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by
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ABSTRACT.

Let AP, u', p =1, r2 1, be sequence echelon Kdthe spaces. We show: a)
A @ pl Al @ (D) and (M)E g (u')” are reflexive iff A' and u! are re-
T w m

flexive. b)Ifr> 1, A" @ u', AN @ (W)® and (\')¢ @ (uF)7 are reflexive iff A is
m m k4
reflexive. ¢) Up>1,r>1, p>ri(r 1), then AP @ u' is reflexive; if p >, then
m
A @ (N s reflexive; if p/(p - 1)>r, then (\WP)® @ (uH)¥ is reflexive. d) In
m ™

all other cases, AP @ w5, AP @ ()T and (\P)* @ (p")* are reflexive iff AP or
m m

m

u" is a Montel space.

{. INYRODUCITON.

In | 2], Holub has characterized the spaces 27 ® £ which are reflexive. Here
m
we characterize the reflexivity of the projective tensor product ' ® I when E
m
and F are sequence echelon or cocchelon Kothe spaces as consequence of a
previous study of the canonical Schauder basis on these spaces.

A scparated locally convex space E [ G ] on the {ield K of real or complex
numbers, will be called, simply, a space. Notation and concepts not explicitly
defined are standard in topological vector spaces theory (sec [3]). In particular,
aco (A) will be the closed absolutely convex hull of the set A of the space

* Supported in part by the Comision Asesora de Investigacion Cientilica y Técnica, proyec-
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L [Gr] and B (E, F) will be the set of all continuous bilinear forms on the
product ExI' of the spaces E | Gy:] and F [G] M it is neccessary, cach
fe B (K, ) will be identificd in the canonical form, without previous ad-
vertence and without change of nolation, with an element of the set £ (L, Fj)
of all continuous linear maps ftom E |TGg] into the topological weak dual
[F,o0(F, F)l]of F[B§]

The Minkowski functional of a neighbourhood U of zero in the space
I [Gy], will be denoted by py. The completion of the projective tensor
product I© @ F of the spaces L' [G 1] and F [ Gy:] will be represented by E @ I\,

T T

The seminorm on 5 ® [ assocciated with the continuous seminorms o and §
m

of L'| By] and F [G ] respectively, will be denoted by @ ® 8.
IN will be the set of non zero natural numbers. If there is not a risk of con-
fusion, the topological projective limit of a projective system of spaces

{En[Cal lam ! n = m, n, min adirected set D,
will be written lim L. Analogously, given an increasing sequence
“«—

{En};o=l

of vector spaces and a Hausdorff locally convex topology G, on cach Eyp,
n € IN, such that the canonical inclusion Ingm: Ep [Gn] = Lp [ Bm]is con-
tinuous forevery n < m in IN, the vector space

(==

E= U F,

n=1
with the locally convex inductive limit topology of the inductive system
{En 1 Bn) lam!. n < mnme N,

will be denoted by 11_111 En.

Concerning scquence spaces, we shall use the notations and definitions of
[4]. By example: « will be the set of all sequences x =(x;) = (xj)i= 1 of elements
of KK and ey, n e IN, will be the sequence with all its components cqual to 0,
except the number n component, which is equal to 1. A notation such as
(x{_’ik) or similar. will represent a family of scquences indexed by the parameters
n, k. j, cach sequence of this family having xl-"-k as i-component. In some cascs
we shall write (x?jk)‘ix’: 1 for remark the index i of the components of cach
sequence.
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let ok = (af‘) a sequence of sequences of non negative real numbers such
that a{‘ < aik+1 for cach i, k € IN and such that for eachie N, thereiske IN
with a}‘:# 0. I'or each real number p 2 1, we define the echelon Kothe space of

order p
N = {(xi) € w [ N ((x)) = ( n°2_<"1 xiP d)P <oo Wke N} (1)

The coechelon Kothe space of order p is the a-dual of AP:

W) ={(x)) e w n°§1 Ixi il <o°, V(y1) € P }

Unless it is otherwise clearly stated, we shall always consider on AP the topology
defined by the family of seminorms { Ng, k € iN}. Then AP is a Frechet space
whose topological dual is (AP)%; with the exceptions before cited, we shall
always consider on (AP)* the strong topology 8 ((AP)%, AP). When a%‘ =1 for
every k, i € IN, we obtain the classical space £P.

If X is a locally convex sequence space and J C N, the subspace of A

MN={(x)eAr/xj=0 if i¢]}

is called a sectional subspace of A, If J'=IN  J it is clear that we have
o
P = ?\'J’ o} 7\5’, and (\")* = ()\p)] D (?J’)‘};

for every echelon space AP and coechelon space (AP)*. The sequence of echelons
aF = (alf) is called strongly increasing if there is no infinite set J C N such that
there is ko with the property that, for every k 2 kg in IN, there is Mg > 0 such
that

Viel , a}(<Mk a]ic"

It is known that the echelon space AP, p > I, determined by { a¥ b 1 is Montel
e . 1. kioe . T s P
if and only if the sequence 1a*ty _ | is strongly increasing, that is, if AP has no
sectional subspace isomorphic to &P. If p > 1, every AP is reflexive, but A! is
reflexive if and only if A is a Montcl space.

Given the echelon space (1), the family of sets{Ux (AP), k € IN }or simply,
{Ug, k e N} if there is no risk of confusion, where

Uk ={(xy) € \? [ Ny ((x)) < 1/k }, (2)
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is a 0-neighbourhoods basis in AP, Then, if ‘U,(F) is the filter of O-ncighbour-
hoods in the space F [ G ], the family of sets{Eyg v,k e N,V e“WL(F) |, where

Eg,v={ueA’ ® [}/ (py, ® py) (W) <1}, (3)
is a 0-neighbourhoods basis in A ® F.
T

Let AP, p > 1, be the cchelon space (1). For every k € IN we define the
vector space

W= {(x)ew/xi=0 il a¥=0 and Ni ((x))) <ool,
its c-dual

o0

()‘Il:)“ = { (%) ew/ i zl Ixiyil <oo V(yi) E)\E } s
i=

and the mapping Ig: w —> w such that I ((x;)) is the sequence whose i-com-
ponent is x; if “]i( # 0 and equal to O if ali‘ = 0. It no other topology is explicitly
defined, we shall always consider on )\E the topology gencrated by the norm
Nk on AD. Then A is isomorphic to 2P and its topological dual (AP is I (AP)).
Unless it is otherwise clearly stated, we will always consider on (RE)’ the strong
topology B ((AR)", AD).

Let Loy be, for m < n in IN, the restriction of I, to AB,. Then the echelon
space AP is the reduced projective limit

AP = lim 7\{: 4)
<
of the projective system § AE, lam!. m < n in . Further
A" = U 1 (AP))
n=1 n
and for every o (AP)%, AP)-bounded set M, there is n e IN such that
M Iy ()

and M is ¢ ((A?)’, AD)- bounded.
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2. SCHAUDFR BASISON AP @ uf AND AP ® (uf)®

™ ™

A Schauder basis in the space E [T 2] will be represented by
{unfa=1 of {un, unin=1,
{untn=1 being the sequence of coefficient functionals.

We enumerate IN X IN.by means of the bijective mapy: N X N > N. such
that y (n,m)=(m 1)? +nifn<mand Yy (n,m)=(n -1)2 +2n.-- mif n>m,

whose diagram is
(L1 + (1.2) (1,3)

(2,1) (2.2) (2,3) .

3.0 (3.2) 3.3) .

Then, it is easy to sec that, if {up, upt o =1 and {vq, vala = | are Schauder
bases in the spaces E [G ] and F [ G ] respectively, the sequence

’ ., 4 o
{un ® ¥m,up ® Vg (n,m)=1

is a Schauder basis in E ® F, which is called the tensor product basis of the
m
given bhascs.

If {entn = 1 is a Schauder basis in a locally convex perfect sequence
space A, the sequence of coefficient functionals is {ey } p = 1, considering now
every ¢, n € N, as clement of A". Then we have X' = A% because {en} n =1
must be a Schauder basis in [X', o (X', A)]. If u is another sequence space with
the same properties, {¢; ® €y, ey ® Cnp T (n, m) = 1 is a Schauder basis in
X 63 u. tence tep ® cp }? (n, m) =1 is a Shauder basis in

(B u)o (B ), 2 @ )

and every f € 3B (A, p) is represented by an infinite matrix (cjj) such that
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cjj = <e; ®¢, f >=<¢5 , fle))> 5)
Then, for each i € IN, f (¢;) is the sequence (cij)}”: 1 and we Have

oo 00

Viied . Voen , <) @@ I>= T T oxiye  ©

In this section, we shall use the following observation: given the perfect
spaces A and u as before, if T.C N and f=(cjj) € B (A, p), the matrix (cj;) such
that ci; = 0 if i ¢ T and ¢jj = cjj il i € T, also defines an element T e 3B (A, u) as
conscquence of normality of A. Then, if for each (x;) e A we denote (%) the
sequence with Xj = x;jifie T and x; =0 if i ¢ T, given two representations of
ZEX® U

t |
o h h

2= X ey = I
h=1 h=

, G 8 Q)
we also have
i h hy _ ; w-h -h
T EDey) = = (X)) ®)
h=1 h=1
Now, we will make a detailed study of the Schauder basis
fei ®ejty i, p=1

in the product A’ ® pf and AP ® (u)%, AP and y” being echelon spaces.
T m

Lemma 1. Let NP, uf, p = 1, 1 > 1, be echelon spaces such that \! is reflexive,
Then

AP X (W) = lim AP X Iy (@))%
->

Proof. Let G be the locally convex inductive limit topology of the spaces
AP X I ((u)™). k € N on

WX () = k('f P b (G
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The identity map I: AP X (u)* > [AP X (u%)¥, B] has sequentially closed graph
because I is continuous. As AP X (u*)“ is ultrabornological, by the closed graph
theorem, 1 is an isomorphism. q.c.d.

Lemma 2. Let NP, uf, p=> 1, 1= | be echelon spaces such that \' is reflexive. If F
is any space, every separately continuous bilinear map f: NP X (u5)* —» F is
continuous.

Proof. It si easy to see that, for every k € IN, the restriction [k of { to the pro-
duct of metrizable barrelled spaces AP X Iy ((uf)%) is scparatcly continuous.
tlence fx is continuous and by lemma 1, { is continuous. g.e.d.

Proposition 1. Let NP, u*, p 2 1, 1 = 1, be echelon spaces, such that \* and p!
are reflexive. Then

e, W W) and (W) ® (1)
m ™

are barrelled spaces.

Proof. The four spaces AP, A', (A\P)* and (u")* arc barrelled because AP and uf
are reflexive. The proof follows from lemma 2 and a well known result (see page
337 of [3]). q.c.d.

Proposition 2. Let \P, u*, p > 1, r > 1 be echelon spaces such that \! and i1’ are

reflexive. Then {¢; ® ¢j, ¢; ® ¢j} :"/O(i,j) = | I8 a Schauder basis in the spaces

W &u , N (W) and (W)* @ W)
m m m

Proof. 1.et E be any of the spaces AP @ pf, AP ® (u")%, WP)T ® (u°)® and E its
g n m
completion. As{c; ® ej}f;’(i’ j=1isa Schauder basis in E, the sequence

o
fei ® ejlyq, =1

is a Schauder basis in [E", 6 (E, E)]. Then, if z ¢ Eand f ¢ E' = E, the set
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k
[ b <ej ® g, >e; @ g ,kelNl
v, =1

is equicontinuous in E’; hence it is also equicontinuous in £ and ¢ (E', E)-bound-
¢d. Then

k
sup 2 <cp ® g, [><7,¢) ® ¢j>[< o0
ke N j¢v(,))=1 '

and the proof follows from proposition 1 and a well known result on biortho-
gonal sequences (see [3], page 295). g.e.d.

In the proof of theorem 1, we shall need the following theorem of Grothen-
dieck (1):

Theorem A: lLet F [Gy:] be a Irechet space and E [ G ;] a complete barrelled
DF-space with the approximation property. Then the topologies
B(B(F,E).F @ E)and (B (FE), ¥ ? E)

on B (F, L) are identical.

In the following, also we shall use the concepts of shrinking and boundedly
complete Shauder basis. A Schauder basis {up, uj } g = 1 in the space E [G ] is
a shrinking basis if {u;, } o = 1 is a Schauder basis in [E", 8 (E’, £)]. The Schauder
basis {up, U} n = 1 is a boundedly complete basis if for every sequence

oo
{om}p = 1
in KK such that the set
k
Z ayup , kelN
n=1
is bounded in E, the series
o0
Z oyuy
n=1

converges in E. If {up, up} o = 1 is a Schauder basis in the semireflexive space
E [By:] then {upn, up 5 = 1 is shrinking and boundedly complete. Conversely:
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il a space E [G ] has a shrinking and boundedly complete Schauder basis, then
L [6:] is semirellexive.

Theorem 1. Let NP, p = 1, be a Montel echelon space. Let u*, r 2 1, be an
echelon space such that u' is reﬂexive. Then {‘ci ® ¢ e ® ¢} T;(i, D=10sa
shrinking basis in the spaces \P ® u' and NP ® (u")~.

T m

Proof. Let H be pf or ()% Let E be the space AP @ H and E be its completion.
n

By proposition 2, it is enough to show that, given f=(¢jj) e B (WP, H) = l-, the
sequence

n
fp="t1 2 cije; ®¢; ., neNlN )

converges Lo zero in 8 (E’, E).
l.et us suppose that this is not truc. Then, noting that in the case
E=N o,
w
E is dense in the metrizable space E, and using theorem A in the case
E =N 8w,
w

always exist a real number € >0, a bounded sequence {2y } o= 1 in I and a sub-
sequence of { £ } 5°= | (again denoted by { fy } 5= 1) such that

VineNI|<gy, fa>>€ (10)
Let [, = (ci"j) be the infinite matrix representation of £, n € IN, andz,, ne N, be

hn

m= = (xh)®ORh) (11)

h=1

The proofl of theorem 1 will be realized in the following steps:
1) Forevery i e N, we have

lim (cf)j=g =0 inl% (12)
n->oo
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n

Proof: Let i € N be fixed. Given h € IN, if n > h?, there is jo = h + 1 such that
Cij =

0if 1 <j<jo and cfj = ¢y if j = jo.
As H is reflexive,{ej}; = 1 is a Schauder basis in HY. Then (12) follows becausc
(cu);,o= ] € Ha.

2) For every i € IN we have

. gl | 2
v>00 peEN j=1

o0 . hn
lim sup X ¢k

n n
Xih Yih | = 0

(13)

Proof: In the perfect space H, the normal hull of a ¢ (Il, H*)-bounded set is
o (H, H%)-bounded. Then, by (12), it is enough to see that

hp
L=1(zZxf yj'}l);‘;], nGINICl-l
h =1

is 0 (H, 11%)-bounded. Let (w;) be in H%.Then ¢ ® (wj) € E" As{zp)n=1
is a bounded sequence in L, we have

o0 hp
2 w2

n n
sup Xih ¥ih
i=1 n=y o7}

ne N

hp o

\ n ~
> xih 24
h=1 i=1

= sup
ne IN

n .
Yih Wj

sup 1<izp,ej ® (wj) >1<oeo
né iN

and L is o (H, H%)-bounded.

3) Foreach n e-IN, there js my, € IN such that

hq oo
p2 z

mp
~ Joon
, izl v
h=1 j=1 i=1

e<

(14)
Proof: By (10), (11) and (6), given n € N we have
hn

z
h=1

oo o0
=1 i=1 9"

=6
i
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Let Ty be the sequence obtained from (x1,)f = | making zero its u first com-
ponents. Then lim Ty, =0in AP, As fy € £ (AP, HZ) and (y}},) € 11, we have

u->oco
n n o0 oo
lim 1<(yjp), fa (Tgp) > I= lim | Z T XY |=0:
u>oo u»oo |j=1 i=u
Hence there is my, € IN such that
fin ped & n.n.n
P2 . z . z Cijxihyjh <6—¢€
h=1 j=1 i=mp+l

and then (14) holds.

4) There are strictly increasing sequences {v (s), s € N | and {m (s), s € N
in N such that

v (s) 00
VseN, T sup 2 |°’i}‘(”|

€
<— (15)
i=l neN j=1 2

hn
2 xbh v
h=1 )

and

v(s+l) oo hm(s)

% r 0z M) ms) ymis) 16
i=v(s) +1 j=1 h=1 1 ih yjh ( )

€
Vse N,—<
2

Proof: By (14) therc is v (1) e N such that

v(]) oo hy
z X X c]xilhyjlh

i=1j=1 h=l

and by (13) there is m (1) such that

v(1) oo
T sup X Ic;}’(l)l
i=1neiN j=1

hp
z

n n
Xih Yjh
h=1

€
< —
2

Again by (14), there is v (2) > v (1) such that

T MmO gy m) e
p I > ¥y il m
21521 ey 9 Mk i

e<
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Hence, for s= 1, (15) and (16) hold. Let us suppose that
vi<v(2Q)<..<v(s+1DDandm (1N<m(2)<..<m(5)

arc defined satisfaying (15) and (16). By (13) there is m (s + 1) > m (s) such
that

v(s+l) oo ( 1)| hp €
T sup ¥ |t X x| <7
i=1 neNj=1] | lh=1 ! 2

and by (14) there is v (s +2) > v (s + 1) such that

h
v(;-:+2) °; m§+ 1) c?j](s +1) xﬁl](s +1) y?ll(s +1)

i=1 j=1 h=]

€<

Then, (15) and (16) hold for s +1.
5) By proposition 2, {¢; ® i }\T(i, D=1 is a Schauder basis in

L, o (&, E)] and hence lim f, =0in o (E’, E). L being barrelled (proposition

n-> oo
1), the sequence { fj; } = 1 must be equicontinuous. Then there arc ko € IN and
a 0-neighbourhood V in 11 such that

Vone N feEy v (17)

Let us suppose that a¥ = (a}‘) and bX = (bX), k € I, are the echelon se-
quences which defines AP and u® respectively. As {z} 7 = 1 is a bounded se-
quence in L, for each k e IN there is a real number My > 0 such that

Vne N, (Nk ® py) (zq) <Mk
Then, for every k and n in N, there is a representation of 7,

hnk
m= 2 ) ® (V) (18)

h=
such that
hnk

® 1
VneN, = ( z |x;1hk|p a}‘) /p pv((yﬁxk)) < Mg (19)
h=1 \i=1
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Let now {d | f’ ko D€ a sequence of positive real numbers such that

(20)

/]

z L
O

2 ke

ind let us define foreveryk € Nandse IN

My dg \P
> .a}("} @n

Tks=3ieN/v(s)+1< 1<v(s+l)‘md.1l ><
€

Given a set 1D C T, for every (xj) € w we consider the scquence (x;)
such that Xj = x; ifi € D and X; =0 if i ¢ D. Now we deline the sequence in I

hp
Iy = 2:1 ) ® V) - neN

Then we have:
6) Fork = kg, s ¢ N and D-C Ty itis valid the inequality
(22)

Vne N., (Ng, ® py)(If) < y
k

Proof: By (7). (8) and (18) one has
hnk
VneN , Jp = Z‘

I

(x5! )®(y)

and by (19)

hnk .
{2: l l‘lkp k) Ip Py ((y;lhk))>

Mg> X
h=1 ieD
Mg d¢ bk . / My dg
>— ¥ ( zl nkip o) VP py (k) > (Nky ® py) (UD)
€

€

and hence (22) follows.
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7) For each s € N, there is i such that v (s) + 1 <ig <v (s + 1) and for all
k =Ko, iy ¢ Tis.

Proof: If 7) were not true, there would be natural numbers kq, ks, . .., ky
greater than kg — 1 such that
t t
{i/vE)+HI<ISv(E+H D)= U Tg,e= U Dy
u=1 u=l
where the sets Dyg, Doy, . . ., D¢g are pairwise disjoints and each Dyg C Tkys

u=1,2,..., t. Then, by (16), (17) and (22)

¢ t oo hpy)
—< 3 3 ¥ » Cﬁl (s) X;Il'_ll(s) yﬁ'll(s)
2 u=1]iebyg j=1 h=1 .
1 ! o hm(y)
< z ) b3 » . m(s) m(s)
o~ sup Cjj X Yjh

1 (cij) € £} v | ieDuy j=1 h=1

If
M-—o

t
sup [, @)>]= 2 ko (kg @ VOB

u=1 (LU)ELk v u=1
CE ke <kt
u=1  dg 2ky 2

which is a contradiction. ~

8) £nd of the proof of theorem 1: By the step 7) we construct an infinite
sequence { i} § = | such that

My dg\ P
Vse N , Vk=>k, , a* < ~k Tk 31!‘0
S

1g €

which is a contradiction with the fact that AP is a Montel space and hence the
sequence ak = (a%‘), k € N, is strongly increasing. q.e.d.

Theorem 2. Let 7\*’ =1 be a Montel echelon space and u , 12 1, bean echelon

space such that u' is reﬂextve Then {e; ® ¢js € ® eJ b ¥ (. j) = 1 i a boundedly
complete Schauder basis in \l ® uf and AP ® W~
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Proof. Let 1 be the space u' or the space (u’)” and E = \P ® H. Let us suppose
m

that { 0 } ?(i, j) = 1 is a sequence in KK such that the sequence of partial sums
n
Sh = 2. ojei®e , nelN
v, =1

is bounded in E. The proof will be complete if we show that {S,} 7= isa
Cauchy sequence in E.

Let us suppose that {S; !5 = i is not a Cauchy sequence in E. Then there
are a real number e > 0, an cquicontinuos scquence {f, } 7 = 1 in E; and two
strictly increasing sequences {ny } k=  and {my} F= 1 in N such that

ng <mg <m{ <ng,; VkeN (23)
and

|<Smk Sny > fk>1>¢ VkeN 29

By theorem I, {e; ® ¢j, ¢; ® ¢} T(, j) = 1 is a shrinking basis in L. Then,
for each f = (cjj) ¢ E', the sequence
n
T gjei®e VneN
v (i, j)=1

is B(E’, )-Cauchy in E". Then { S, } 7= 1 is o (E, E')—Cauchy in E because

m m
l<Sm Sp, > |= 2 i cij{ < sup (< S, ) Cijei ® e>
y(i,j)=n+1 ke N Y(.j)=n+l
Hence, if we put
my
Zk=Smk—Snk= z ajjc; ®ej , ke N
w{lj)=ng+1

we obtain

limzx =0 in o (E,E) (25)

k+»o0



274 J. A. Lopez Molina

As H is a reflexive space with Schauder basis, H* has a Schauder basis. Then E is
separable and ¢ (F', E) is metrizable on the cquicontinuous subsets of L. In
consequence, we can take a subsequence

tat Ty

of 1t T= 1 which o (E’, E) -converges to f ¢ E". By (25), there is to € N such
that

€ €
V= to, |<zpy, n, f>|>|<znt,fnt>|-|<znt,f>|>e—-—2—=?

Then, putting g, = {, -~ [, n e N, and taking a subsequence if it is ncccesary, we
can suppose that

lim go =0 in o(E,E) (26)
n-»>oo
lim z, =0 in o(L ) 27)
n-»oo
€
VneIN|<zn,gn>|>; (28)

Let gp = (cﬁ) be the infinite matrix representation of gy, n e N, and let us
define for cvery i, s € IN the set

Fig={je N/ng+ 1<y (i,j)<mg}
The proof will be completed in the following steps:

1) Foreachie N

lim  sup I X o5¢|=0 (29)

n»oo se¢ N jeTis

Proof: Fixedie N, g, (¢j) = (cﬁ)}x’: 1 € % Given (wj) € H, using (26)

[+ <]
y N 1)
2. w](’ij
j=1

0= lim I<e¢ ® (wj),gn>1 = lim

n>oo n - o0
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and hence

lim (=) =0 in [HE o (% W) (30)

1 >o0

11 being pertect, for each (wJ) e HY, there is (w;) € H” such that ajjwj =lajjwjl;
asef ® (w e F and{Sy} o n=18$34 bounded sequence in Li, we have

m
sup Z lawil< sup I<Sn,c1®(w)>l<°°
m=i? j=1 ne N

Then (aij);-x;l € 11I; as (30) also holds in the normal topology of the perfect
space H%, we have
oo
lim ¥ lagcfjl=0
n » oo _' =1

and (29) follows {rom (23) and the definition of Fy,.

2) There are two strictly increasing sequences{v (s)} — | and {t (s)} 5= 1 in
IN such that

¢ t(s+1)
—<| Z ¢ 1‘1(5) 1)
4 li=t)+1 jeFjy(y)

Proof: By (28)

mj 1
z @ij jj

€
—< |</.1,g1 >l=
2 v =ny+1

Let t (1) =max {i e N /there is j € Nsuch that n; + 1<y (i, j) <m, } and
v (1) = 1. Let us suppose that we have defined t (1) <t (2) <..<1t(s) and
v(D<v(Q)<..<v(s—1)fors=1 insuch away that (31) holds. Using (30),
there is v (s) >v (s — 1) such that

t(s)
z sup
i=1 helN

> a”- (‘u(\;)

jeFin

< 2 (32)
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Now, we define
t(s+1)=max {ie N/ thercisje N such that nye) + 1 < ¥ (i, j) <myg) b

Then, by (28)

¢ My(s)
_ I |_ * ‘e -.Y.(s) <
< I<ty(s) sy > 1= 2 ajjcij |
2 W (i, §) = ny(g) 41
t(s) t(s+1)
<|Z Z aij c}i(“) + z z 0 c}’j(“)
i=1 jeFjv( i=t(s)+1  jeFj v(s)

and by (32), (31) holds for v (s) and t (s + 1). From (31) we also obtain
t(s+1) > t(s)

3) As I is barrelled (proposition 1), by (26) the scquence {gn} 7 = 1 is
equicontinuous. Then there is kg € N and a O-neighbourhoood V in H such that

Vne N gn € B}V (33)
Let a* = (ag‘) be the sequence of echelons which defines AP. From boundedness

of sequence {z,} o = 1 in E, we obtain a sequence{My}x =1 of positive rcal
numbers such that

VnelN , VkeN (Nk ® Py) (zn) <My (34)

and from (34), for every k, nin N we obtain a representation ol 2,

hnk

tm= I =I5 ® (7)) (35)
N =

such that
hpk | oo
1 ‘

VkelN, VoeN = (T wf4PE)P o0 iy <me (36)

h=1i=1

Now, we choose a sequence {dy} = ko Of positive real numbers such that

bt { i
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and we define fork =2 kg and s e N the set

M di\ P
Trs={ie N/1(s) +1<i<t(s+1) and aik>< k “) .ai‘OI
€

If, for D C Ty, we define, equal as in theorem 1, the elements

n fnk --nk nk .
Ip= 2 ) ® (yjh )= X X @jci®c¢ , nelN
h=1 ieD jeljp

(this equality holds by (7), (8) and the original definition of 7,), we obtain,
exaclly with the same reasoning

VneN  (Ng, ® py) (UB) <f— (37)
k

4) For each s € N, there is is € IN such that t (s)+ 1 <ig<t(s+1)and i
belongs to no Tygg withk 2 k.

Proof.: In another case, and as in theorem |, there would be in N ky, k,,.., k¢
higher or equal to ko and pairwise disjoints sets Dys C Tk 5, u=1,2, .., t such
that

t 1
(/1 +1<iSts+D) )= U Tge= U Dy
u=1 u=1
Then, by (31), (33) and (37)
€ t(5+1) ( t
—<| = T e g T z RPN O )
4 jist)+l jeFiv Y u=1]ieDys jeFiyi) - ©
t t
= I |<JB JO>I< x sup | <IN, (e > =
Lol us u=1 (cij)el?ﬁo'v us

t t €
Z ke (N J1YO)y < kg T — <ky —=—
u=1] 0( ko ® pV)( Duy 0 u= dku ° 8k0 8

which is a contradiction.
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5) End of the proof of theorem 2: By 4) we can construct an infinite
sequence {ig} ¢ =1 in IN such that

My di \P
Vk>ky, VseN a}‘<( K “> . ko

s € 1g

which is impossible because, AP being a Montel space, the sequence of echelons
a¥ = (a}‘) is strongly increasing. g.e.d.

3. CHARACTERIZATION OF REFLEXIVITY.

We began with a new proof of the classical result of Holub (j2]) with a
method which we shall use later.

Theorem 3. (Holub, [2]) If p > 1, 1> |, the tensor product & @ 2" is reflexive
m
ifandonly ifp>1/(r 1).

Proof. Sufficiency: If A and B are the closed unit balls of P and 2%, aco (A ® B)
is the closed unit ball of P ® 2%, By the theorems of Krein and Eberlein, the
m

reflexivity of this space will be proved if we show that every sequencein A ® B
has a weakly convergent subsequence. If p” and r” are the conjugated numbers of
pandrand {x" ® y"} 5 = | is a scquence in A ® B, by reflexivity or 2 and
", we can suppose, passing to a subsequence if it is neccesary, that { x™} 5 = 1
converges to x in o (2, @) and { y™} 7= 1 converges to y in o (2%, 7). Let f be
an clement of B (2P, &7) = £ (2P, ) (by closed graph theorem). As

p>1rl(r 1) =r,

by Pitt theorem, ¢ £ (27, !2") is compact. As [ separable and ¢P is reflexive,
by Schauder theorem on compactness of the adjoint {”of f, we have that

™ v =1

converges to T (x) in . As |y} o =1 is bounded in the space £*, we obtain that
{x® ®@ y" 2| convergestox ® y in o (2 ? 2r, B (2P, 29)) because

I<x"@y" x @y I>I<I<KE" x) @y F>I+I<x ® (y*-y),f>I=

=<y f(x® x)> 1+iI<y vy, [(x)>]
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Necessity: Let us suppose that p <1 =r/ (r — 1). We follow the previous
notations. Now the identity map I from 2" into 2 is not compact. tHence and
by reflexivity of 2P there is in A a o (20, 22 )}-convergent sequence x™ = (x]'),
n e N, to x =(x;) ¢ A which has no convergent subsequence in 2. In particular,
as X € &, there is a real number € > 0, a subsequence of {x"} o = | (again
denoted by { x"} 3= 1) and a sequence z" = (z['), n €Nin B such that

VnelN <z x™ - x>1>¢ (38)

As & is reflexive, we can suppose, passing to a subsequence if it is necessary,
that {2™} o= | o (2, &)-converges to z = (z;) ¢ B.

If 2 @ % were reflexive, there would be a o (2P ? e, B (2P, 2))-con-

ll}°°

m -~

vergent subsequence of 1x" ® /"1 T - 1 C A®B to the limit w e &F ® £~
n

We shall denote again this subsequence by {x" ® 2"} T = 1. As{e; ® ¢j,

ef ® ¢j }\;O(i_j) = 1 is a Schauder basis in ° ® 2" and for every i, j in N we have
' "

<w, e ®¢>= lim <x" ®z",¢f ®¢j>= lim x{'zf = x5y
t>oco n->oco

we obtain w=x ® 7. But 1 e £ (&P, ) = B (2°, ") (closed graph theorem).
Then

<x"®@ " x @2I>=<" X" >_<7,x>=<" x" x>+ 2, x>

and hence, <z", x™ - x > must be arbitrarily small with n, which contradicts
(38). Then & ® 2 is not reflexive. q.c.d.
m

Theorem 4. Let NP, i, p = 1, 1= 1, be echelon spaces. Then:
1)A! @ u! is reflexive if and only if A and ut are reflexive.
7
2) Ifr>1,A! % u® is reflexive if and only if \! is reflexive.
Hifp>1,r>landp>x/(r - 1), AP §r> ut is always reflexive.

4) Ifp>1,r>1and p<r/(r -1), \P & ' is reflexive if and only if \P
w
or " is a Montel space.

Proof. 1) and 2). If A! is reflexive, then it is a Montel space. If ! is reflexive, by
proposition 2 and theorems | and 2, A' ® u has a shrinking and boundedly
n



280 J. A. Lopez Molina

complete Schauder basis. Then the Frechet space A! @ u' is reflexive. The reci-
. T

procal statement is obvious.

3) By theorem 3, for every k, h ¢ IN, ?\ﬁ % pi, is reflexive. As
P &yl = lir P o r
)\?ﬂl—lil_ll)\k§11117

the Frechet space AP ® u” is reflexive.
m

4) If AP or u" is Montel, the reflexivity of AP @ u' follows from proposition
m

2 and theorems 1 and 2 as in 1) and 2). Conversely, il neither AP nor ' is

Montel, there are sectional subspaces ¥ and G of AP and p® isomorphic to £2 and
" respectively. As T and G are complemented in AP and uf, AP ® u has a sub-
n
space isomorphic to 27 ® £, which by theorem 3 is not reflexive. Then AP ® uf
m m

is not reflexive. g.e.d.

Theorem 5. Let \°, u*, p > 1, 1 21 be echelon spaces. Then:
1) A % (uM)® is reflexive if and only if \! and u* are reflexive.
2) Ifr> 1, A 6.1? (") is reflexive if and only if \! is reflexive.
3)Ifp>1,1>1and p>1, NP Qr? 5% is always reflexive.

HIfp>1,1>landp<r, NP {5;? (uD)® is reflexive if and only if \P or ' is
a Montel space.

Proof. 1) and 2). Using proposition 1, the proof is the sume as in 1) and 2) of
theorem 4.

3). As

=P & N _ P & o, I\
E=2 & ()" = lim & & (1)

by proposition 1, it is cnough to sce that every Ex = ?\ﬂ ? ®")%, k ¢ N is semi-
reflexive. As \; and (u*)* are DF-spaces, givena bounded set M in Fy, there are
bounded sets A and B in Kﬁ and (u")% such that M C aco (A ® B). By Krein and
Eberlein theorems, the proof will be complete if we show that every sequence
in A ® B has a o (Eg, Eg)-convergent subsequence.
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let {x" ® y"i %=1 beascquence in A ® B and let h ¢ IN be such that
B C Iy ((up)*) = (u})" As A} and uy are reflexive Banach spaces, we can choose
a subsequence, that will be denoted as in the beginning, such that

im x" = P P APY
nl};”;o X xedp in oA (A)) (39)
and
lim y"=ye(up) in o ((up) uh) (40)
n » oo

If Fe BOY, WND=L (AL, u') (by closed graph theorem), since p >, the map
Inof e L (AL, up) is compact by Pitt theorem; as (ALY isseparable, by Schauder
theorem on compaciness of the adjoint of (I of), we obtain that

{nof) GMin=)
converges to (I o f) (x) in i, Since {y" | 7= 1 is bounded in (i), by (40) we
deduce from
<X"®y' x @y, >=<@E"-x) @y, {I>+<x® (y" y)f>=
=<y " -x)>F <Y Ly, (X)) >=<Y", (ho D) (x" —x) >+
+<y" -y, (lhoN(x)>
that {x" & y"} n— | convergestox ® y in o (L, Ei).

4) Sufficiency: if AP is Montel, the proof is the same as in 1) and 2). If ' is
Montel, we argue as in 3) with the same notations. For cach k € IN, given the se-
quence { X" @ y™ | o= in the tensor product of bounded sets

A ®BCA ® ()Y

being ?\p a reflexive Banach space and (u")* a Montel space, as u' is separablc by
Smullan lhcorcm we can choose a subsequence, again denoted by{x ® y' oy n=1
such that { x"} ¥ = | (.onver},t.s to x in o (AR, (AD)) and {y" } %=1 converges to
y in o.((u")¥, u"). Since u” is a reflexive Frechet space, (u")* is ultrabornological.
Then, by closed graph theorem, every f e B (?\p (1")%) can identified with an
element of £ ((&')*, (AD)). Hence { f (y" ) 5 = 1 converges to f (y) in (AR
As{xPt o isa hounded sequence in AP, from
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<x"®y'" x@y,f>=<x"® (Y'-y)f>+< K" =x)® y,{>=
=<x" f(y" - y) >+ <" —x), f(y)>

we deduce that {x™ ® y"} 7’ | converges to x ® y in o (I, Lk). The proof
finishes as in 3), using proposition 1.

Necessity: Let us suppose neither AP nor " are Montcl spaces. Then there
are complemented sectional subspaces F and G of N’ and u® respectively such that
N =ePo Fandp =070 G. Then,ifr'=r/(r 1),(f)*=80" oG’ . Asp<r, by
theorem 3, &P ? 27" is a not reflexive subspace of AP @3 (")~ Then AP 61? uHe*

is not reflexive. g.c.d.

Theorem 6. Let \P, ™, p = 1, 1 = 1, echelon spaces. Then:
1) (A" Qg (u")* is reflexive if and only if \! and y* are reflexive.
) Ifr>1, (A1)~ ? W5~ is reflexive if and only if \! is reflexive,
3)Ifp>1.r>1andp/(p 1)>1, then (AP)* % W"® is always reflexive.

HIfp> 1L > 1andp/(p-- D<t, A\P)Y @ (") is reflexive if and only if
T
AP or u' are Montel spaces.

Proof. 1) and 2). Necessity of 1) and 2) is cvident. For sufficiency, it is cnough
to see, by proposition 1, that (A')* ? (MH%, r> 1, is semireflexive. Being A!)*

and (u")® DF-spaces, by Krein and Lberlein theorems, it suffices to prove that
every sequence {x" ® y"} 7= 1 in the tensor product A ® B of the bounded
sets A and B of (A\')® and (u)“ respectively, has a weakly convergent sub-
sequence. If A! is reflexive (and u' in case 1)) being A and " separable spaces,
by Smulian theorem we can suppose, choosing a subsequence if it is necessary,
that {x"} 3 = 1 is o (A\})% A')-convergent to x € (A')® and {y™} o= 1 is
o ((uH)%, u")-convergent to y € (uF)®. But A! being reflexive, A! and (A!)* are
Montel spaces. Then { x™} 7= 1 converges to x in 8 (A})%, A!). Consequently, il
fe B LY, W) =L (A)* u) (by closed graph theorem, being A! Frechet
reflexive and hence (A')* ultrabornological), we have that {f (x™)} 5 = | has
limit £ (x) in p". Since p® is barrelled,{ y*} 5 = 1 is an equicontinuous sequence
and hence {x" ® y"} :°=1 is weakly convergent to x ® y because
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<K"® Y x @y, [>=<(" -x) ® yL{>+<x ® (y" -y), f>=
=<y f(x"-x)>+<y" -y, f(x)>

3) Since AP and u' arc reflexive, (AP)® and (u*)® are barrelled. Hence
ar)* ® (uN® is barrelled and we argue as in 1) and 2) with the same notations.
Now, glvcn the tensor product A ® B of bounded sets of (\P)% and (u")*, we
choose k € IN such that A is bounded in the reflexive space (7\") and B is bound-
ed in the reflexive space ([J.k) Let {x® ® y™} o — | be a sequence in A ® B.
Choosing a subsequence if it is necessary, we can suppose that { x™ g 1 has
limit x in ¢ (()\E)', AP) and {y"} =1 haslimity ino ((].ti)', uy)- I

fe B(AP)E, WHF) =L (W), ub)

(arguing as in 1) and 2)), let fic be the restriction of f to (AR). As(AD) isiso-
morphic to & withp =p/(p 1) “k is isomorphic to 27 and p’ > 1 by hypo-
thesis, by Pitt theorem, Ik ofx € £ ((A})’, w3 ) is compact. Then by Schauder
theorem on compactness of the adjoint of Ik ofk and by sepambllxly of)\p the
sequence { (I o fx) (x™) } 1 = 1 converges to (Ig of) (x) in up. As{y™ T= 1 is
a bounded sequence in (yk) from

<"y —x @y, I>=<E" x) Yy, F>+<x @ (y"—y), [>=

=<y" F(x" x)>+<y" -y, F(x)>=<y", (Ig ofi) (x" -x)>+
+<y". oy, f(x)>
we deduce that {x™® ® y"} 7' | is weakly convergent to x ® .

4) If AP is a Montel spacc, the proof is the same as in 1) and 2) replacing
A! of 1) and 2) by AP, Then the result is also proved if u' is Montel. Conversely:
if neither AP nor u® are Montel spaces, there arc complemented scctional sub-
spaces [ and G of AP and u” such that A’ = P & F and ' = 7o G. lHence, if
p’=p/(p -1)andr'=r/(r— 1), we have AP)*=2P" o F and (u)* =2 G
As p’ < 1, by theorem 3, 2P° % 2% is not a reflexive subspace of (AP)* Qﬂo mH=

In consequence, (AP)* @ (u")” is not reflexive. q.c.d.
m
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