given the echelon space (1), the family of sets $\{U_k (\lambda^p), k \in \mathbb{N}\}$ or simply, $\{U_k, k \in \mathbb{N}\}$ if there is no risk of confusion, where

$$U_{k} = \{(x_{i}) \in \lambda^{p} / N_{k} ((x_{i})) \leq 1/k \}, \tag{2}$$

is a 0-neighbourhoods basis in λ^p . Then, if $\mathfrak{U}(F)$ is the filter of 0-neighbourhoods in the space $F[\mathfrak{F}_F]$, the family of sets $\{E_{k,V}, k \in \mathbb{N}, V \in \mathfrak{U}(F)\}$, where

$$E_{\mathbf{k},\mathbf{V}} = \{ \mathbf{u} \in \lambda^{\mathbf{p}} \otimes \mathbf{I}^{\epsilon} / (\mathbf{p}_{\mathbf{U}_{\mathbf{k}}} \otimes \mathbf{p}_{\mathbf{V}}) (\mathbf{u}) \leq 1 \}, \tag{3}$$

is a 0-neighbourhoods basis in $\lambda^p \otimes F$.

Let λ^p , $p \ge 1$, be the echelon space (1). For every $k \in \mathbb{N}$ we define the vector space

$$\lambda_k^p = \{ (x_i) \in \omega / x_i = 0 \text{ if } a_i^k = 0 \text{ and } N_k ((x_i)) < \infty \},$$

its α-dual

$$(\lambda_k^p)^{\alpha} = \{ (x_i) \in \omega / \sum_{i=1}^{\infty} |x_i y_i| < \infty \quad \forall (y_i) \in \lambda_k^p \},$$

and the mapping $I_k \colon \omega \to \omega$ such that I_k ((x_i)) is the sequence whose i-component is x_i if $a_i^k \neq 0$ and equal to 0 if $a_i^k = 0$. If no other topology is explicitly defined, we shall always consider on λ_k^p the topology generated by the norm N_k on λ_k^p . Then λ_k^p is isomorphic to ℓ^p and its topological dual (λ_k^p) is $I_k((\lambda_k^p)^\alpha)$. Unless it is otherwise clearly stated, we will always consider on (λ_k^p) the strong topology β ((λ_k^p) , λ_k^p).

Let I_{nm} be, for $m \le n$ in IN, the restriction of I_n to λ_m^p . Then the echelon space λ^p is the reduced projective limit

$$\lambda^{p} = \lim_{n \to \infty} \lambda_{n}^{p} \tag{4}$$

of the projective system { λ_n^p, I_{nm} }, $m \le n$ in \mathbb{N} . Further

$$(\lambda^p)^{\alpha} = \bigcup_{n=1}^{\infty} I_n ((\lambda_n^p)^{\alpha})$$

and for every $\sigma((\lambda^p)^\alpha, \lambda^p)$ -bounded set M, there is $n \in \mathbb{N}$ such that

$$M\subseteq I_n\;((\lambda_n^p)^\alpha)$$

and M is $\sigma((\lambda_n^p)', \lambda_n^p)$ - bounded.

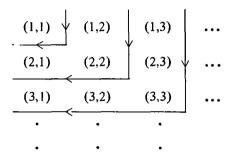
2. Schauder basis on $\lambda^p \stackrel{\circ}{\otimes} \mu^r$ and $\lambda^p \stackrel{\circ}{\otimes} (\mu^r)^\alpha$

A Schauder basis in the space E [TE] will be represented by

$$\{u_n\}_{n=1}^{\infty} \text{ or } \{u_n, u_n\}_{n=1}^{\infty},$$

 $\left\{\left.u_{n}^{'}\right\}\right\}_{n=1}^{\infty}$ being the sequence of coefficient functionals.

We enumerate $\mathbb{N} \times \mathbb{N}$ by means of the bijective map $\psi \colon \mathbb{N} \times \mathbb{N} \to \mathbb{N}$, such that $\psi(n, m) = (m - 1)^2 + n$ if $n \le m$ and $\psi(n, m) = (n - 1)^2 + 2$ n.— m if n > m, whose diagram is



Then, it is easy to see that, if $\{u_n, u_n'\}_{n=1}^{\infty}$ and $\{v_n, v_n'\}_{n=1}^{\infty}$ are Schauder bases in the spaces $E[\mathcal{C}_E]$ and $F[\mathcal{C}_F]$ respectively, the sequence

$$\{u_n \otimes v_m, u'_n \otimes v'_m\}_{\psi(n, m)=1}^{\infty}$$

is a Schauder basis in E \otimes F, which is called the tensor product basis of the given bases.

If $\{e_n\}_{n=1}^{\infty}$ is a Schauder basis in a locally convex perfect sequence space λ , the sequence of coefficient functionals is $\{e_n\}_{n=1}^{\infty}$, considering now every e_n , $n \in \mathbb{N}$, as element of λ . Then we have $\lambda = \lambda^{\alpha}$ because $\{e_n\}_{n=1}^{\infty}$ must be a Schauder basis in $[\lambda', \sigma(\lambda', \lambda)]$. If μ is another sequence space with the same properties, $\{e_n \otimes e_m, e_n \otimes e_m\}_{\psi}^{\infty}$ (n, m) = 1 is a Schauder basis in $\lambda \otimes \mu$. Hence $\{e_n \otimes e_m\}_{\psi}^{\infty}$ (n, m) = 1 is a Shauder basis in

$$[\, \mathcal{B}\,(\lambda,\mu),\sigma\,(\mathcal{B}(\lambda,\mu),\,\,\lambda\ \otimes_{\pi}\ \mu)]$$

and every $f \in \mathcal{B}(\lambda, \mu)$ is represented by an infinite matrix (c_{ij}) such that

$$c_{ij} = \langle e_i \otimes e_j, f \rangle = \langle e_i , f(e_i) \rangle \tag{5}$$

Then, for each $i \in \mathbb{N}$, $f(e_i)$ is the sequence $(c_{ij})_{i=1}^{\infty}$ and we have

$$\forall (x_i) \in \lambda$$
, $\forall (y_j) \in \mu$, $\langle (x_i) \otimes (y_j), f \rangle = \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} c_{ij} x_i y_j$. (6)

In this section, we shall use the following observation: given the perfect spaces λ and μ as before, if $T \subset \mathbb{N}$ and $f = (c_{ij}) \in \mathcal{B}(\lambda, \mu)$, the matrix (\overline{c}_{ij}) such that $\overline{c}_{ij} = 0$ if $i \notin T$ and $\overline{c}_{ij} = c_{ij}$ if $i \in T$, also defines an element $\overline{f} \in \mathcal{B}(\lambda, \mu)$ as consequence of normality of λ . Then, if for each $(x_i) \in \lambda$ we denote (\overline{x}_i) the sequence with $\overline{x}_i = x_i$ if $i \in T$ and $\overline{x}_i = 0$ if $i \notin T$, given two representations of $z \in \lambda \otimes \mu$

$$z = \sum_{h=1}^{t} (x_i^h) \otimes (y_j^h) = \sum_{h=1}^{t'} (x_i^{h}) \otimes (y_j^{h})$$
 (7)

we also have

$$\sum_{h=1}^{t} (\overline{x_i^h}) \otimes (y_j^h) = \sum_{h=1}^{t} (\overline{x_i^h}) \otimes (y_j^h)$$
 (8)

Now, we will make a detailed study of the Schauder basis

$$\{e_i \otimes e_j\}_{\psi}^{\infty}(i, j) = 1$$

in the product $\lambda^p\underset{\pi}{\hat{\otimes}}\mu^r$ and $\lambda^p\underset{\pi}{\otimes}(\mu^r)^\alpha$, λ^p and μ^r being echelon spaces.

Lemma 1. Let λ^p , μ^r , $p \ge 1$, $r \ge 1$, be echelon spaces such that λ^1 is reflexive. Then

$$\lambda^p \times (\mu^r)^\alpha = \lim_{\rightarrow} \ \lambda^p \times \mathfrak{l}_k \ ((\mu_k^r)^\alpha)$$

Proof. Let \mathcal{C} be the locally convex inductive limit topology of the spaces $\lambda^p \times I_k ((\mu_k^I)^{\alpha}), k \in \mathbb{N}$ on

$$\lambda^{p} \times (\mu^{r})^{\alpha} = \bigcup_{k=1}^{\infty} \lambda^{p} \times I_{k} ((\mu_{k}^{r})^{\alpha})$$

The identity map I: $\lambda^p \times (\mu^r)^\alpha \to [\lambda^p \times (\mu^r)^\alpha$, \mathfrak{C}] has sequentially closed graph because I⁻¹ is continuous. As $\lambda^p \times (\mu^r)^\alpha$ is ultrabornological, by the closed graph theorem, I is an isomorphism. q.e.d.

Lemma 2. Let λ^p , μ^r , $p \ge 1$, $r \ge 1$ be echelon spaces such that λ^1 is reflexive. If F is any space, every separately continuous bilinear map $f: \lambda^p \times (\mu^r)^\alpha \to F$ is continuous.

Proof. It si easy to see that, for every $k \in \mathbb{N}$, the restriction f_k of f to the product of metrizable barrelled spaces $\lambda^p \times I_k$ $((\mu_k^r)^a)$ is separately continuous. Hence f_k is continuous and by lemma 1, f is continuous. q.e.d.

Proposition 1. Let λ^p , μ^r , $p \ge 1$, $r \ge 1$, be echelon spaces, such that λ^1 and μ^1 are reflexive. Then

$$\lambda^{p} \underset{\pi}{\otimes} \mu^{r} \ , \ \lambda^{p} \underset{\pi}{\otimes} (\mu^{r})^{\alpha} \textit{and}_{:} (\lambda^{p})^{\alpha} \underset{\pi}{\otimes} (\mu^{r})^{\alpha}$$

are barrelled spaces.

Proof. The four spaces λ^p , λ^r , $(\lambda^p)^{\alpha}$ and $(\mu^r)^{\alpha}$ are barrelled because λ^p and μ^r are reflexive. The proof follows from lemma 2 and a well known result (see page 337 of [3]). q.e.d.

Proposition 2. Let λ^p , μ^r , $p \ge 1$, $r \ge 1$ be echelon spaces such that λ^1 and μ^1 are reflexive. Then $\{c_i \otimes e_j, c_i \otimes e_j\}_{\psi(i,j)=1}^{\infty}$ is a Schauder basis in the spaces

$$\lambda^{p} \underset{\pi}{\hat{\otimes}} \mu^{r}$$
, $\lambda^{p} \underset{\pi}{\hat{\otimes}} (\mu^{r})^{\alpha}$ and $(\lambda^{p})^{\alpha} \underset{\pi}{\hat{\otimes}} (\mu^{r})^{\alpha}$

Proof. Let F be any of the spaces $\lambda^p \underset{\pi}{\otimes} \mu^r$, $\lambda^p \underset{\pi}{\otimes} (\mu^r)^{\alpha}$, $(\lambda^p)^{\alpha} \underset{\pi}{\otimes} (\mu^r)^{\alpha}$ and \hat{E} its

completion. As $\{e_i \otimes e_j\}_{\psi(i,j)=1}^{\infty}$ is a Schauder basis in E, the sequence

$$\{e_i \otimes e_j\}_{\psi(i,j)=1}^{\infty}$$

is a Schauder basis in [E', σ (E', E)]. Then, if $z \in E$ and $f \in E' = \hat{E}'$, the set

$$\left\{\begin{array}{cc} k \\ \Sigma \\ \psi(i, j) = 1 \end{array}\right. < e_i \otimes e_j, f > e_i \otimes e_j , k \in \mathbb{N} \left.\right\}$$

is equicontinuous in \hat{E}' ; hence it is also equicontinuous in \hat{E}' and $\sigma(\hat{E}',\hat{E})$ bounded. Then

$$\sup_{\mathbf{k} \in \mathbb{N}} \left| \sum_{\psi(\mathbf{i}, \mathbf{j}) = 1}^{\mathbf{k}} < c_{\mathbf{i}} \otimes e_{\mathbf{j}}, \mathbf{f} > < z, c_{\mathbf{j}} \otimes e_{\mathbf{j}} > \right| < \infty$$

and the proof follows from proposition 1 and a well known result on biorthogonal sequences (see [3], page 295), q.e.d.

In the proof of theorem 1, we shall need the following theorem of Grothendieck (1):

Theorem A: Let $F[\mathcal{C}_F]$ be a Frechet space and $E[\mathcal{C}_F]$ a complete barrelled DF-space with the approximation property. Then the topologies

$$\beta$$
 (\Re (F, E), F $\underset{\pi}{\otimes}$ E) and β (\Re (F.E), F $\underset{\pi}{\hat{\otimes}}$ E)

on B (F, E) are identical.

In the following, also we shall use the concepts of shrinking and boundedly complete Shauder basis. A Schauder basis $\{u_n, u_n'\}_{n=1}^{\infty}$ in the space $E\left[\mathcal{C}_E\right]$ is a shrinking basis if $\{u_n'\}_{n=1}^{\infty}$ is a Schauder basis in $[E', \beta(E', E)]$. The Schauder basis $\{u_n, u_n'\}_{n=1}^{\infty}$ is a boundedly complete basis if for every sequence

$$\{\alpha_n\}_{n=1}^{\infty}$$

in K such that the set

$$\left\{\begin{array}{ll} k \\ \sum \\ n=1 \end{array} \right. \alpha_n u_n \ , \ k \in \mathbb{N} \ \right\}$$

is bounded in E, the series

$$\sum_{n=1}^{\infty} \alpha_n u_n$$

converges in E. If $\{u_n, u_n'\}_{n=1}^{\infty}$ is a Schauder basis in the semireflexive space $E[\mathcal{T}_E]$ then $\{u_n, u_n'\}_{n=1}^{\infty}$ is shrinking and boundedly complete. Conversely:

if a space $E[\mathcal{C}_E]$ has a shrinking and boundedly complete Schauder basis, then $E[\mathcal{C}_E]$ is semireflexive.

Theorem 1. Let λ^p , $p \ge 1$, be a Montel echelon space. Let μ^r , $r \ge 1$, be an echelon space such that μ^1 is reflexive. Then $\{c_i \otimes c_j, e_i \otimes e_j\}_{\psi(i, j) = 1}^{\infty}$ is a shrinking basis in the spaces $\lambda^p \overset{\circ}{\underset{\pi}{\otimes}} \mu^r$ and $\lambda^p \overset{\circ}{\underset{\pi}{\otimes}} (\mu^r)^\alpha$.

Proof. Let H be μ^r or $(\mu^r)^\alpha$. Let E be the space $\lambda^p \underset{\pi}{\otimes} H$ and \hat{E} be its completion. By proposition 2, it is enough to show that, given $f = (c_{ij}) \in \mathcal{B}$ $(\lambda^p, H) = \hat{E}'$, the sequence

$$f_n = f$$
 $\sum_{\substack{i \ y \ (i, j) = 1}}^{n} c_{ij} e_i \otimes e_j , n \in \mathbb{N}$ (9)

converges to zero in $\beta(\hat{E}', \hat{E})$.

Let us suppose that this is not true. Then, noting that in the case

$$E = \lambda^p \otimes \mu^r,$$

E is dense in the metrizable space E, and using theorem A in the case

$$E = \lambda^p \underset{\pi}{\otimes} (\mu^r)^{\alpha},$$

always exist a real number $\epsilon > 0$, a bounded sequence $\{z_n\}_{n=1}^{\infty}$ in E and a subsequence of $\{f_n\}_{n=1}^{\infty}$ (again denoted by $\{f_n\}_{n=1}^{\infty}$) such that

$$\forall n \in \mathbb{N} \mid \langle z_n, f_n \rangle \mid > \epsilon \tag{10}$$

Let $f_n = (c_{ij}^n)$ be the infinite matrix representation of f_n , $n \in \mathbb{N}$, and z_n , $n \in \mathbb{N}$, be

$$z_n = \sum_{h=1}^{h_n} (x_{ih}^n) \otimes (y_{jh}^n)$$
 (11)

The proof of theorem 1 will be realized in the following steps:

1) For every $i \in \mathbb{N}$, we have

$$\lim_{n \to \infty} (c_{ij}^n)_{j=1}^{\infty} = 0 \quad \text{in } \mathbf{II}^{\alpha}. \tag{12}$$

Proof: Let $i \in \mathbb{N}$ be fixed. Given $h \in \mathbb{N}$, if $n > h^2$, there is $j_0 \ge h + 1$ such that

$$c_{ii}^n = 0 \text{ if } 1 \leqslant j < j_0 \text{ and } c_{ij}^n = c_{ij} \text{ if } j \geqslant j_0.$$

As H is reflexive, $\{e_i\}_{i=1}^{\infty}$ is a Schauder basis in H^{α} . Then (12) follows because $(c_{ii})_{i=1}^{\infty} \in H^{\alpha}$.

2) For every $i \in \mathbb{N}$ we have

$$\lim_{\substack{v \to \infty \\ n \in \mathbb{N}}} \sup_{i=1}^{\infty} \sum_{j=1}^{\infty} |c_{ij}^{v}| \left| \sum_{h=1}^{h_n} x_{ih}^n y_{jh}^n \right| = 0$$
 (13)

Proof: In the perfect space H, the normal hull of a σ (II, H^a)-bounded set is σ (H, H^a)-bounded. Then, by (12), it is enough to see that

$$L = \left\{ \begin{array}{l} \left(\sum\limits_{h=1}^{h_n} x_{ih}^n \ y_{jh}^n \right)_{j=1}^{\infty}, \ n \in \mathbb{N} \end{array} \right\} \subset \mathbb{N}$$

is σ (H, Π^{α})-bounded. Let (w_j) be in H^{α} . Then $e_i \otimes (w_j) \in E'$. As $\{z_n\}_{n=1}^{\infty}$ is a bounded sequence in E, we have

$$\sup_{\mathbf{n} \in \mathbb{N}} \left| \begin{array}{ccc} \sum & w_{j} & \sum & x_{ih}^{n} & y_{jh}^{n} \\ j = 1 & h = 1 \end{array} \right| = \sup_{\mathbf{n} \in \mathbb{N}} \left| \begin{array}{ccc} h_{n} & \infty & \infty \\ \sum & x_{ih}^{n} & \sum & y_{jh}^{n} & w_{j} \end{array} \right| =$$

$$= \sup_{\mathbf{n} \in \mathbb{N}} \left| \langle z_{n}, e_{i} \otimes (w_{j}) \rangle \right| < \infty$$

and L is σ (H, H^{α})-bounded.

3) For each $n \in \mathbb{N}$, there is $m_n \in \mathbb{N}$ such that

$$\epsilon < \begin{vmatrix} h_n & \infty & m_n \\ \Sigma & \Sigma & \Sigma & c_{ij}^n x_{ih}^n y_{jh}^n \\ h = 1 & j = 1 & i = 1 \end{vmatrix}$$
 (14)

Proof: By (10), (11) and (6), given $n \in \mathbb{N}$ we have

$$\epsilon < \begin{vmatrix} h_n & \infty & \infty \\ \Sigma & \Sigma & \Sigma & \sum c_{ij}^n x_{ih}^n y_{jh}^n \\ h = 1 & j = 1 & i = 1 \end{vmatrix} = \delta$$

Let T^n_{uh} be the sequence obtained from $(x^n_{ih})_{i=1}^{\infty}$ making zero its u first components. Then $\lim_{u\to\infty} T^n_{uh} = 0$ in λ^p . As $f_n \in \mathcal{L}(\lambda^p, H^\alpha_\sigma)$ and $(y^n_{jh}) \in II$, we have

$$\lim_{u\to\infty} |<(y_{jh}^n), \, f_n\left(T_{uh}^n\right)>|=\lim_{u\to\infty} \left| \begin{array}{ccc} \infty & \sum \\ \sum & \sum \\ j=1 & i=u \end{array} \right. c_{ij}^n \, x_{ih}^n \, y_{jh}^n \, \right|=0;$$

Hence there is $m_n \in \mathbb{N}$ such that

$$\begin{vmatrix} h_n & \infty & \infty \\ \Sigma & \Sigma & \Sigma \\ h=1 & j=1 & i=m_{n+1} \end{vmatrix} c_{ij}^n x_{ih}^n y_{jh}^n < \delta - \epsilon$$

and then (14) holds.

4) There are strictly increasing sequences $\{v(s), s \in \mathbb{N}\}$ and $\{m(s), s \in \mathbb{N}\}$ in \mathbb{N} such that

$$\forall s \in \mathbb{N}, \quad \sum_{i=1}^{v} \sup_{n \in \mathbb{N}} \sum_{i=1}^{\infty} \left| c_{ij}^{m}(s) \right| \left| \begin{array}{c} h_n \\ \Sigma \\ h=1 \end{array} x_{ih}^n y_{jh}^n \right| < \frac{\epsilon}{2}$$
 (15)

and

$$\forall s \in \mathbb{N}, \frac{\epsilon}{2} < \begin{vmatrix} v(s+1) & \infty & h_{m(s)} \\ \sum & \sum & \sum \\ i = v(s) + 1 & j = 1 & h = 1 \end{vmatrix} c_{ij}^{m(s)} x_{ih}^{m(s)} y_{jh}^{m(s)}$$
 (16)

Proof: By (14) there is $v(1) \in \mathbb{N}$ such that

$$\epsilon < \left| \begin{array}{ccc} v(1) & \infty & h_1 \\ \Sigma & \Sigma & \Sigma \\ i = 1, i = 1, h = 1 \end{array} \right| c_{ij}^1 x_{ih}^1 y_{jh}^1$$

and by (13) there is m (1) such that

$$\begin{array}{c|cccc} v(1) & \infty & \\ \Sigma & \sup & \Sigma & \left| c_{ij}^m(1) \right| & \sum & x_{ih}^n \ y_{jh}^n & \\ i=1 & n \in \mathbb{N} & j=1 & \end{array}$$

Again by (14), there is v(2) > v(1) such that

$$\epsilon < \begin{vmatrix} v(2) & \infty & h_{m(1)} \\ \sum & \sum & \sum & \sum c_{ij}^{m(1)} x_{ih}^{m(1)} y_{jh}^{m(1)} \end{vmatrix}$$

Hence, for s = 1, (15) and (16) hold. Let us suppose that

$$v(1) < v(2) < ... < v(s+1)$$
 and $m(1) < m(2) < ... < m(s)$

are defined satisfaying (15) and (16). By (13) there is m (s + 1) > m (s) such that

$$\begin{array}{c|c} v(s+1) & \infty \\ \sum\limits_{i \ = \ 1} \sup\limits_{n \ \in \ \mathbb{N}} \sum\limits_{j \ = \ 1} \left| \ c_{ij}^{m \ (s+1)} \right| \ \left| \begin{array}{c} h_n \\ \Sigma \\ h \ = \ 1 \end{array} \right| \ x_{ih}^n \ y_{jh}^n \ \right| < \frac{\epsilon}{2}$$

and by (14) there is v(s + 2) > v(s + 1) such that

$$\epsilon < \left| \begin{array}{ccc} v(s+2) & \infty & h_m(s+1) \\ \Sigma & \Sigma & \Sigma & \Sigma \\ i=1 & j=1 & h=1 \end{array} \right| c_{ij}^{m(s+1)} x_{ih}^{m(s+1)} y_{jh}^{m(s+1)}$$

Then, (15) and (16) hold for s + 1.

5) By proposition 2, $\{e_i \otimes e_j\}_{\psi(i, j)=1}^{\infty}$ is a Schauder basis in

[E', σ (E', E)] and hence $\lim_{n\to\infty} f_n = 0$ in σ (E', E). E being barrelled (proposition 1), the sequence $\{f_n\}_{n=1}^{\infty}$ must be equicontinuous. Then there are $k_0 \in \mathbb{N}$ and a 0-neighbourhood V in II such that

$$\forall n \in \mathbb{N} \quad f_n \in E_{k_0, V}^{\circ}$$
 (17)

Let us suppose that $a^k = (a_i^k)$ and $b^k = (b_i^k)$, $k \in \mathbb{N}$, are the echelon sequences which defines λ^p and μ^r respectively. As $\{z_n\}_{n=1}^{\infty}$ is a bounded sequence in E, for each $k \in \mathbb{N}$ there is a real number $M_k > 0$ such that

$$\forall n \in \mathbb{N}, (N_k \otimes p_V)(z_n) < M_k$$

Then, for every k and n in N, there is a representation of z_n

$$\lambda_{n} = \sum_{h=1}^{h_{nk}} (x_{ih}^{nk}) \otimes (y_{jh}^{nk})$$
 (18)

such that

$$\forall n \in \mathbb{N}, \quad \sum_{h=1}^{h_{nk}} \left(\sum_{i=1}^{\infty} \left| x_{ih}^{nk} \right|^{p} a_{i}^{k} \right)^{1/p} p_{V}((y_{jh}^{nk})) < M_{k}$$
 (19)

Let now $\{d_k\}_{k=k_0}^{\infty}$ be a sequence of positive real numbers such that

$$\sum_{k=k_0}^{\infty} \frac{1}{d_k} = \frac{1}{2 k_0}$$
 (20)

and let us define for every $k \in \mathbb{N}$ and $s \in \mathbb{N}$

$$T_{ks} = \left\{ i \in \mathbb{N} / v(s) + 1 \le i \le v(s+1) \text{ and } a_i^k > \left(\frac{M_k d_k}{\epsilon}\right)^p \cdot a_i^{k_0} \right\} \quad (21)$$

Given a set $D \subset T_{ks}$, for every $(x_i) \in \omega$ we consider the sequence $(\overline{x_i})$ such that $\overline{x_i} = x_i$ if $i \in D$ and $\overline{x_i} = 0$ if $i \notin D$. Now we define the sequence in E

$$J_{D}^{n} = \sum_{h=1}^{h_{n}} (\bar{x}_{ih}^{n}) \otimes (y_{jh}^{n}) , n \in \mathbb{N}$$

Then we have:

6) For $k \ge k_0$, $s \in \mathbb{N}$ and $D \subseteq T_{ks}$ it is valid the inequality

$$\forall n \in \mathbb{N}. , (N_{k_0} \otimes p_V)(J_D^n) < \frac{\epsilon}{d_k}$$
 (22)

Proof: By (7), (8) and (18) one has

$$\forall n \in \mathbb{N}$$
, $J_D^n = \sum_{h=1}^{h_{nk}} (\overline{x}_{ih}^{nk}) \otimes (y_{jh}^{nk})$

and by (19)

$$M_k > \sum_{h=1}^{h_{nk}} \left(\sum_{i \in D} \left| x_{iih}^{nk} \right|^p a_i^k \right)^{1/p} \cdot p_V \left((y_{jh}^{nk}) \right) >$$

$$> \frac{M_k d_k}{\epsilon} \sum_{h=1}^{h_{nk}} \left(\sum_{i \in D} \left| x_{ih}^{nk} \right|^p a_i^{k_0} \right)^{1/p} \cdot p_V \left((y_{jh}^{nk}) \right) \ge \frac{M_k d_k}{\epsilon} (N_{k_0} \otimes p_V) (J_D^n)$$

and hence (22) follows.

7) For each $s \in \mathbb{N}$, there is i_s such that $v(s) + 1 \le i_s \le v(s+1)$ and for all $k \ge k_0$, $i_s \notin T_{ks}$.

Proof: If 7) were not true, there would be natural numbers k_1, k_2, \ldots, k_t greater than k_0-1 such that

$$\{i/v(s)+1 \le i \le v(s+1)\} = \bigcup_{u=1}^{t} T_{k_{u}s} = \bigcup_{u=1}^{t} D_{us}$$

where the sets D_{1s} , D_{2s} , ..., D_{ts} are pairwise disjoints and each $D_{us} \subset T_{k_{us}}$, u = 1, 2, ..., t. Then, by (16), (17) and (22)

$$\begin{split} \frac{\epsilon}{2} < \sum_{u=1}^{t} \left| \sum_{i \in D_{us}}^{\infty} \sum_{j=1}^{h_{m(s)}} c_{ij}^{m(s)} x_{ih}^{m(s)} y_{jh}^{m(s)} \right| \leq \\ \leq \sum_{u=1}^{t} \sup_{(c_{ij}) \in E_{k_0, V}^{\circ}} \left| \sum_{i \in D_{us}}^{\infty} \sum_{j=1}^{h_{m(s)}} \sum_{h=1}^{m(s)} x_{ij}^{m(s)} y_{jh}^{m(s)} \right| = \\ = \sum_{u=1}^{t} \sup_{(c_{ij}) \in E_{k_0, V}^{\circ}} \left| \langle J_{D_{us}}^{m(s)}, (c_{ij}) \rangle \right| = \sum_{u=1}^{t} k_0 \left(N_{k_0} \otimes p_V \right) \left(J_{D_{us}}^{m(s)} \right) < \\ < \sum_{u=1}^{t} k_0 \frac{\epsilon}{d_{k_u}} < k_0 \frac{\epsilon}{2 k_0} = \frac{\epsilon}{2} \end{split}$$

which is a contradiction.

8) End of the proof of theorem 1: By the step 7) we construct an infinite sequence $\{i_s\}_{s=1}^{\infty}$ such that

$$\forall\,s\,\varepsilon\,\,\mathbb{N}\ ,\,\,\forall\,k\!\,\geqslant\,\,k_0\quad,\quad a^k_{i_S}\,\leqslant\,\left(\frac{M_k\,\,d_k}{\varepsilon}\right)^p\,\,a^k_{i_S}$$

which is a contradiction with the fact that λ^p is a Montel space and hence the sequence $a^k = (a_i^k)$, $k \in \mathbb{N}$, is strongly increasing, q.e.d.

Theorem 2. Let λ^p , $p \ge 1$ be a Montel echelon space and μ^r , $r \ge 1$, be an echelon space such that μ^t is reflexive. Then $\{e_i \otimes e_j, e_i \otimes e_j\}_{\psi(i, j) = 1}^{\infty}$ is a boundedly complete Schauder basis in $\lambda^p \stackrel{\circ}{\otimes} \mu^r$ and $\lambda^p \stackrel{\circ}{\otimes} (\mu^r)^a$.

Proof. Let II be the space μ^{I} or the space $(\mu^{I})^{\alpha}$ and $E = \lambda^{p} \otimes_{\pi}^{\infty} H$. Let us suppose that $\{\alpha_{ij}\}_{\psi(i,j)=1}^{\infty}$ is a sequence in K such that the sequence of partial sums

$$S_n = \sum_{\psi(i, j)=1}^n \alpha_{ij} e_i \otimes e_j$$
 , $n \in \mathbb{N}$

is bounded in E. The proof will be complete if we show that $\{S_n\}_{n=1}^{\infty}$ is a Cauchy sequence in E.

Let us suppose that $\{S_n\}_{n=1}^{\infty}$ is not a Cauchy sequence in E. Then there are a real number $\epsilon>0$, an equicontinuos sequence $\{f_n\}_{n=1}^{\infty}$ in E, and two strictly increasing sequences $\{n_k\}_{k=1}^{\infty}$ and $\{m_k\}_{k=1}^{\infty}$ in N such that

$$n_k < m_k < m_k^2 < n_{k+1} \quad \forall k \in \mathbb{N}$$
 (23)

and

$$|\langle S_{m_k} \quad S_{n_k}, f_k \rangle| > \epsilon \quad \forall k \in \mathbb{N}$$
 (24)

By theorem 1, $\{e_i \otimes e_j, e_i \otimes e_j\}_{\psi(i, j) = 1}^{\infty}$ is a shrinking basis in E. Then, for each $f = (c_{ij}) \in E'$, the sequence

$$\sum_{\substack{\sum \\ \psi(i, j) = 1}}^{n} c_{ij} e_{i} \otimes e_{j} \quad \forall n \in \mathbb{N}$$

is β (E', E)—Cauchy in E'. Then $\{S_n\}_{n=1}^{\infty}$ is σ (E, E')—Cauchy in E because

$$\left| < S_{m} \quad S_{n}, f > \right| = \left| \begin{array}{c} m \\ \sum \\ \psi(i,j) = n+1 \end{array} \alpha_{ij} c_{ij} \right| \le \sup_{k \in \mathbb{N}} \left| < S_{k}, \sum_{\psi(i,j) = n+1}^{m} c_{ij} e_{i} \otimes e_{j} > \right|$$

Hence, if we put

$$z_{k} = S_{m_{k}} - S_{n_{k}} = \sum_{\substack{i \in \mathcal{S} \\ \psi(i,j) = n_{k} + 1}}^{m_{k}} \alpha_{ij} c_{i} \otimes e_{j} , \quad k \in \mathbb{N}$$

we obtain

$$\lim_{k\to\infty} z_k = 0 \text{ in } \sigma(E, E')$$
 (25)

As H is a reflexive space with Schauder basis, H^{α} has a Schauder basis. Then E is separable and σ (E', E) is metrizable on the equicontinuous subsets of E'. In consequence, we can take a subsequence

$$\left\{f_{n_t}\right\}_{t=1}^{\infty}$$

of $\{f_n\}_{n=1}^{\infty}$ which σ (E', E) -converges to $f \in E'$. By (25), there is $f_0 \in \mathbb{N}$ such that

$$\forall t \ge t_0, |< z_{n_1}, f_{n_1} \quad f > |\ge |< z_{n_1}, f_{n_1} > | - |< z_{n_1}, f > |\ge \epsilon - \frac{\epsilon}{2} = \frac{\epsilon}{2}$$

Then, putting $g_n=f_n-f$, $n\in\mathbb{N}$, and taking a subsequence if it is neccesary, we can suppose that

$$\lim_{n\to\infty} g_n = 0 \quad \text{in} \quad \sigma(E', E)$$
 (26)

$$\lim_{n\to\infty} z_n = 0 \quad \text{in} \quad \sigma(E, E')$$
 (27)

$$\forall n \in \mathbb{N} \mid \langle z_n, g_n \rangle \mid \geq \frac{\epsilon}{2}$$
 (28)

Let $g_n=(c_{ij}^n)$ be the infinite matrix representation of g_n , $n\in\mathbb{N}$, and let us define for every i, $s\in\mathbb{N}$ the set

$$F_{is} = \{ i \in \mathbb{N} / n_s + 1 \leq \psi(i, i) \leq m_s \}$$

The proof will be completed in the following steps:

1) For each i & N

$$\lim_{n\to\infty} \sup_{s\in\mathbb{N}} \left| \sum_{j\in\mathcal{F}_{is}} \alpha_{ij} c_{ij}^{n} \right| = 0$$
 (29)

Proof: Fixed $i \in \mathbb{N}$, $g_n(c_i) = (c_{ij}^n)_{j=1}^{\infty} \in \mathbb{H}^{\alpha}$. Given $(w_j) \in \mathbb{H}$, using (26)

$$0 = \lim_{n \to \infty} |\langle e_i \otimes (w_j), g_n \rangle| = \lim_{n \to \infty} \left| \sum_{j=1}^{\infty} w_j c_{ij}^n \right|$$

and hence

$$\lim_{n\to\infty} (c_{ij}^n)_{j=1}^{\infty} = 0 \quad \text{in} \quad [H^{\alpha}, \sigma(H^{\alpha}, H)]. \tag{30}$$

If being perfect, for each $(w_j) \in H^\alpha$, there is $(w_j) \in H^\alpha$ such that $\alpha_{ij} w_j = |\alpha_{ij} w_j|$; as $e_i \otimes (w_j) \in E'$ and $\{S_n\}_{n=1}^\infty$ s a bounded sequence in E, we have

$$\sup_{m \geq i^2} \sum_{j=1}^{m} |\alpha_{ij} w_j| \leq \sup_{n \in \mathbb{N}} |\langle S_n, c_i \otimes (w_j) \rangle| < \infty$$

Then $(\alpha_{ij})_{j=1}^{\infty} \in II$; as (30) also holds in the normal topology of the perfect space H^{α} , we have

$$\lim_{n \to \infty} \sum_{j=1}^{\infty} |\alpha_{ij} c_{ij}^{n}| = 0$$

and (29) follows from (23) and the definition of Fis.

2) There are two strictly increasing sequences $\{v(s)\}_{s=1}^{\infty}$ and $\{t(s)\}_{s=1}^{\infty}$ in \mathbb{N} such that

$$\frac{\epsilon}{4} < \begin{vmatrix} \sum_{i=t(s)+1}^{t(s+1)} & \sum_{j \in F_{i,v(s)}} \alpha_{ij} c_{ij}^{v(s)} \end{vmatrix}$$
 (31)

Proof: By (28)

$$\frac{\epsilon}{2} < |< \lambda_1, g_1 > | = \begin{vmatrix} m_1 \\ \Sigma \\ \psi(i,j) = n_1 + 1 \end{vmatrix} \alpha_{ij} c_{ij}^1 \end{vmatrix}$$

Let $t(1) = \max \{ i \in \mathbb{N} | \text{there is } j \in \mathbb{N} \text{ such that } n_1 + 1 \leq \psi \text{ } (i, j) \leq m_1 \} \text{ and } v(1) = 1$. Let us suppose that we have defined $t(1) < t(2) < ... < t(s) \text{ and } v(1) < v(2) < ... < v(s-1) \text{ for } s \geq 1 \text{ in such a way that (31) holds. Using (30), there is } v(s) > v(s-1) \text{ such that}$

$$\begin{array}{c|cccc}
 & t(s) & & \\
 & \Sigma & \sup_{i=1 & h \in \mathbb{N}} & \sum_{j \in F_{ih}} \alpha_{ij} c_{ij}^{v(s)} & < \frac{\epsilon}{4}
\end{array} \tag{32}$$

Now, we define

 $t(s+1) = \max\{i \in \mathbb{N} \mid \text{there is } j \in \mathbb{N} \text{ such that } n_{v(s)} + 1 \leq \psi(i,j) \leq m_{v(s)}\}.$

Then, by (28)

$$\frac{\epsilon}{2} < |< z_{v(s)}, g_{v(s)} > |= \begin{vmatrix} m_{v(s)} \\ \sum \\ \psi(i,j) = n_{v(s)} + 1 \end{vmatrix} \alpha_{ij} c_{ij}^{v(s)} | \leq$$

$$\leq \left| \begin{array}{l} t(s) \\ \sum \\ i = 1 \end{array} \right| \sum_{j \in F_{i, v(s)}} \alpha_{ij} c_{ij}^{v(s)} \right| + \left| \begin{array}{l} t(s+1) \\ \sum \\ i = t(s)+1 \end{array} \right| \sum_{j \in F_{i, v(s)}} \alpha_{ij} c_{ij}^{v(s)} \right|$$

and by (32), (31) holds for v(s) and t(s+1). From (31) we also obtain

$$t(s+1) > t(s)$$
.

3) As E is barrelled (proposition 1), by (26) the sequence $\{g_n\}_{n=1}^{\infty}$ is equicontinuous. Then there is $k_0 \in \mathbb{N}$ and a 0-neighbourhood V in H such that

$$\forall n \in \mathbb{N} \qquad g_n \in E_{k_0, V}^{\circ}$$
 (33)

Let $a^k = (a_i^k)$ be the sequence of echelons which defines λ^p . From boundedness of sequence $\{z_n\}_{n=1}^{\infty}$ in E, we obtain a sequence $\{M_k\}_{k=1}^{\infty}$ of positive real numbers such that

$$\forall n \in \mathbb{N}$$
 , $\forall k \in \mathbb{N}$ $(N_k \otimes p_V)(z_n) < M_k$ (34)

and from (34), for every k, n in N we obtain a representation of z_n

$$z_{n} = \sum_{h=1}^{h_{n}k} (x_{ih}^{nk}) \otimes (y_{jh}^{nk})$$
 (35)

such that

$$\forall k \in \mathbb{N}, \forall n \in \mathbb{N} \sum_{h=1}^{h_{nk}} \left(\sum_{i=1}^{\infty} |x_{ij}^{nk}|^p a_i^k \right)^{1/p}. p_V ((y_{jh}^{nk})) < M_k \quad (36)$$

Now, we choose a sequence $\{d_k\}_{k=k_0}^{\infty}$ of positive real numbers such that

$$\sum_{k=k_0}^{\infty} \frac{1}{d_k} = \frac{1}{8 k_0}$$

and we define for $k \ge k_0$ and $s \in \mathbb{N}$ the set

$$T_{ks} = \left\{ i \in \mathbb{N} / t (s) + 1 \le i \le t (s+1) \text{ and } a_i^k > \left(\frac{M_k d_k}{\epsilon} \right)^p \cdot a_i^{k_0} \right\}$$

If, for $D \subseteq T_{ks}$, we define, equal as in theorem 1, the elements

$$J_D^n = \sum_{h=1}^{h_{n\,k}} (\bar{x}_{ih}^{\text{-}n\,k}) \, \otimes \, (y_{jh}^{n\,k}) \, = \, \sum_{i \in D} \, \sum_{j \in F_{in}} \alpha_{ij} \, c_i \, \otimes \, c_j \quad , \quad n \, \varepsilon \, \, \mathbb{N}$$

(this equality holds by (7), (8) and the original definition of z_n), we obtain, exactly with the same reasoning

$$\forall n \in \mathbb{N}$$
 $(N_{k_0} \otimes p_V)(J_D^n) < \frac{\epsilon}{d_k}$ (37)

4) For each $s \in \mathbb{N}$, there is $i_s \in \mathbb{N}$ such that $t(s) + 1 \le i_s \le t(s+1)$ and i_s belongs to no T_{ks} with $k \ge k_0$.

Proof.: In another case, and as in theorem 1, there would be in \mathbb{N} $k_1, k_2, ..., k_t$ higher or equal to k_0 and pairwise disjoints sets $D_{us} \subset T_{k_u s}$, u = 1, 2, ..., t such that

$$\{i/t(s)+1 \le i \le t(s+1)\} = \bigcup_{u=1}^{t} T_{k_{u}s} = \bigcup_{u=1}^{t} D_{us}$$

Then, by (31), (33) and (37)

$$\begin{split} \frac{\epsilon}{4} &< \left| \frac{\sum\limits_{i = t(s) + 1}^{t(s+1)} \sum\limits_{j \in F_{i, v(s)}} \alpha_{ij} c_{ij}^{v(s)} \right| \leq \sum\limits_{u = 1}^{t} \sum\limits_{i \in D_{us}} \sum\limits_{j \in F_{i, v(s)}} \alpha_{ij} c_{ij}^{v(s)} \right| = \\ &= \sum\limits_{u = 1}^{t} \left| < J_{D_{us}}^{v(s)}, c_{ij}^{v(s)} > \right| \leq \sum\limits_{u = 1}^{t} \sup\limits_{(c_{ij}) \in E_{k_{0}, V}^{e}} \left| < J_{D_{us}}^{v(s)}, (c_{ij}) > \right| = \\ &= \sum\limits_{u = 1}^{t} k_{0} \left(N_{k_{0}} \otimes p_{V} \right) \left(J_{D_{us}}^{v(s)} \right) < k_{0} \sum\limits_{u = 1}^{t} \frac{\epsilon}{d_{k_{1}}} < k_{0} \frac{\epsilon}{8 k_{0}} = \frac{\epsilon}{8} \end{split}$$

which is a contradiction.

5) End of the proof of theorem 2: By 4) we can construct an infinite sequence $\{i_s\}_{s=1}^{\infty}$ in \mathbb{N} such that

$$\forall k \ge k_0, \ \forall s \in \mathbb{N} \quad , \quad a_{i_s}^k \le \left(\frac{M_k d_k}{\epsilon}\right)^p \cdot a_{i_s}^{k_0}$$

which is impossible because, λ^p being a Montel space, the sequence of echelons $a^k = (a_i^k)$ is strongly increasing, q.e.d.

3. CHARACTERIZATION OF REFLEXIVITY.

We began with a new proof of the classical result of Holub ([2]) with a method which we shall use later.

Theorem 3. (Holub, [2]) If p > 1, r > 1, the tensor product $\mathfrak{Q}^p \underset{\pi}{\hat{\otimes}} \mathfrak{Q}^r$ is reflexive if and only if p > r/(r-1).

Proof. Sufficiency: If A and B are the closed unit balls of ℓ^p and ℓ^r , \overline{aco} ($\Lambda \otimes B$) is the closed unit ball of $\ell^p \otimes \ell^r$. By the theorems of Krein and Eberlein, the reflexivity of this space will be proved if we show that every sequence in $\Lambda \otimes B$ has a weakly convergent subsequence. If p' and r' are the conjugated numbers of p and r and $\{x^n \otimes y^n\}_{n=1}^{\infty}$ is a sequence in $\Lambda \otimes B$, by reflexivity or ℓ^p and ℓ^r , we can suppose, passing to a subsequence if it is necessary, that $\{x^n\}_{n=1}^{\infty}$ converges to x in $\sigma(\ell^p, \ell^p)$ and $\{y^n\}_{n=1}^{\infty}$ converges to y in $\sigma(\ell^r, \ell^r)$. Let f be an element of $\mathfrak{B}(\ell^p, \ell^r) = \mathcal{L}(\ell^p, \ell^r)$ (by closed graph theorem). As

$$p > r/(r - 1) = r',$$

by Pitt theorem, $f \in \mathcal{L}(\ell^p, \ell^{r'})$ is compact. As $\ell^{p'}$ is separable and ℓ^p is reflexive, by Schauder theorem on compactness of the adjoint f' of f, we have that

$$\{f(x^n)\}_{n=1}^{\infty}$$

converges to f(x) in $\ell^{r'}$. As $\{y^n\}_{n=1}^{\infty}$ is bounded in the space ℓ^r , we obtain that $\{x^n \otimes y^n\}_{n=1}^{\infty}$ converges to $x \otimes y$ in $\sigma(\ell^p \otimes \ell^r)$, $\mathcal{B}(\ell^p, \ell^r)$ because

$$| < x^n \otimes y^n - x \otimes y, f > | \le | < (x^n - x) \otimes y^n, f > | + | < x \otimes (y^n - y), f > | = | < y^n, f(x^n - x) > | + | < y^n - y, f(x) > |$$

Necessity: Let us suppose that $p \le r' = r / (r - 1)$. We follow the previous notations. Now the identity map I from ℓ^p into ℓ^r is not compact. Hence and by reflexivity of ℓ^p there is in A a $\sigma(\ell^p, \ell^{p'})$ -convergent sequence $x^n = (x_i^n)$, $n \in \mathbb{N}$, to $x = (x_i) \in A$ which has no convergent subsequence in ℓ^r . In particular, as $x \in \ell^r$, there is a real number $\epsilon > 0$, a subsequence of $\{x^n\}_{n=1}^{\infty}$ (again denoted by $\{x^n\}_{n=1}^{\infty}$) and a sequence $z^n = (z_i^n)$, $n \in \mathbb{N}$ in B such that

$$\forall n \in \mathbb{N} \qquad |\langle z^n, x^n \cdot x \rangle| > \epsilon$$
 (38)

As ℓ^r is reflexive, we can suppose, passing to a subsequence if it is necessary, that $\{z^n\}_{n=1}^{\infty} \sigma(\ell^r, \ell^{r'})$ -converges to $z=(z_i) \in B$.

If $\ell^p \underset{\pi}{\hat{\otimes}} \ell^r$ were reflexive, there would be a σ ($\ell^p \underset{\pi}{\hat{\otimes}} \ell^r$, \mathcal{B} (ℓ^p , ℓ^r))-convergent subsequence of $\{x^n \otimes z^n\}_{n=1}^{\infty} \subset A \otimes B$ to the limit $w \in \ell^p \underset{\pi}{\hat{\otimes}} \ell^r$. We shall denote again this subsequence by $\{x^n \otimes z^n\}_{n=1}^{\infty}$. As $\{e_i \otimes e_j, e_i \otimes e_j\}_{\psi(i, j)=1}^{\infty}$ is a Schauder basis in $\ell^p \underset{\pi}{\hat{\otimes}} \ell^r$ and for every i, j in \mathbb{N} we have

$$< w, e_i \otimes e_j > = \lim_{n \to \infty} < x^n \otimes z^n, e_i \otimes e_j > = \lim_{n \to \infty} x_i^n z_j^n = x_i z_j$$

we obtain $w = x \otimes z$. But $I \in \mathcal{L}(\ell^p, \ell^{r'}) = \mathcal{B}(\ell^p, \ell^r)$ (closed graph theorem). Then

$$< x^{n} \otimes z^{n} \cdot x \otimes z$$
. $1 > = < z^{n}, x^{n} > - < z, x > = < z^{n}, x^{n} \quad x > + < z^{n} - z, x >$

and hence, $\langle z^n, x^n \cdot x \rangle$ must be arbitrarily small with n, which contradicts (38). Then $\ell^p \underset{\pi}{\hat{\otimes}} \ell^r$ is not reflexive. q.e.d.

Theorem 4. Let λ^p , μ^r , $p \ge 1$, $r \ge 1$, be echelon spaces. Then:

- 1) $\lambda^1 \underset{\pi}{\hat{\otimes}} \mu^1$ is reflexive if and only if λ^1 and μ^1 are reflexive.
- 2) If r > 1, $\lambda^1 \underset{\pi}{\hat{\otimes}} \mu^r$ is reflexive if and only if λ^1 is reflexive.
- 3) If $p>1,\,r>1$ and $p>r/(r-1),\,\lambda^p\ \ \hat{\otimes}\ \mu^r$ is always reflexive.
- 4) If p > 1, r > 1 and $p \le r / (r 1)$, $\lambda^p \underset{\pi}{\hat{\otimes}} \mu^r$ is reflexive if and only if λ^p or μ^r is a Montel space.

Proof. 1) and 2). If λ^1 is reflexive, then it is a Montel space. If μ^1 is reflexive, by proposition 2 and theorems 1 and 2, $\lambda^1 \stackrel{\circ}{\otimes} \mu^r$ has a shrinking and boundedly

complete Schauder basis. Then the Frechet space λ^1 $\mathop{\hat{\otimes}}_{\pi} \mu^r$ is reflexive. The reciprocal statement is obvious.

3) By theorem 3, for every k, h ϵ N, λ_k^p $\stackrel{\circ}{\otimes}$ μ_h^r is reflexive. As

$$\lambda^{p} \stackrel{\circ}{\otimes} \mu^{r} = \lim_{\leftarrow} \lambda^{p}_{k} \stackrel{\circ}{\otimes} \mu^{r}_{h}$$
,

the Frechet space $\lambda^p \stackrel{\hat{\otimes}}{=} \mu^r$ is reflexive.

4) If λ^p or μ^r is Montel, the reflexivity of $\lambda^p \underset{\pi}{\hat{\otimes}} \mu^r$ follows from proposition 2 and theorems 1 and 2 as in 1) and 2). Conversely, if neither λ^p nor μ^r is Montel, there are sectional subspaces F and G of λ^p and μ^r isomorphic to ℓ^p and ℓ^r respectively. As F and G are complemented in ℓ^p and ℓ^r , ℓ^p and ℓ^r has a subspace isomorphic to ℓ^p and ℓ^p , which by theorem 3 is not reflexive. Then ℓ^p are ℓ^p is not reflexive. q.e.d.

Theorem 5. Let λ^p , μ^r , $p \ge 1$, $r \ge 1$ be echelon spaces. Then:

- 1) $\lambda^1 \stackrel{\circ}{\otimes} (\mu^1)^{\alpha}$ is reflexive if and only if λ^1 and μ^1 are reflexive.
- 2) If r > 1, $\lambda^1 \stackrel{\circ}{\otimes} (\mu^r)^{\alpha}$ is reflexive if and only if λ^1 is reflexive.
- 3) If p > 1, r > 1 and p > r, $\lambda^p \underset{\pi}{\hat{\otimes}} (\mu^r)^{\alpha}$ is always reflexive.
- 4) If p > 1, r > 1 and $p \le r$, $\lambda^p \underset{\pi}{\hat{\otimes}} (\mu^r)^{\alpha}$ is reflexive if and only if λ^p or μ^r is a Montel space.

Proof. 1) and 2). Using proposition 1, the proof is the same as in 1) and 2) of theorem 4.

3). As

$$E = \lambda^{p} \underset{\pi}{\hat{\otimes}} (\mu^{r})^{\alpha} = \lim_{\leftarrow} \lambda_{k}^{p} \underset{\pi}{\hat{\otimes}} (\mu^{r})^{\alpha}$$

by proposition 1, it is enough to see that every $E_k = \lambda_k^p \stackrel{\hat{\otimes}}{\approx} (\mu^I)^\alpha$, $k \in \mathbb{N}$ is semi-reflexive. As λ_k^p and $(\mu^I)^\alpha$ are DF-spaces, given a bounded set M in E_k , there are bounded sets A and B in λ_k^p and $(\mu^I)^\alpha$ such that $M \subseteq \overline{aco}$ (A \otimes B). By Krein and Eberlein theorems, the proof will be complete if we show that every sequence in $A \otimes B$ has a σ (E_k , E_k)-convergent subsequence.

Let $\{x^n \otimes y^n\}_{n=1}^{\infty}$ be a sequence in $A \otimes B$ and let $h \in \mathbb{N}$ be such that $B \subset I_h$ $((\mu_h^r)^{\alpha}) = (\mu_h^r)'$. As λ_k^p and μ_h^r are reflexive Banach spaces, we can choose a subsequence, that will be denoted as in the beginning, such that

$$\lim_{n \to \infty} x^n = x \in \lambda_k^p \quad \text{in} \quad \sigma(\lambda_k^p, (\lambda_k^p)')$$
 (39)

and

$$\lim_{n \to \infty} y^n = y \, \epsilon \, (\mu_h^r)' \quad \text{in} \quad \sigma \, ((\mu_h^r)', \, \mu_h^r)$$
 (40)

If $f \in \mathcal{B}(\lambda_k^p, (\mu^r)^\alpha) = \mathcal{L}(\lambda_k^p, \mu^r)$ (by closed graph theorem), since p > r, the map $I_h \circ f \in \mathcal{L}(\lambda_k^p, \mu_h^r)$ is compact by Pitt theorem; as (λ_k^p) is separable, by Schauder theorem on compactness of the adjoint of $(I_h \circ f)$, we obtain that

$$\{(I_h \circ f) (x^n)\}_{n=1}^{\infty}$$

converges to $(I_h \circ f)(x)$ in μ_h^r . Since $\{y^n\}_{n=1}^{\infty}$ is bounded in $(\mu_h^r)'$, by (40) we deduce from

$$< x^{n} \otimes y^{n} \quad x \otimes y, f> = < (x^{n} - x) \otimes y^{n}, f> + < x \otimes (y^{n} \quad y), f> =$$

$$= < y^{n}, f(x^{n} - x)> + < y^{n} \quad y, f(x)> = < y^{n}, (I_{h} \circ f)(x^{n} - x)> +$$

$$+ < y^{n} \quad y, (I_{h} \circ f)(x)>$$

that $\{x^n \otimes y^n\}_{n=1}^{\infty}$ converges to $x \otimes y$ in $\sigma(E_k, E_k)$.

4) Sufficiency: if λ^p is Montel, the proof is the same as in 1) and 2). If μ^r is Montel, we argue as in 3) with the same notations. For each $k \in \mathbb{N}$, given the sequence $\{x^n \otimes y^n\}_{n=1}^{\infty}$ in the tensor product of bounded sets

$$A \otimes B \subseteq \lambda_k^p \otimes (\mu^r)^{\alpha},$$

being λ_k^p a reflexive Banach space and $(\mu^r)^\alpha$ a Montel space, as μ^r is separable, by Smulian theorem, we can choose a subsequence, again denoted by $\{x^n \otimes y^n\}_{n=1}^\infty$ such that $\{x^n\}_{n=1}^\infty$ converges to x in $\sigma(\lambda_k^p,(\lambda_k^p))$ and $\{y^n\}_{n=1}^\infty$ converges to y in $\sigma((\mu^r)^\alpha,\mu^r)$. Since μ^r is a reflexive Frechet space, $(\mu^r)^\alpha$ is ultrabornological. Then, by closed graph theorem, every $f \in \mathcal{B}(\lambda_k^p,(\mu^r)^\alpha)$ can identified with an element of $\mathcal{L}((\mu^r)^\alpha,(\lambda_k^p)^\alpha)$. Hence $\{f(y^n)\}_{n=1}^\infty$ converges to f(y) in $(\lambda_k^p)^\alpha$. As $\{x^n\}_{n=1}^\infty$ is a bounded sequence in λ_k^p , from

$$< x^n \otimes y^n \quad x \otimes y, f> = < x^n \otimes (y^n - y), f> + < (x^n - x) \otimes y, f> =$$

$$= < x^n, f(y^n - y) > + < (x^n - x), f(y) >$$

we deduce that $\{x^n \otimes y^n\}_{n=1}^{\infty}$ converges to $x \otimes y$ in $\sigma(E_k, E_k)$. The proof finishes as in 3), using proposition 1.

Necessity: Let us suppose neither λ^p nor μ^r are Montel spaces. Then there are complemented sectional subspaces F and G of λ^p and μ^r respectively such that $\lambda^p = \ell^p \otimes F$ and $\mu^r = \ell^r \otimes G$. Then, if r' = r / (r - 1), $(\mu^r)^\alpha = \ell^r \otimes G'$. As $p \leqslant r$, by theorem 3, $\ell^p \otimes \ell^r$ is a not reflexive subspace of $\ell^p \otimes \ell^r$. Then $\ell^p \otimes \ell^r$ is not reflexive. q.e.d.

Theorem 6. Let λ^p , μ^r , $p \ge 1$, $r \ge 1$, echelon spaces. Then:

- 1) $(\lambda^1)^{\alpha} \overset{\circ}{\otimes} (\mu^1)^{\alpha}$ is reflexive if and only if λ^1 and μ^1 are reflexive.
- 2) If r > 1, $(\lambda^1)^{\alpha} \stackrel{\circ}{\otimes} (\mu^r)^{\alpha}$ is reflexive if and only if λ^1 is reflexive.
- 3) If p > 1, r > 1 and p/(p-1) > r, then $(\lambda^p)^{\alpha} \, \hat{\otimes} \, (\mu^r)^{\alpha}$ is always reflexive.
- 4) If p > 1, r > 1 and $p/(p-1) \le r$, $(\lambda^p)^{\alpha} \underset{\pi}{\hat{\otimes}} (\mu^r)^{\alpha}$ is reflexive if and only if λ^p or μ^r are Montel spaces.

Proof. 1) and 2). Necessity of 1) and 2) is evident. For sufficiency, it is enough to see, by proposition 1, that $(\lambda^1)^{\alpha}$ $\stackrel{\circ}{\otimes} (\mu^r)^{\alpha}$, $r \ge 1$, is semireflexive. Being $(\lambda^1)^{\alpha}$ and $(\mu^r)^{\alpha}$ DF-spaces, by Krein and Eberlein theorems, it suffices to prove that every sequence $\{x^n \otimes y^n\}_{n=1}^{\infty}$ in the tensor product $A \otimes B$ of the bounded sets A and B of $(\lambda^1)^{\alpha}$ and $(\mu^r)^{\alpha}$ respectively, has a weakly convergent subsequence. If λ^1 is reflexive (and μ^1 in case 1)) being λ^1 and μ^r separable spaces, by Smulian theorem we can suppose, choosing a subsequence if it is necessary, that $\{x^n\}_{n=1}^{\infty}$ is $\sigma((\lambda^1)^{\alpha}, \lambda^1)$ -convergent to $x \in (\lambda^1)^{\alpha}$ and $\{y^n\}_{n=1}^{\infty}$ is $\sigma((\mu^r)^{\alpha}, \mu^r)$ -convergent to $y \in (\mu^r)^{\alpha}$. But λ^1 being reflexive, λ^1 and $(\lambda^1)^{\alpha}$ are Montel spaces. Then $\{x^n\}_{n=1}^{\infty}$ converges to x in $\beta((\lambda^1)^{\alpha}, \lambda^1)$. Consequently, if $f \in \mathcal{B}((\lambda^1)^{\alpha}, (\mu^r)^{\alpha}) = \mathcal{L}((\lambda^1)^{\alpha}, \mu^r)$ (by closed graph theorem, being λ^1 Frechet reflexive and hence $(\lambda^1)^{\alpha}$ ultrabornological), we have that $\{f(x^n)\}_{n=1}^{\infty}$ has limit f(x) in μ^r . Since μ^r is barrelled, $\{y^n\}_{n=1}^{\infty}$ is an equicontinuous sequence and hence $\{x^n \otimes y^n\}_{n=1}^{\infty}$ is weakly convergent to $x \otimes y$ because

$$< x^n \otimes y^n \cdot x \otimes y, f> = < (x^n - x) \otimes y^n, f> + < x \otimes (y^n - y), f> =$$

= $< y^n, f(x^n - x) > + < y^n \cdot y, f(x) >$

3) Since λ^p and μ^r are reflexive, $(\lambda^p)^\alpha$ and $(\mu^r)^\alpha$ are barrelled. Hence $(\lambda^p)^\alpha \overset{\circ}{\otimes} (\mu^r)^\alpha$ is barrelled and we argue as in 1) and 2) with the same notations. Now, given the tensor product $A \otimes B$ of bounded sets of $(\lambda^p)^\alpha$ and $(\mu^r)^\alpha$, we choose $k \in \mathbb{N}$ such that A is bounded in the reflexive space (λ^p_k) and B is bounded in the reflexive space (μ^r_k) . Let $\{x^n \otimes y^n\}_{n=1}^\infty$ be a sequence in $A \otimes B$. Choosing a subsequence if it is necessary, we can suppose that $\{x^n\}_{n=1}^\infty$ has limit x in $\sigma((\lambda^p_k)$, $\lambda^p_k)$ and $\{y^n\}_{n=1}^\infty$ has limit y in $\sigma((\mu^r_k)$, $\mu^r_k)$. If

$$f \in \mathcal{B}((\lambda^p)^\alpha, (\mu^r)^\alpha) = \mathcal{L}((\lambda^p)^\alpha, \mu^r)$$

(arguing as in 1) and 2)), let f_k be the restriction of f to $(\lambda_k^p)'$. As $(\lambda_k^p)'$ is isomorphic to ℓ^p with p'=p/(p-1), μ_k^r is isomorphic to ℓ^r and p'>r by hypothesis, by Pitt theorem, $I_k \circ f_k \in \mathcal{L}((\lambda_k^p)', \mu_k^r)$ is compact. Then by Schauder theorem on compactness of the adjoint of $I_k \circ f_k$ and by separability of λ_k^p , the sequence $\{(I_k \circ f_k)(x^n)\}_{n=1}^{\infty}$ converges to $(I_k \circ f_k)(x)$ in μ_k^r . As $\{y^n\}_{n=1}^{\infty}$ is a bounded sequence in $(\mu_k^r)'$, from

$$< x^{n} \otimes y^{n} - x \otimes y, f > = < (x^{n} \quad x) \otimes y^{n}, f > + < x \otimes (y^{n} - y), f > =$$

$$= < y^{n}, f(x^{n} \quad x) > + < y^{n} - y, f(x) > = < y^{n}, (I_{k} \circ f_{k})(x^{n} \cdot x) > +$$

$$+ < y^{n} \cdot y, f(x) >$$

we deduce that $\{x^n \otimes y^n\}_{n=1}^{\infty}$ is weakly convergent to $x \otimes y$.

4) If λ^p is a Montel space, the proof is the same as in 1) and 2) replacing λ^1 of 1) and 2) by λ^p . Then the result is also proved if μ^r is Montel. Conversely: if neither λ^p nor μ^r are Montel spaces, there are complemented sectional subspaces F and G of λ^p and μ^r such that $\lambda^p = \ell^p \oplus F$ and $\mu^r = \ell^r \oplus G$. Hence, if p' = p / (p - 1) and r' = r / (r - 1), we have $(\lambda^p)^\alpha = \ell^p \oplus F'$ and $(\mu^r)^\alpha = \ell^r \oplus G'$. As $p' \leqslant r$, by theorem 3, $\ell^p \otimes \ell^r$ is not a reflexive subspace of $(\lambda^p)^\alpha \otimes \ell^r$. In consequence, $(\lambda^p)^\alpha \otimes \ell^r$ is not reflexive, q.e.d.

REFERENCES

- Grothendicck, A.: Produits tensoriels topologiques et espaces nucleaires. Mcm. Amer. Math. Soc. 16, 1955.
- 2. Holub. J.R.: Hilbertian operators and reflexive tensor products. Pac. Jour. Math. 36,1, 185-194, 1971.
- 3. Jarchow, H. Locally convex spaces. Teubner. Stuttgart. 1981.
- 4. Köthe, G. Topological vector spaces I. Springer Verlag, 1969.

Prof. Dr. J.A. López Molina Cátedra de Matemáticas E.T.S.I.A. de Córdoba. Finca Alameda del Obispo s.n. Córdoba. Spain.