H” + Ly IN SEVERAL VARIABLES

by
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1. INTRODUCTION.

Let De be a bounded strictly pseudoconvex domain jn C" with C? boun-
dary and E a subset of 8 D. A= A (D) is the algebra of the domain D (functions
which are holomorphic on D and continuous on D), L = L (D) is the algebra of
continuous and bounded functions on D and L) is formed by those functions in
L which extend continuously to E. H™ = H™ (D) is the algebra of functions
holomorphic and bounded on D and HE =N NLE, the algebra of functions in
1™ which extend continuously to E.

In this paper we prove that H™ + L;: is a closed subalgebra of L, with
respect to the sup norm on D. The proof {ollows the pattern of the one variable
casc but at several points different techniques are nceded.

2. AN APPROXIMATION THIEOREM.

A crucial point in proving that HH™ + Ly is closed, is the possibility 1o ap-
proximate a function in H™ by functions in HE, uniformly and boundedly over
the sets of D which are at a positive distance of E. The following therorem was
proved in [9]; we give here a different proof that does not need the solution of
8 with estimates.

Theorem 1. Let D be a bounded strictly pscudoconvex domain in C" with C?
boundary, E ¢ 8 D a closed set and f ¢ H™ (D). Then there exists a sequence Fp,
of functions in H™ (D) which are analytic across E, such that IF,ll < C - I
and Fp, - f uniformly on the sets S C D) which are at a positive distance of E.
(The constant C depends only on D).
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K (z §) —
LetH (2, &) = *Pm—) forteo D, ze D\{&}

be the Henkin’s kernel of the domain D (following [6]). The function

£ |& 7||H(/v E)l

is intcgrable on @ D with respect to the surface measure d ¢, for z € D. The proof
of Theorem 1 is based on the fact that this function is also in LP (3 D, do) for
some p> 1.

Lemma ]. With the precedent notation, we have:

1
sup / £ 2zl H@&EI  do@E) <+, for 0<e < —.
zeD JOD n

Proof of the lemma. 1t is known ([6]) that there exist positive numbers 64, 8,
such that for z ¢ (9 D)5, (ncighborhood of 8 D of radius 8, ) and £eB (2 8,)
(ball of center z and radius 8, ), the Henkin’s change of variables is possible.

For z { (3 D)s, there is no problem, since ¢ (z, £) is bounded by bellow far
of 8 D. Also, when £ ¢ B (7, 6,) the integral is uniformly bounded with respect
o z. So we have to bound, independently of z, the integral

T9? (2, B2+

1§ -z
l(z)=/ : do(f) where e'=n.¢2, ze(dD)s,.
oD NB(z,6,)

We make now the announced replacement of the complex coordinates &,,
& ,..., &, byrcal coordinates tq, ty, ..., Ly n 50O that:

ti (2)=0;t; =p (&)~ p (») and 1, =Im ¢ (z, §),

p being a defining function for D, strictly pluri-subharmonic in a neighborhood
of D. We have the estimates:

do<Kdty...dtyn;lE 2<|t;|+ @2 +...+13,)” andalso ([6]):

W2=Re2p+Im? o= (lp @) + 13 +... +12,)* + 3.
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Consequently we obtain: I (z) <1; (z) + I, (2), where I, 1, are given by
the following integrals:

I @) fp@)dty ...dtyy

Z) = - o
‘ (o O + & +---+ By + G piave
ODNB (21 64)

I, () G+...+8)%dt, ... dlyy

Z) = - e e e e

2 o @ + 82+ + Gy + G /ze
ODNB(z,8,)

Letr=(12 +...+1r2,), t, = r.cos @ and let w be the surface area of the
(2n  3)-dimensional unit sphere. Then in spherical coordinates we obtain:

52 n
a l'I‘2 n-2 (sin a)z n-3 y
lz (Z) < w. r (r4 +r2 ] cosz a)l'l/2+(5' «,
(o] [$]

and putting s = cos o.

62 1
n_n-z (] SZ )n-Z <
L (7)< w. dr r_Zé' (-1_2 _-I: -s.';-)-"/ﬂ o ds
() -1

2 1
r.dr ds
S w- Y @ ayed
) -1
o)
It h ds KQ®) for A> 112 (%
we usc that —_— - = - —— for
@ +sR (2r)
- o0

(see [5] p- 159) we arrive to:
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62

l-1-'). [ K
< . - .. sl-ag
I, ) <K e dr e - 82

0

which is bounded when 1 -- 4 ¢’ > 0 i.c. when €< 1/2n.

For the first integral we have:

n-z ds
L{E)<w. |p @) / dr / |P(£)| >Z_ In/2+ c-<
+ 52
62 1
=W 2 €’ 2 1+er
T4 ) ]
T

62
dr
<K.w-.|p @)l _ 5 0 according to ().
2c (Ip(t)l_ + r)
0
r
From this incquality we obtain:
6y
’ " ) r-dr
2)<K.w.|p @) - <
1() ‘D( (|p(z)|+[2)l+zc
(o]
]
<K.w. b @ Rl <
<K.w-|p(z e <
(o (I +1*)' 7
(o]
<K-w-1p () oo
<K.w.|p @) — "
(Ip (@)1 + 1)+
(8]

since (1o ()| +12)' *2¢ > (lp ()| + ) ** when 2 e < 1/2 icc. € < 1/2n.
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Finally we use the equality

/ xK dx VT (k)

YT = i QA I+ 1) (a, ¢ > 0), ([5] p. 185) to ob-

o
tain:
I l .
I, @) <K |p @)\ —=K'lp (z2)\* which is bounded.
lp (z)1™

Proof of theorem 1. We fix f ¢ H™, S C D at a positive distance of E and e > 0.
We have to find a function F € H”, holomorphic through E such that

IF—flilg<e and HFI < C.Ifl

We begin with a sequence fpeli (D) (functions holomorphic in a neigh-
borhood of D) such that fy, (z) - (z) forallz e D and If, | <M. If ll, where M
depends only on D (same proof that approximation theorem of {6] but applied
to a function I ¢ H™), Since (f,) is a bounded set in L™ (3 D, d o) we may take
a parcial scquence, let be still (fy), such thatf, - g, ge L™ in the weak topo-
logy (with respect to L'). It follows that f, —» g weakly in L? and we may take
some convex combinations (g, ) of the fy’s such that g, - gin L? and we have
also lignll <M Ifll By taking a parcial sequence, let be still (g,), we have g, - g
a.c. in 9 ). By means of the Poisson integral we sce that P [g,](2) = P [g] ()
for every z e D; since we have that P [{,] (z) =} (z) - f(2) for z e D and the
gn's are convex combinations of the f,’s we obtain P [gn] (z) - [(z)i.c.

Plg] (@) = 1(2)

from what it follows g (§) = f () a.e. in @ D. So we have obtained g, ¢ H (D)
with g, 1< M . Ifll and g (8) - f (%) a.e. in @ D; in particular, g, - { in
LP (3 D, d o).

Now we take a C™ function x on C" with value Oina neighborhood of E,
value | in a neighborhood of S and 0 < x < 1, and definc the sequence:

hy (2)= Ty (f -8n)= /?)D XEOUCE-egnEYH(Z Hdo(®)=

X () (£ (2) — gn (n)) + /an @ -x@)EE—gn EYHE ) do(8)
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The functions hy are in H™ (D) and cxtend analytically across E. More-
over, if 1x (§) — x (z)l <K-| £ - z| and we use Schwarz’s inequality forp=1 +¢'
with0<e'<1/2nand p* +q! =1, we obtain:

thn—x(f- gn)lp < sup j IXEF X ) - gn())-[H(z E)lda(®) <
3D

5 -
f IE—ZI"lﬂ(z,E)iPdO(E)I l f I6&) - gn(®)I%do(®)]"
D ab

<K,- sup
zeD

Now, by Lemma 1, there is some constant K such that:
thn = x € - gn)llp <Ky K If —gpllq
By the coice of (gy,) there is some positive integer ng such that
by --x(f-gn)lp <e for n > ng.

So the function [ = hy + g, (for some n > ny) is in 1%, is holomorphic
through E and verifies:

IF--fllg= sup |hy +gq —fl= sup |hy +x(f gn)l <e

ze S zeS
Morecover:
IFllp < lhpllp + lgnllp < W, -x (E-go)lip + Ix (T = gn)lp +M IFI<

<e+ Ifl+2MIfl=c+2M+1)-Ifl<C- Il

3. ALOCALIZATION PROP}RTY.

Let Y be the spectrum of the algebra H™ (D), where D is a bounded strictly
pseudoconvex domain in C". Since A C H” we have a continuous projection
m: Y = D=S8pec(A), givenby m(9)=A=(N1,..., M) with\j=¢ (z)if¢ecY.
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For every A e D let Y, = 7 (A) be the fiber of Y over A. If A e D this fiber re-
duces to the point A, as it is easily seen writing a function { € H™ such that
f(A)=0as:

f@)=(1 Mg @+---+(2n—An)gn (2) withgieH .

The fact that this decomposition is possible may be proved in the same manner
that in case f €A ({8}).

Now we want to show that if f e H and ¢ € Y with A ¢ 9 D, the action
¢ (f) of ¢ over f depends only on the values of f near A

We begin by observing that for a function [ ¢ 1™ which extends ana-
lytically through X € 0 D and for every ¢ ¢ Y, we have ¢ (f)=f (A). To see this
is true, it suffices to take a strictly pseudoconvex domain D containing DU A
suh that f e H™ (1) ([81) and 1o apply now the preceding decomposition, in case
f(\)=0.

The fact that ¢ (f)=f (\) for every ¢ ¢ Yy is also true for a function f e H™
that extends continuously to A. This is a consequence of an approximation pro-
perty which is a particulr case of a theorem of [9]. We give here a direct proof
using Henkin’s kernel.

Theorem 2. Let D be a bounded strictly pseudoconvex domain in C" with C?
boundary and X ¢ 3 D. Then every function f ¢ H” (D) wich extends conti-
nuously to A can be approximated uniformly on D by functions in 11 (D)
which extend analytically across A

Proof. Let us suppose f (A) = 0 and, given € > 0, we shall find I e H™ analytic
at Awith If Flp <e.

Let W be a neighborhood of A such that {f (2)| < ¢/2 when z ¢ W and let us
take a C™ function x, 0 < x < I with value 1 in a neighborhood of X\ and whose
support be contained in W. Consider now the function defined by

h (2)=Ty f(2) = f X (&) £ ()H (2 £) do (&),
oD

so that h ¢ H™ (D) and h is holomorphic in 4 domain D that contains D and
9 D \ supp (x). We take also supp (x) small cnough so that little translations of
D in the direction of v, the outward normal 10 8 I) at A, will conver D.
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Since

f(z)-h(z) = [ (1 -xENIE (@ Edo(E)
oD

the function f — h ¢ HH™ and is holomorphic at A. If we find a function k ¢ H (D)
such that Ih  kllp < € then F=f— h + k isasolution of our problem. To find
k remember that we have, for z e D:

h(@)=p@)+x@)f@) where p is continuous on D.

The function x f exlends by zero to D and so the function p, equal to h off
supp (x), extends to D. For § > 0 smal}, define

h® (z)=h(z--8v) if ze D and, in the same way, p® and (x )°.
Now we have:
Ih® (z)- h(@)lp <lp® (2) - p @lp + Ix N’ () - x1) @)lp <
<lp? @) - p@I+ 1N @I+ I(xN @)1
The term lIp® (z)  p (@)1 tends to zero when 8 - 0 since p is uniformly

continuous on D. Also I(xf)? I and fix fll are small by the choice of W. So it
suffices to take k = h® for some small .

Corollary. For D as in Theorem 2, if e H™ extends continuously to A e d I)
and ¢ € Yy, we have ¢ () = f ().

In order 'to prove our local property we need to extend a character of
H™ (D) to a character of H* (U N D), where U is some neighborhood of A. This
extension is possible using the following.

Théorem 3. Let D be a bounded strictly pseudoconvex domain in C" with C?
boundary, A € & D and U an open set containing A. If £ ¢ H™ (D N U), there
exists a function F e H™ (D) such that F - fis analytic through A.

Proof. Let us take a strictly pseudoconvex domain D DD U{A} with D\Dc U,
and 0 <y <1aC™ function with supp (x) C U and y equals 1 in a neighborhood
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of D\D. Then, w=— fd xisa(0, 1)}form, 3-closed and bounded on D. According
to [7] there is a bounded function u on D such that 3 u = w. The function
F=u+ f xis bounded in D and @ F = 0. Also F - f is holomorphic in a neigh-
borhood of A since we have F f=uandd(F f)=3u=- fd x=0 near \.

Theorem 4. Let D, A ¢ @ D and U be as in Theroem 3and let p € Y, (D) be a
character of H™ (D) over A. Then, there exists a character ¢ of the algebra
H™ (D N U) such that ¢ (F) =$(Flu) for every F ¢ H™ (D).

Proof. For every f € H= (D N U) we can take, according to Theorem 3, a func-
tion F e H™ (D) such that F - - fis continuous at A and (F - f) (A) = 0. Define

?(H=¢ (F) foreveryfeH ™ (DNU).

This definition is independent of F because if we take also FeH® (D) with
(F-- ) (\) =0, we have that ¥ — F = (F — ) + (f — F) is continuous and va-
nishes at A. By corollary to Theorem 2, ¢ (F)=¢ (F).

Also it is easily seen that ¢ is multiplicative on H™ (D N U), since taking
F, G e H” (D) with (F - f) Q)=(G - g) A)=0 for f, g ¢ ™ (D N U), we see
that the function FG - f g = F (G — g) + g (F — f) is continuous at A and vani-
shes at this point.

Corollary 1. For f e H (D), A € 8 D and ¢ ¢ Y, there is a sequence of points
A eDsuchthat Ap — X and f(A,) - ¢ (D).

Proof. et us suppose ¢ (1) =0 and we prove the existence of A\, - A with
f (\n) — 0. In other case, we would have |f (z)l 2 & > 0 in some neighborhood
Uofd Sof' en™ (D N U) and by Theorem 4, ¢ () # 0 for every ¢ ¢ Y.

Corollary 2. Lel {f ¢ ™ (D), A € 3 D and Ict  be the Gelfand transform of f.
Then we have:
IIfllyA = lim sup |f (2)|
72> A

ze D

Proof. Corollary 1 gives [flly < lim sup If (2)l. The other inequality follows
from the fact that if A, — X and f (A,) - p, there is 2 ¢ € Y such that
¢ (f)=p.
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4. H® + L4 1S A CLOSED SUBSPACE OF L.

Theorem 5. 1f D is a bounded strictly pseudoconvex domain in C" with C?
boundary and E C 9 D is a closed set, the sum H™ + LE is a closed subspace
of L.

By a well known result of Banach spaces, it is cnough to prove the equality:

d(h, HE) = d (h, H™) forall helLg
where d is the distance corresponding o sup norm in L.

The inequality d (h, HT. ) 3 d (h, H®®) is trivial and the reverse inequality
is contained in the following lemma, in case 7 =d (h, H”) + e if f ¢ H™ and
d(, ) <n:

Lemma 2. Given D as in Theorem 5, E C 9 D, closed, h € L, and >0, let V
be the ball in L with center h and radius . Then, given f ¢ V N H there is a
sequence Fp of {functions in ll‘;’f N V such that Iy, - { uniformly on sets of
D> which are at a positive distance of E.

Proof. We give a sketch of the proof; details are the same that in Lemma 5.3 of

13}

Let Mg be the Stone-Cech compactification of D U L, so that functions in
Ly: are now continuous functions on Mg and uniform convergence on sets of D
at a positive distance of E s cquivalent to uniform convergence on compact
subsets of My \E. If f € VN ™, in order to sce that f lies in the closure of
IIE’ M V with respect to this convergence we need to prove that for any measure
M with compact support in My \E and for any real number a with

a>sup{Refgd;1:geH?:ﬂV}
we have alsoa 2 Re f fd u.

We take n° < 7 such that f ¢ V' (ball of cenier h and radius 1) a define a
continuous real-lincar functional x on HE by:

g_x_-.l{efgdp.
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Using Lemma 4.1 of {3] x can be extended to a functional ¢ on L;;, obtaining a
measure ¥ on M such that:

Refgdrv<aforeverygelpnV’
andRe fgdu=Re fgdvifge HL..-O i.e. g visorthogonal to ll‘;.;o.

Let us now consider the space ¥ of functions Twhich are Borel and bound-
ed on My, continuous on Mj; \ E and such that there is a sequence f, € Hl°.;°
with sup Ifpll < oo , f - Tuni[ormly on sets of D at a positive distance of E
and 'i\';, - [ weakly in L™ (v). Functions in F are bounded and holomorphic on
D and u — » is orthogonal to F , since

fladu -v) - [Td(u— ).

If p: F > H™ is the restriction map to D, given by p (B= f=ﬁ|), we see
that p is surjective: in fact, by Theorem 1 we can take f, ¢ llf uniformly
bonded and converging uniformly on scts at a positive distance of E to any
f € H and passing to a parcial sequence we can get also f, -» f weakly in
L™ (dv).

We have also:

. g co ,
Lemma 3. The restriction map p: & - 17 is one-to-one.

Proof of Lemma 3. Let be {; ¢ ll;’-°wnh fn - Tumformly on compact sets of
My \E, sup i, <oound f; - T weakly in [ (V) let us supposep(l) Oi.c.
fo (z) - O for every z € D and we shall see that =0 rae. or 1|L 0 r-a.c.;
since u is zero on E it is sufficient to sce thdtﬁL 0(u v)yae. WetakeyeC(E)
and show that

[fod—r)=0

and, in fact, we may take ¢ ¢ C™(D).

Consider the (0,1)-forms oy = [y, . 5-.p; they are 3-closed, uniformly bound-
ed and w, — O pointwise on D and so, weakly in L™ (D, dm). By Theorem 1.1
of [2] there are functions u, € C (D) such that 3 up = wy and up, - O uniformly
on D. If we take Iy = f;, - — up we have that Fj € Hf.;o and
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fﬁpd(p—u)=limffn¢d(p—v)=liman d(z v)+limfu, d@u—v)=0.
n n n

Now we take again the proof of Lemma 2: first of all we see that, for any
g € F with p (g) =f, the fact that If — hlil <n', implies Ih - gIL™ (v|g) <n'. It
is enough to prove the inequality

lp() -hQI<If—hl<n’

for every character ¢ of L™ (v) which belongs to the fiber over a point A € E.
Now, the restriction of ¢ to ,a'1 (H°°) gives a character of H™ ; since the cluster
values of the function f -- h (A) at A are bounded by If — hll we obtain, by Co-
rollary 2 to Theorem 4: |¢(f) - h(A)| < If--hl. Since p(g)="Ff we have$(f)=9(g)
and so [¢(g) — h(A)| < If--hl.

The rest of the proof of Lemma 2 is a consequence of this estimate and
details are as in case of one variable ([3]).

Theorem 5 may be formulated in a different context: if E C 9 D is closed,
we define L°E° to be the algebra of cunctions in L™ (3 D) which are essentially
continuous at every point of E. If we identify H™ with a closed subalgebra of
L™ (3 D) and put Hy =H™ N L}, we obtain:

Theorem 5. With same hypothesis that in Theorem 5 we have
d(h, H)=d (h, I-IE°) forevery he L‘E’

and, consequently, H™ + Ly isa closed subspace of L™ (3 D).
F.

Proof. We nced only to observe that f > being the transformation given by
Poisson integral, T = P|f] for f € L™ (3 D), we have fe Lpif fe L™ and T Tis
an isometry.

Remark. The results of Theorema 5 and 5’ are also true for E C 9 D not neces-
sarilly closed, but this generalizaton offers no new dificulty in several variables.
5. THE ALGEBRAH™ + L.

We prove, here, that the sum H™ + Ly is also a closed subalgebra of L. For
simplicily, we suppose that E C 9 D is closed.
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Theorem 6. If E C 0 D is closed, where D is a bounded strictly pseudoconvex
domain in C" with C? boundary, then the sum H™ + Lgis a closed subalgebra
of L.

Proof. Let M be the Stone-Cech compactification of D and M, the fiber of
M over A e 0 D. We shall prove that

H” +Lg={gelig] MaeHfy, forall AeE},

one inclusion relation being evident; this will prove that H™ + Ly, is an algebra.

Let m: M - D be the natural projection and put E* =7 (E). If B de-
notes the restriction of H™+ Ly to 5™, since Lj; contains all functions in C(D)
which vanishes on L one sees that B is a closed subspace of C(E*) and H™ + L,
is formed by functions in B extended continuously to M in any way. We regard
C(E) as a subalgebra of C (E™");if we prove that Bisa C (E)-module, a theorem
of Bishop ([4]) ensures that { € B when fIM)\ GBIM)\ for every A€ E, since
M, are the level sets of C ().

That B is a C (E)-module is a direct consequence of the fact that H + C (D)
isaalgebra, when D is a strictly pseudoconvex domain ([1]): if f=f; + § elI™ +L;.
with f; ¢ I and f, € L we obtain forg € C (E), or g ¢ C (D), that f; - geH™ + L;; and
fz g€ LF.'

Theorem 6’ With the same hypothesis that in Theorem 6, H™ + Ly is a closed
subalgebra of L™ (3 D).

Proof. We may do the same reasoning that in proof ot Theorem 6, substituing M
by X = Spec (L. (3 D)) and identifying L™ with C (X).

Finally we determine the spectrum of the algebra H™ + L™ C L (3 D):

Theorem 7. With the same hypothesis that in Theorem 6, the [iber of the spec-
trum of the algebra H™ + Ly over a point A€ d D is the fiber of Spec (H™) if
A € E and the fiber of Spec (L™) if A ¢ E.

Proof. The second affirmation is a consequence of the fact that every function in
L (3 D) cquals, in a neighborhood of A, a function in L‘lx To prove the first
one we need only to show that if A € E and p ¢ Y (Y = Spec (H™)), then ¢
extends (0 a character of H* + Ly
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Let f=g+he ll°~o + Lg with g ¢ I, h e LY and define a continuous
function fon Y\ D by 1 (®)=g (¢) + h (2). We have to see that

g(9)-h @) = g/h @) forgcHy andhelf.

First of all, the definition of f does not depend on the decomposition of f as
a sum, as it is casily seen. Now we consider X = Spec (L™ (3 D)); the inclusion
H” c L™ gives us a continuous map 7 : X — Y, the restriction of characters,
which is not one-to-one. If ¢ € Y,, taking a Hanh-Banach extension of ¢ to L™,
we obtain a probability measure m,;, on X such that

f@)=0 M= / deq, for cvery {eH™,
b
noting by h the function in C (X) which corresponds to h e L™ (3 D), by means
of the Gelfand transform.
The measure mg, is supported by the fiber X, of X over A: this is a conse-

quence of the fact that every A ¢ @ D is a pick point for the algebra A (), D
being strictly pseudoconvex. So if { e H™ + LT; we have also the equality

f(p) = / f dm,,
X
because putting f=g 4+ hwithge H , h ¢ Li; , we obtain:

f@=g@+hQ)= I'Tg,dmg, + ['l\lldm(;, = / 'lydmc.,.

X X X
Finally, ifge H™, h ¢ LT.? we have:

g (@) h(@)= / gdm,-h(Q) = ] T;-Edm(', - / H-Edm(;, =

X XA X
— P
= / h-gdmg=h-g©),
X
that is all to be proven.

Acknowledgments: The author is grateful to E. Amar, J. Castillo and J. Bruna
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