SCROLLS AND QUARTICS
by

S.XAMBO

§ 1 INTRODUCTION

In [S1] Saint-Donat shows how Lo apply a theorem of Del Pezzo and Bertini
(quoted as theorem 1 below) to recover the main result of [XXX] concerning the
projective classification of codimension two cubic varieties. In this paper we
show how the same theorem, and some related results, can be used to produce
an “‘enumeration” of quartic varietics somewhat more explicit than that given by
Swinnerton-Dyer in |S2]. Our main result essentially says that a codimension 2
quartic variety which is contained in a unique quadric is rationally ruled, so that,
by a theorem of Bertini, must be the projection of a quartic scroll (see theorems
5 and 6 below for complete statements).

§ 2 NOTATIONS AND PRELIMINARILS

Let IP™ be the n-dimensional projective space over an algebraically closed
ficld of charateristic different from 2. Given a subset S of P™ we write (S) to
denote the linear span of S. Unless otherwise stated we consider irreducible va-
rieties V (_IP" that are not contained in any hyperplanc (i.e., such that (V)= P")
and set d = dim(V), g = deg(V).

As it is well known we have g2 n —-d+ 1. Incase g=n — d + 1 we say that
V is a minimal degree variety.

We say that V is a normal rational scroll of type S =S (ny, . .., ng) (or just
a scroll) if V is the image of the projectivized bundle of O(ny)+ ...+ O(ng)
over P! under the complete lincar system [Q(I)l. We always will assume
n; 2...2ng. The embedding dimension of $(n;,...,ng)isn=n;+...+ng+d -1
and its degree is ny + ... + ng =n -- d + 1, so that scrolls are irreducible mini-
mal degree varieties. If d = 1 then n; = n and $ (n) is a normal rational curve
in P".
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A more concrete description of S (ny, . . ., ng) is as follows (cf. [H1]). Take
independent lincar spaces Ly, ..., Lg in IP" such that Ly + ...+ Lg = IP",
and let ng = dim (L;). Suppose n; 2. . .2 nq. FFor each i such that nj 2 1, let Cj
be any normal rational curve of degree nj in L; (in particular this implies that
(Cp = L;) and choose any isomorphism hi: P! -> Ci. If nj = 0, so that L; is a
point, set C; = L; and write hi:IP! - C; to denote the constant map. Then the
union of the lincar spaces Ry = ¢h; (1), . . ., hg (t)), when t varies in P!, sweeps
out an S (ny, . .., ng), and conversely, any scroll can be obtained in this way.
Using this description of scrolls we sce that there exists a projective system of
coordinates Xjj, | <i<d, 0 <j < nj, such that the ideal of S is generated by
the 2 X 2 minors of the matrix A=(A,| ...| Ag), where

Xio X1 --- xi,ni- L

Aj =
Xit Xiz - -+ Xjn;
In particular, two scrolls S (ng, . . ., ng) and S (my, . .., my) ara projectively
equivalent if and only if nj =mj fori=1, ..., d. From these equations it also

follows that S (1, 9%, 1) is the Segre embedding of [P* X P9 jn P24+,

A surface V in P* will be called a Veronese surface Vi (or just a V3) il
it is projectively equivalent to the image of P? in P® under the 2-fold Ve-
ronese map.

A varicety V is said to be ruled when it is the clousure in the Zariski topo-
logy of IP" of an ! family of (d  1)-dimensional linear spaces, which will be
called generators or rulings of the variety. A set of lincar spaces is said to be an
ool family if they are the linear spaces corresponding to the points of an alge-
braic curve on a Grassmannian variety. Scrolls are clearly ruled.

§ 3 SOML TOOLS

In this section we quote a few results. The first, due to Del Pezzo |P], Berti-
ni [B], and J. Harris [HI], gives the classification, up to projective equivalence,
of minimal degree varieties (cf. also [X], where a rather clementary proof is in-
cluded).

I. Any irreducible minimal degree variety of '™ belongs to precisely one of
the following three classes:
(i) Secrolis
(i)  Quadrics of rank not less than five

(iii) A Veronese surface or a cone over a Veronese surjace.
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Next resuli takes care of the set-theoretic structure of the linear sections of
a scroll (see [X, 3 and 4]).

2. If the intersection of a scroll S and a linear space L is irreducible, then
this intersection is itself a scroll. Moreover, the intersection L. NS is irredu-
cible if' L cuts the rulings of S in linear spaces of constant dimension. Finally,
a hyperplane that does not contain any ruling of' S cuts S along an irredu-
cible scroll S such that deg (8) = deg (S).

The last two results we quote can be found in [B}.

3. Let V .C P" be a ruled variety of degree g =n  d + 2 such that the o!
Jamily of rulings in rational. Then given a point P in [P™*! outside P there
exists a scroll S of degree g in P™*' such that V is the projection of S
from P.

4. Let V be a surface containing «* conics on it. Then V is a V3 ora projec-
tion of a V%.

§ 4 CODIMIENSION THRLEE QUARTICS

The codimension of a quartic variety in |P" can be one, two, or three, be-
cause the degree is bounded below by codimension + one. And codimension
three quartics have minimal degree. Therefore by 1 we sce that any codimension
three quartic belongs to one of the following types:

5. S(LLLI): S(2,1,1); S(22), S@3.,1), V§; S@)
or a come over one of the preceding types.

Applying theorem 2 we see that amy irreducible hyperplane section of
S (1,1,1,1) is a S (2,1,1); that any irreducible hyperplane section of § (2,1,1)
is a S (2,2) oraS (3,1), and that any irreducible hyperplane section of the latter
types is a S (4). Notice that also the irreducible hyperplane sections of V2 arc of
type S (4).

§ 5 CODIMENSION TWO QUARTICS

A condimension two quartic will be called of the first kind if there is more
than one quadric containing it, of the second kind if there is exactly one quadric
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containing it, and of the third kind if there are no quadrics that contain it. With
this terminology we have:

6. LetV be u codimension two quartic in P". Then
(i) If V is of the first kind, then NV is contained precisely in a pencil of
quadrics.
(ii) IfV is of the second kind, then V is rationally ruled, so that by 3 it is
the projection of a codimension three quartic scroll.
(iii) If V is of the third kind, then V is the projection of a V3 or a cone
over such a projection.

Before proving this theorem we are going to deal with two auxiliary results.

§ 6 TWO LEMMAS

First let us introduce some notation. Given V.C W C |P?, let Iy wCOw
be the sheaf of ideals of {functions vanishing on V. We sct

iy w(r) =dim H® (W, Iy w()) 1,

where (r) denotes the opperation of r-fold twisting, that is, of tensoring with
Ow(r). If r = 2 and W is linear, then iy y (2) is the dimension of the linear
system of quadrics of W that contain V.

7. Let V'he a hyperplune section of a variety V C [P, and let 11 be the co-
rresponding hyperplane. Then

iV, an (2) < iv" 1 (2)

Proof: Consider the map

HO (i.Pn,IV‘an (2)) -> Ho (“,Iv',” (2))

given by restriction. The inequality will follow if we show that this map is a
monomorphism. Let I be a quadratic homogencous polynomial in the kernel.
Then F is divisible by H (we denote a hyperplane and its equation with the
same letter), say F =H . H’, where H’ is linear. Since F vanishes on V this implics
that V is contained in the zero-set of 11’, since the zero-set of H is a hyperplane
and V is not contained in any hyperplanc by our basic assumptions. Thus the
zero-set of H’ is [P", and so H’ is zero, hece F is also zero. QED.
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8. LetV C |P" have dimension d 2> 2. Let Hy, i= 1,2, be hyperplanes such that
(Vi) = Hj and deg (V) = deg (V), where Vi=H; N V. Ifiy; y,;(2)=> l and

it,NE, NV, 1y N, (2) =1, then iy pn 2) =iy, (2) =iy, 1, 2)= L.

Proof: By 7 we sce on one hand that iy, y; (2) =1, i =1, 2, and on the other
that in order to prove that iy pn(2) =1 it is enough to show that
iy, pn (2) > 1. Let Q¢ C Hy, t € IP!, be the pencil of quadrics that contain V.
Then for cach t there exists a unique quadric Q} CH, which contains V, and
such that Q} NH; = Q¢ N H;, because the map

H® (1, fvy, 1; (2)) > W° (Hy MUyl Ny OV, 1y O H, (2))

given by restriction is an isomorphism (is monomorphism and both members
have dimension 2). Now, for fixed 1, there exists a pencii of quadrics Q¥ C [P",
s € [P', which contain Qq and Q}. In this pencil there exists a unique member
QF which goes through a fixed general point x of V. In order to see that
iy, jpn (2) = | it is enough to show that V C Qf. But if V were not contained in
Q7 then deg (QF N V) > deg (V1) + deg (V) =2 . deg (V), which would con-
tradict Bezout’s thcorem. QLED.

§ 7 PROOF OF THIORFM 6 (i)

We shall proceed by induction on the dimension d of V. Assume first that
d = 1, so that n = 3, Then since V is contained in two quadrics it follows that V
is a complete intersection of two quadrics. If H is a general plane then V’=HNV
are four points in H no three of which are colinear. Thus iy~ fj (2)=1. Then we
have 1 <iy p3 (2)<iy» py (2)=1andsoiy jp3 (2)=1.

Let d 2 2. Take two general hyperplanes [1; and H, and set Vi =1i;NV,
i=1,2. Then (Vp =Il;, deg (Vi) =deg (V),and (H; NH,NV)=H; Nil,.By 7
and the inductive hypothesis we sec that

i, Nnn, nv. i, ni, @ =iy, n, @=iy, u, @)=1

(notice that iy, N1, N v, v, NH, (2) =1 even when d =2, because then
H; N Hy; NV consists of four points of H; M H, in general position). By 8 we
conclude that iy _jpn (2) =1. QED.

As a corollary we have:

9. Let V C P" be a codimension iwo quartic variety with d 2 2. Let L be a
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generic linear space such that 3 < dim(L) <n 1. Thenif L NV is of the
first kind, so is V.

Proof: By decending induction on m = dim (L). if m=n - 1,let II; and H, be
two general hyperplanes, so that if Vi =H; NV, i= 1, 2, then V;is of the first
kind. Then V> =H; NH,; NV is also of the first kind. By 8, V is of the first kind
as well.

Let now m <n 1,andlet L’ be a general (m + 1)-dimensional linear space
through L. Set V* = L’ N V. Then V’ is of the first kind because its generic hy-
perplanc section is. By descending induction V itself is of the first kind. QED.

§ 8 PROOF Ol THRFORLM 6 (ii)

Again we will proceed by induction. Assume first that d = 1,s0 that Vis a
quartic curve in [P contained in a unique quadric. Then V is rational ([H2, 1V,
6.4.2]). This proves the case d = 1.

To proceed the induction, however, we need to be slightly more precise. We
show that the condition that the curre V is contained in a unique quadric Q is
equivalent to say that V is non-singular and rational, in which case Q is also non-
singular. In fact, if V is a singular quartic curve in [P? then it has only one double
point, say x. Let Q* be the cone over V with vertex x. Then Q' is a quadric cone
and V C Q. Therelore V is a complete intersection of two quadrics ([H2, V, Ex.
2.9]). So if V is contained in a unique quadric Q then V must be non-singular,
and Q also must be non-singular.

Now let d = 2, so that V is a quartic surface in [P* contained in a unique
quadric Q. This quadric must be singular, otherwise V would be a complete in-
tersection, by a theorem of Klein ([H2, 11, Ex. 6.5]). Consider two independent
general hyperplanes Hy and H; and set Vi=H; NV, Q; =H; N Q,i = 0,1. If
L =T NHy, then L NV consists of four points in general position in L, so that
i, nv, L (2)= 1. This and lemma 8 imply that i fv;,Hj .(2) = 0. Therefore, by the
case of curves in IP? explained above, Vj is a non-smguldr quartic curve in H;
contained in a unique quadric of H;j, which itself is non-singular. Since V; C Q;,
this unique quadric must coincide with Q;. From this it follows that Q is a cone
over Qo with vertex at a point, say xg. If Hy, t € P!, is the pencil of hyperplanes
through L, then Q; = Hy N Q is a non-singular quadric in Hy except for the hy-
perplane L + x,, that we may assume is I{_,. The projection of Hy, t # e, onto
Hy with center xo maps Qq isomorphically onto Q. If the two classes of rulings
on Qo are denoted Rg and RZ, then we will write R} and R? to denote the two
classes of rulings on Q; corresponding respectively to R} and R3 under the
above projection. By what we said before, Vi =H; NV is a non-singular rational
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quartic curve on Q for all t but finitely many. Therefore we can assume that V¢
is of type (1, 3) with repect to the classes of rulings R{ and R? (if it were of
type (3,1) we would change the roles of the two classes).

Now consider a generic point zy on V¢ and let Ry € R§ be the unique
ruling through zo. Let Ry € R{ be the ruling on Q; corresponding to Rq. Then
R¢ intersects Vi, for all t but f(initely many, at a single point 2. The closure the
set {z¢}is a curve C which is nothing but R NV, where R is the plane Ry + x4.
To prqve that V is rationally ruled it is enough Lo show that C is a line. In order
to sce this notice that the rulings Ry pass through a fixed point 49 of R, namely
a9 =Ro N L, that C does not go through a, (for V does not go through a4 either,
since 7o is generic on Vy), and that Ry N C is a point counted once for general t
(the intersection taken inside R). Thus deg (C) = 1.

Supposc then that d > 3 and assume that the result is true {or lower dimen-
sions. If H is a general hyperplane then iy vy, u (2) = 0 by corollary 9. By in-
duction H NV is rationally ruled. And since dim (H N V) >2 this implies that
V itself is rationally ruled (cf. the prooof of theorem 2 in [X]). QFD.

8§ 9 PROOI OF THIEOREM 6 (jii)

Let V C P" be a codimension two quartic variety not contained in any
quadric. Then d = 2, for as we have scen before any quartic curve in [P? lies
on at least one quadric.

Assume first that d = 2. Then V is a quartic surface in |P?. Let L be a ge-
neral planc in P*, so that L NV consists of four points of L, no three of which
are colinear, and hence iy, Ny, |, (2Q)=1.LetH te IP!, be the pencil of hyper-
planes going through L and set V, = Hy N V. For general t; ¢V, itisa smooth ra-
tional quartic curve in Hg, by 9. So V¢ lies on a unique quadric Q¢ of H¢, and Q4
is non-singular. Now it happens that Vi is contained in a unique quadric Q4 of
Hy for all t, for il Vy, for some s € [P*, were contained in a pencil of quadrics of
Hy, then this pencil would cut out on L the pencil of conics through LNV, and
s0, again, V would be contained in a quadric. Moreover, the map t b Qs N L
gives a bijection between [P! and the pencil of conics on L that have L NV as
base points. Let s € [P! be such that Qg N L is a pair of lines. Then V can not
be irreducible (otherwise it would be rational and non-singular, Q; would be
non-singular and so L would be tangent to Qg, which would imply that three
points on L NV would lic on a line). Also, Vi can not have mulliple com-
ponents, since if it did, then L NV also would. Since V in contained in a single
quadric, it must be a pair of conics. This implies that V contains ®? conics.
In fact, let G = Grg,3 be the Grassmannian of planes in %, let C be the variety
of conics on V and let 1 C G X C be the correspondence given by (s, x) € I if
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and only if there exists a hyperplane H such that H contains the planes Lg
corresponding to s € G and the conic ¢y corresponding to x ¢ C. Let f:1 —» G and
g: 1 » C be the maps given by projection. By what we said above, the generic -
fiber of { is O-dimensional, so that dim (1) = 6, On the other hand the fibers of
g are 4-dimensional. 1t turns out that C is 2-dimensional. By 4 we conclude that
V is a projection of a V4 from a point.

Now assume d > 3. It is enough to show that V is a cone, because then if V’
is a hyperplane section by a huperplane H not going through the vertex of V
then iy* 4 (2) = 1 so that by induction V’ is a cone over a projection of a V3,
hence V itself is a conc over al projection of a V3.

In order to see that V is a cone we again proceed by induction. So let us
assume that d = 3. Consider the system /7 C [P®* of hyperplanes H such that
H NV is contained in at least one quadric of H. Then H is a hyperplane, so that
all such hyperplanes H go through a fixed point x. In facl, to see that H is a
hyperplane, or that deg (H) = 1, we show that a gencral line of [PS* cuts # just
once. In other words, we want to see that if L is a generic codimension iwo
lincar space in [P® then there exists 4 hyperplane I through L such that H NV is
contained in a quadric of 1, and that this H is unique. Now L NV must be a
non-singular rational curve, by 9. So L NV is contained in a unique quadric Qof
L. This uniqueness implies that there exists at most one H through L such that
H N V is contained in a quadric of 11 (otherwise we would again construct a
quadric containing V). So we need only show that there exists at least one such
H. Let P C L be a general plane inside L, so that > N V consists of four points
on P no three of which are colinear. Now let L’ be another codimension two
linear space through P. If L’ is general, L’ NV is a non-singular rational curve in
L’ and hence contained in a unique quadric Q" of L’. Due to the fact that there
arc oo? spaces L’, we can sclect an L’ in such a way that Q N P=Q NP. Then
the hyperplane H=1, + L’ satisfics the claim.

Now we show that V is a cone with vertex xo. Let H be a general hyper-
plane through xo. Then H NV is contained in a unique quadric Qy of H. There-
fore Vi = H N V is ruled (the rulings are lines). It is enough to show that all
rulings go through x4 . To sec this, let L C H be a general codimension two linear
space among those such that x4 € L. Then Vi, =L NV (=:L N V) is a quartic
curve withou! multiple components (to see this take a general plane P C L and
consider P N (L N V) =P N V). Since xo € H, V| is contained in at least a
quadric of L. If V[, were contained in only one quadric of L then again we
would be able to construct a quadric containing V. So there exists at least a
pencil of quadrics of L which contain V. These quadrics are all singular (other-
wise V| would be the intersection of two non-singular quadrics of L, which
would contradict the fact that for a general codimension two linear space L*,
L* N V is a non-singular rational quartic curve, for Vi, is of type (2,2) on a
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non-singular quadric through it, and L* N V is of type (1, 3) on the unique
quadric of L* containing it). Then all quadrics of L that contain Vi, are cones
and have a common vertex, so that Vi consists of four concurrent lines, which
are rulings of V. Let z be the common point to the lines of V. If z were not
Xo then a constant count involving the L’s through x, would show that V
contains co* lines, which is impossible because V has dimension three and is
not a linear space.

Now let d 2 4. Then 9 says that no generic linear section LNV of V is of
the first kind if the linear space L has dimension not less than three. And if
dim (L) 2 4 then L N V can not be of the second kind either, because if it were
we could construct a quadric containing V taking two general hyplerplane sec-
tions V, and V,, say by H; and H,, and observing that the quadrics Q; and
Q; of H, and H,, respectively, that contain V; and V, lie on a pencil of
quadrics of P" because Q, and Q, coincide on Hy N1l,.

So by induction a general hyperplane section of V is a cone. And from this
it follows that V itself is a cone. QED.

§ 10 REMARKS

In what follows if V C P" is a variety, 7V denotes any projection into
PP"-1 from a point outside V and 7’V any such projection from a point outside
the line chord locus of V.

10. (i) Any codimension two quartic of the second kind belongs to precisely
one of the following types

7#S(1,1,1,1); #S(2,1,1); #S(2,2), nS(3, 1); # S(4);

or a cone over one of the preceding types. And conversely, any of these
types is a codimension two quartic of the second king.

(ii) Any codimension two quartic of the third kind is of type nV3 ora
cone over a mVs. And conversely, any of these types is a codimension
two quartic of the third kind.

Proof: The direct part of (ii) is just 6 (iii). And the direct part of (i) follows
from 6 (ii) and 5. Notice that since a projection of S (4) from a point on its line
chord tucus is a singular quartic, which is of the first kind, we have to replace
7S (4)by 7 S (4).

In case (i) we have scen thal a non-singular rational quartic curve in [P3 is of
the second king. Therefore any 7'S (4) is of the second kind. Now all other
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types in (i) are ruled and of dimension not less that two; hence they can not be
of the first or of the third kind. On the other hand they are quartics because if S
is a quartic scroll of codimension ¢ then m S has codimension ¢ — 1 and so
deg (m S) 2 ¢ = deg (S) — 1 =3; but 7 S can not have degree 3 if we project
from a point outside S ([M, 5.5]). Similarly, any V3 is a quartic surface; since
it is non-ruled and contains 2 conics it must be of the thirk kind. In fact any
quartic surface of the first kind does not contain 2 conics, for if two quadrics
in |P* contain o2 conics in common then they coincide. It follows that any cone
over any 7 V3 also is of the third kind. QED.

The preceding proof tells us a little more:

11. The three classes of codimension two quadrics
(i) Complete intersections of two quadrics,

(ii) Ruled quartics (excluding projections of S (4) from a point on its line
chord locus, or cones over such),

(iii) 7 V4 or cones over a w V3.

are pairwise disjoint. Consequently the reciprocals of 6 (i),6 (i) and 6
(iii) are also true.

§ 11 NON-SINGULAR QUARTICS

If we exclude hypersurfaces and codimension two quartics of the first kind
then the remaining non-singular quartics are grouped as follows:

12. () Any non-singular codimension three quartic belongs to one of the
following types:
S(1,1,1,1)% 5(2,1,1); $(2,2), $(3,1), V3; S(4)
(ii) Any non-singular codimension two quartic which is not of the first kind

is either a ’S (4)oram V3.

Proof: (i) follows from 5 and the fact that ascroll S=S(n,,...,ng4),n, 2...2ng,
is non-singular if and only if nq = 1, and that S (n,, . . ., nq, 0) is a cone over
S (ny, ..., ng). And (ii) follows immediately from (ii) and next result. QED.

13. The line chord locus of a scroll S =S (ny, . .. ,nq) in P" is equal to [P" if
and only if
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n; =3andny <1
or

n <2, n;<2and n; <1.

Proof: Given a variety V let L;V denote the line chord locus of V. Thus
L,V = pripn (Zv), where Zy C V X V X [P" is the closure of the set of triples
(x,y,2)such that x #y and z e (,y). Now in order to find out whether L, S=[P"
one can assume that S is not a cone, since L; commutes with the formation of
cones, as it is easily checked. Thus we can suppose that ngq = 1.

Assume that L; S=[P". Thenn<2d+ 1, because dim (Zg)=2d + 1. But
sincen=n; +...4+ng +d—1weseethatn; +...+ng <d+2,or,equi-
valently, that (n; - 1)+ ...+ (ng - 1)< 2.Sincen; - 120, we see that
eithern; =3 andn, =... =ng=1lorn; €2,n; <2andnz =...=nq =1.

Now in order to sce the converse first observe that L; S (2) = IP?, that
L, S (3)=P? ([W, § 33]), and, we claim, that L, S (2,2)= [P5. Indeed, let L,
and L, be the planes given by X3 = X34 =Xs5 =0 and Xy = X; =X, =0 respec-
tively. Let V; C L; be the conic X} — Xo X; = 0 and V, C L, the conic
X3 - X3 X5 =0.Let hy: P! -V, be the map given by h; (1) =(1, t, t2,0, 0, 0)
and hy: P! - V, the map given by h, (t) = (0, 0, 0, 1, t, t?). Thus the line
Ly = &y (t), hy (t) sweeps out a S (2,2) and any S (2,2) is projectively equi-
valent to it. Let x =(xo, X1, X2, X3, X3, X5) be a general point of [P° and set
X" =(Xq,X1,X2,0,0,0),x”=(0,0,0, X3, X4, X5). Forany t € [P!, let t’ € P! be
the unique point such that h; (t), h; (") and x’ are colinear. A computation
shows that t’ = (X — tx;) / (X1 — tX¢). Then h, (t), hy (t") and X” are colinear
if and only if

which is a quadratic equation in t. Thus there exists t € [P! such that both triads
hy (t), hy ("), x” and hy (1), hy (), and x™ are colinear. Consider the 3-space
L =L; + Li. By construction x’ and x” are in L. Therefore x is also in L and
hence there cxists a point a € L; and a point a’ € Ly such that x is in the line
a + a’. This shows that x e L, S (2,2), and proves the claim.

Now in order to sce that the conditions in our statement are sufficient we
only need to apply recursively the following lemma:
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Letng=1landletS’=S(n;,...,nqg 1).IfL; S’ =P™, where

m=n, +...+ng_;+d 2, thenL, S=[P".

Proof: We use the notations explained in section 2.Sincen=n, +...+nqg+d 1,
we see that if ng = 1 then m =n — 2. Let z be a general point of P" and let 2°
be its projection to pr-2 taking the line L = Ly as center of projection. Since
L, 8= Il’"‘z, there exist distinct points x, X’ € S’ such that z’ € &, x?. Let R
and R’ be the rulings fo S going through x and x’ respectivley. Let y and y’ be
the points at which R and R’ meet L. Then z belongs to the 3—space {x, y,%’,y",
because L + z = L’ + z'. Therefore there exists a € R and a’ ¢ R’ such that
zefa,a),sothatze L, S. QED.
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