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0. INTRODUCTION.

This paper is basically devoted to the study of the relation between a linear
bornology and the associated M-closure topology, introduced in (3) and (18).
This topology is invariant in translations and dilations, and it has a base of ab-
sorbing and balanced neighbourhoods of zero. In Section 1 we study the class of
topologies on linear spaces having these properties, namely, quasilinear topo-
logies.

In Section 2, we associate in a natural way a bornology to every quasilinear
topology, and, in Section 3, we introduce, under the same point of view, the
M-closure topology relative to a linear bornology. We study the quasilinear topo-
logies which can be obtained as M-closure topologies (g-bornological topologies),
and the linear bornologies obtained from a quasilincar topology by the pro-
cedure of Section 2 (infratopological bornologies), also considered by B. Perrot
in (18).

In Section 4, we study the stability of the preceding classes of topologies
and bornologies in passing to initial and final structures, and in forming spaces
of bounded linear mappings. Finally, in Section 5, we see another way to obtain
the M~losure topology.

We use, if the contrary is not specified, the usual terminology on borno-
logies, which can be found in (3), (9) and (10).

1. QUASILINFAR TOPOLOGIFS.

Let L be a lincar space over K (in the following, K = R or C), provided
with a topology 7. We say that 7 is quasilinear, or that E(7) is a quasilinear
topological space, when the following holds:

i) 7 is translation and dilation-invariant.

ii) There is a basc of balanced and absorbing zero neighbourhoods of 7.
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Obviously, every topological veclor space (TVS) is a quasilinear topological
space (QTS), but the converse is not true, as can be scen in a lot of well-known
cxamples. The QTS appcared in (12), named locally starlike (Ta)-spaces, but
we won’t usc this terminology, sceming more natural the one introduced above.
Note that the condition ii) can be reinforced as follows: every quasilinear
topology admits a base of open, balanced and absorbing NZ. We quote now
some known results about these topologics, and some other casy to check.

1.1. PROPOSITION. Let L: be a QTS. Then:

i) If S is a linear subspace of ki, the closure of S is also a linear subspace
of L.

ii) The intersection of all NZ in E is a closed linear subspace of L, which
is trivial if' and only if I is accesible (i.e. L satifies the axiom T, of separation).

iii) If u is a linear functional on L, u is continuous if and only if its kernel
is closed.

Proof: i) is valid for any topology which is invariant in translations and di-
lations (sec (9), 1[.12, Proposition 1). IFor ii), we only point out that this in-
tersection is the closure of the linear subspace {0} . iii) can be found in (12),
where it is also shown that the hypothesis of E having a base of balanced NZ
is essential. QED.

1.2. PROPOSITION. Let E be a linear space over K, (Eyic1 a family of QIS
over the same field, and let us suppose that for every iel there is a linear map-
ping {i: Lj - E. Then the initial topology on E with respect 1o this System is
quasilinear.

Proof: Routinary.

1.3. PROPOSITION. Let E be a Q1S, and S a linear subspace of E. The quotient
topology on E[g is quasilinear. It is accesible if and only if S is closed.
Proof: (12), page 446.

2. BORNOLOGY ASSOCIATED TO A QUASILINLAR TOPOLOGY.

Let E be a QTS. We say that B C E is bounded when every NZ absorbs B. it
is easy to see that this definition gives us a bornology admitting a balanced base.
We shall see some conditions for this bornology to be linear. Trivially, every
continuous lincar mapping between a couple of QTS is bounded with respect
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to their bornologics. We call the bornology defined in that way, canonical borno-
logy of the QTS E.

2.1. PROPOSITION. Let E be a QTS, and B C E. The following are equivalent:

i) Bis bounded.

ii) Every countable subset of B is bounded.

iii) for every sequence (xq)n in B, and every null sequence (ty)n in K,
(tnXn)n converges to zero in k.

Proof: Just retnember the proof for the linear case.

Note that, if (x,)n converges to zero in a QTS L, and (t,), is bounded in
K, (tyXn)n converges to zero. Then, by 2.1. iii), every null sequence in a QTS is
bounded.

2.2. PROPOSITION. Let E be a QTS with the following property (sequentially
continuous sum): If (xp)n and (yn)n are sequences converging to x and y respec-
tively, (Xn + yn)n converges Lo x + y. Then, the following holds:

i) The canonical bornology of L is linear.

ii) Ivery convergent sequence in L is bounded.

iii) The mapping (t,x) - txof Kx E into £ is sequentially continuous.

iv) If L is accesible, the limits and M-limits in L are unigue.

v) Lvery sequentially compact subset of B is bounded.

Proof: The first threc are obvious. To prove iv), let’s consider a sequence
(xp)n with two different limits x and y. Then the constant sequence zero con-
verges to x -- y, and E is not accesible. For the Mackey-convergence, do the
same reasoning, To prove v), let A C L sequentially compact, (x; )y a sequence
in A, and (1), null in K. Every subsequence of (xp), has a subsequence con-
verging in A, which must be bounded. Then every subsequence of (tn%p)y has a
null subsequence, i.e. (tnXp)n is null. QED.

We look now at the bomologics obtained in passing to initial topologies.

2.3. PROPOSITION. Let L be a linear space, (L))ie) « family of QTS and let’s
suppose that for every icl a linear mapping fi: U — L; is defined. If we pro-
vide E with the initial topology with respect to this system, the canonical bor-
the fi's. If every Y has linear bornology, also has L.

Proof: The same as for the lincar case.

A similar result cannot be expected for quotient topologies, as we know for
the locally convex case (see (7) for the classical counterexample), nor for final
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topologics, as can be secn in the case of compact bornologies in infinite di-
mensional Banach spaces, that, being convex, are inductive limits of normed bor-
nologies.

3. QUASILINEAR TOPOLOGY ASSOCIATED TO A LINEAR BORNOLOGY.

Let E be a linear space, equipped with a linear bornology b, whose dual is
E*. We denote by 7b the M-closure topology associated to b (see (9) or (18).
7b is a quasilinear topology with sequentially continuous sum, and it is accesible
if and only if b is separated. We see now other properties of this topology.

3.1. PROPOSITION. Let k(b) be a linear bornological space (LBS). Then:

i) 7b is the finest topology for which all the b-bounded sets are bounded,

ii) 7b is the finest quasilinear topology for which all the M-null sequences
of'b are null.

iil) The topological dual of E(rb) = 7E is EX.

iv) 7o has linear canonical bornology, which is separated if and only if b
is separated.

v) The dual of the canonical bornology of Tt is EX.

Proof: i)-iv) are routine. To sec v), let [ be the dual of the canonical bor-
nology of :b. Being b finer than this bornology, F C X, Let’s suppose now
ucE*, and let B be bounded in 7b. If u(B) is unbounded, there is a sequence
(xn)n € B with [ux,| > n?. But we can take a subscquence (Xny )k such that
(1/ng-xny )k is bounded, and thus we are in contradiction. QED.

The following seems to be a natural question: If b is convex, must the cano-
nical bornology of 7b be convex? Arnold gives an affirmative answer in (1), but
his proof is not valid, because it is based upon the following wrong fact: the
convex hull of a subset B is contained in the balanced hull of B + B. Perrot in
(18) shows that the canonical bornology of 7b is linear if b is linear, and con-
siders trivial the convexness if b is convex, assertion which can also be found
in (9). We show here with a counterexample that the answer is, really, negative.

3.2. EXAMPLE. Let E be the space of Lebesgue p-integrable functions in {0,1]
for 0 < p < 1, with its usual topology. A basc of neighbourhoods of zero is
given by the dilations of:

U={fet: [*IAP dm <1}
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The convex hull of U is E, being E’ = 0, and U is bounded in E. Therefore,
the bounded scts of £ do not constitute a convex bornology. But we can take a
base of bomology formed by the absolutely convex bounded subsets of E, which
gives us a convex bornology b, strictly finer than the canonical bornology of E.
The topology 7b is precisely the topology of L (see (22), Chap. 2, Prop. 11),
and, therefore, 7 b has nonconvex bornology.

Following B. Perrot in (18), we say that a lincar bornology b is infrato-
pological when b coincides with the canonical bornology of 7b. If we denote by
B the covariant functor which assigns to each quasilinear topology its canonical
bornology, the identity of the definition above can be written Brb = b. It
is casy to see that if E is a QTS with linear bomology, this onc is infratopo-
logical. Then it follows:

3.3. PROPOSITION, An LBS L(b) is infratopological if and only if there is
an accesible quasilinear topology on ki whose canonical bornology is b.

We give now another characterization of infratopological bomologies. In
(18), an LBS is called of type P’ when a set which is absorbed by all bornivorous
sets is bounded. Obviously, an infratopological LBS is of type P. We prove here
the converse.

3.4. LEMMA. Let E be a separated LBS, and IF be an LBS of type P.If f: | - F
is linear and bounded on null sequences, T is bounded.
Proof: If B is bounded and {(B) is unbounded, there is a balanced bornivo-

rous set U C F, and a sequence (X,)y € B with f(x,) ¢ n2U for ali n. Then

1
<— xn> n is M-null in K, and has unbounded image. QED.
n

3.5. PROPOSITION. A separated LBS is of type P if and only if is infratopo-
logical.

Proof: If E is of type P, it is of type b (i.c. a null sequence of 7E is bounded
in E. See (18) for more details) and M-convergences in E and B7E are the same.
Then the identity mapping BrE - E is bounded. QED.

In a similar context, we say that an accesible QTS is g-bormological, if it has
linear canonical bomology, and its topology is, precisely, the M-closure topology
relative to its canonical bornology. One can obtain easily:

3.6. PROPOSITION. If E is a separated LBS, 7E is a g-bornological QTS.
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4. STABILITY PROPLRTIES

We are going to study now the stability of g-bornological QTS and infrato-
pological LBS in passing to products, subspaces, direct sums, quotients and
spaces of linear mappings. We see first:

4.1. PROPOSITION. Let E be an LBS,S C U a linear subspace with the induc-
ed bornology. We denote by 7, the topology induced in S by 7E and by 1, the
topology of 7S. Then:

i) 74 is finer than 7, .

ii) If SisM-closedinE, 7, = 74.

iii) If E has the M-closure property, 14 =75.

Proof: The first assertion is trivial. For the second one, it suffices to see
that if A C S is 7,-closed, it is closed in the M-convergence of E. Finally, if E
has the M-closure property, the 7,-closednesssof A C S is equivalent to the
coincidence of A with the intersection of S an the M-closure of A in E (see (9)),
and this is the case when A is 7,-closed. QED.

According to Webb ((23)), we call a topology C,-scquential when every
closure point of a set is the limit of a sequence contained in the set. Let’s re-
member now that an LBS E has the M-closure property if and only if 7E is
C, sequential (see the second Chapter of (9)).

4.2. COROLLARY. Let E be a q-bornological QTS. Then:

i) Kvery closed linear subspace of E is g-bornological.

ii) If E is C,-sequential, every linear subspace of E is q-bornological.

B. Perrot has proved in (18) that cvery scparated C;-sequential TVS is
g-bornological. Therefore, if E is linear, the hypothesis of E being g-bornological
is redundant in 4.2.i). We see now that this is also the casc when E is a QTS
with sequentially continuous sum.

4.3. LEMMA. Let E be a QTS with sequentially continuous sum, C,-sequential.
Then, every null sequence of T has an M-null subsequence.

Proof: One can easily reproduce the proof given by Averbuck and Smolyanov
in (2) for the lincar case, with the obvious corrections. QED.

4.4. PROPOSITION. Let E be an accesible Cy-sequential QTS with sequentially
continuous sum. Then E is q-bornological.
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Proof: To prove the identity E = BrE, it suffices to see that both 1opolo-
gics have the same null sequences, being E C,-sequential. If (x,), is null in E,
every subscquence of (xy)n bas an M-null subsequence, and therefore is null in
7BE. QED.

4.5. FXAMPLE. We cannot expect, {or g-bornological QTS, beautiful results as
those known for bornological locally convex spaces (LLCS) (Mackey-Ulam
theorem). The product of two g-bomological QTS can fail to be g-bornological,
as we sce next. Let E; be the space D(R) with its VN bornology, and E, be the
space 9°'(R) with the cormresponding equicontinuous bomology. The topolo-
gies S(D(R), N ’(R) and B(I’(R), H(R)) are Schwartz-Montel, and therefore have
the Mackey-convergence property (see (7)). Then, M-convergent sequences in
E; and L, coincide with convergent sequences in these topologies. T. Shirai
and R. M. Dudley have shown, in (21) and (6) respectively, that these topologics
do not coincide with those of 7E; and 7L,. The M-convergent sequences in
L, x E, are those which converge coordinatewise, and, therefore, the bilinear

mapping:

D’ (R) x D(R) — C

is continuous with respect to the topology of 7(E;x L) ((19), IT1.X1, Th. 3).
But this functional fails to be continuous with respect to 7E; x 7E, (just follow
the argument of (5), page 506). Now 7E;x 7L, # 7(E;x E,), and these spaces
have a non-g-bornological product.

4.6. PROPOSITION. Let E and accesible QTS with sequentially continuous
sum, and S a closed linear subspace of E. Then:

7BE

= 7(BE/s).

Proof: Let p be the quotient mapping. As a mapping between BE and BE/g,
p is bounded, and by virtue of the functorial properties of 7 and B, we can pass
to the quotient, obtaining the identity 7BE/g -» 7(BE/g) as a continuous map.
To see the continuity in the opposite scnse, it suffices to see that cvery null
sequence in 7(BE/g) is null in 7BE/g (the last is scquential), and this is 2 routine.
QED.
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4.7. COROLLARY. Let E be a g-bornological QTS, and S a closed linear sub-
space of E. Then, L/g is q-bornological.

The stability of infratopological LBS in the construction of initial borno-
logies follows directly from 2.3. Now, we can precise this a little more.

4.8. PROPOSITION. Let E be a separated LBS, and S a linear subspace of E.
The bornology induced by B+C on S is the bornology of B7S.

Proof: Let b; be the induced bomology, and b, the other. Of course b,
is finer than b, . An M-null sequence of b, is null in E and therefore b, -bounded.
Being b, infratopological, we have b; =b,. QED.

The topology of 7S can be strictly finer than the one induced by 7E, but
both topologies have the same canonical bomology. Nevertheless, 7S is the
g-bornological QTS associated to the topology induced by 7E in S.

4.9. PROPOSITION. Let (Ep)y be a sequence of separated LBS. Then:

(=] o0
BT( Il En>= I (BTE,)
n=1 n=1

Proof: If (Ej)iey is an arbitrary family of separated LBS, the identity
Br(11E;) - [I(BrE;) is bounded. This follows from the boundedness of projec-
1 1

tions.
Now come 1o the countable casc. Let A be bounded in l> IO(BTE,,). We must
n

show that A is bounded in Br( 1l Ky), i.e. that if (x; ), is a sequence in A and
n)0

(tm)m is null in K, (4 X )i has a subsequence which is bounded in I Ej. We
n)0

take first a subsequence (1 m j)j with bounded projection in E;. Second, we
can take another subsequence with bounded projection in E,. We can proceed
by induction, and then, by a Cantor diagonal process, obtain a subscquence
whose projections on the factors Ep are all bounded. QED.

The preceding proof depends essentially upon the countability. It does not
scem easy to find a proof for the general case, but the author does not know
any countercxample. Finally, we examine direct sums.

4.10. PROPOSITION. Let (Ly)ic1 be u family of separated LBS. Then:
Br(Z L)) = _fffl(B’fEi)
1

icl c
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Proof: Let A be bounded in © (B7TF;). Then A is contained in a finite sum,

and therefore bounded in B7( @ E;). Conversely, if A is bounded in Br( © E;)
iel iel

and fails to be contained in a finite sum, A contains a sequence (Xy ), with the

same property, and ( 1 /nXn)n has a subsequence bounded in = E;, which is con-
iel

n
tradictory. Then A C @ Eij, and, by 4.9., A is bounded in o (B7E;). QED.
j=1 iel

4.11. COROLLARY. The direct sum of an arbitrary family of separated infra-
topological LBS is infratopological.

A similar result is not valid, as we shall see in another paper (25), for quotients.

Let E be an LBS and F a QTS over K. We denote by L*(E, F) the set of all
linear mappings which are bounded on bounded sets of E. If BF is lincar, L* (E,F)
is a linear space. In (20), can be found a functorial approach to the study of this
space when E is convex and F locally convex.

A sufficient condition for L*(E, F) # 0 is E* # 0 and F # 0. Indeed, we can
identify EX & F to a linear subspace of L* (E, F) in the usual way. Note that it is
possible E* = 0 and L* (E, [F) # 0, as can be seen in the case E = F=LP({0, 1];
m), 0 < p < I, with its VN bomology.

Suppose L*(E, F) nontrivial, and let L be a linear subspace. In order to de-
fine in L a topology “of uniform convergence on bounded subsets of E”, we can
think in considering, as in the linear case, the sets:

U(A, V)= {feL: (A) C Vi,

where A, V are taken in a base of bornology of L, and in a base of NZ of F,
respectively. But these sets do not seem to be manageable when F has nonlinear
topology. We choose, then, another way. Let’s supposc that F has scquentially
continuous sum, a fact with some advantages: a) it covers the case when F is
g-bornological, b) F has linear bornology, and c) L*(E, F) is a linear space.

If (fo)n is a sequence in LX*(E, F), we say that (f;), converges uniformly to
zero on bounded scts of E (we use the word “uniformly” improperly, because
do not suppose any uniformity defined on F) when for every bounded subset
A C I and every NZ V C F there is an ny such that n > ng implies f;, (A) CV.
We shall construct in L* (E, F) a quasilincar topology whose null sequences will
be, precisely, the ones described above.

4.12. PROPOSITION. Let E, F be in the conditions described above. A se-
quence (1)), converges to zero uniformly on bounded sets of E if and only for
every bounded sequence (X)) Of Li, (f(xp)n is null in F.
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Proof: It follows routinely {from the definition.

As usual, the convergence to an clement feL*(E, F) can be defincd. We have
now a convergence ¢ in L*(L, F) whose properties are summarized in the follow-
ing Proposition:

4.13. PROPOSITION. In the conditions above, ¢ is a linear convergence, which
is separated if IV is accesible. Furthermore, c is a topological convergence,

Proof: The first part is casy to check. For the second, it suffices to use the
well-known criterion of Kisynski (sce (4), Theorem 2.1., or (10)).QED.

1t is clear now, that the topology we are scarching for is, precisely, the to-
pologization of ¢. We call this topology, topology of bounded convergence in
L*(E, F), and we denote by LY(E, F) the corresponding QTS. Note that, if E
and F are LCS, this topology induces on the spéce L(L, F) of continuous lincar
mappings a topology which is finer than the topology usually called “of bounded
convergence”. More precisely, it is the sequential topology (scc (24)) associated
to the usual onec.

Now, we characterize the bounded sets of L) (E, F).

4.14. PROPOSITION. A subset 11 C LY(E, F) is bounded in the topology of
bounded convergence if and only if for every bounded subset A CE, the sct

HEAY = hLéJll h(A)

is bounded in ¥.

Proof: We use 2.1. and the characterization of convergent sequences in
LY(L, F). If H is y-bounded an A CE is bounded, every sequence in H(A) has
the form (hy(Xp))n, With (hp)p € H and (xp)n € A. Being (hy(1/n x4))y null
in T, (hp(xp))n is bounded. Conversely, if [1(A) is bounded in F for all ACE
bounded, and (hy), C U, for every bounded sequence (x,)qn of L, (hp(xp))n is
bounded in F, and hence (1/p hy(xp))n is null. Then (1/p hy)n converges to
zero on bounded sets of E. QED.

Let E and G be LBS, and L*(E, G) the space of bounded lincar mappings
of E into G. Hogbé-Nlend considers in (8), in the casc in which E, G are convex,
the following ‘“‘natural bornology”: H is bounded when II(A) is bounded for
A C E bounded. This bornology appears also in (20), where convexity is not
assumed (the functor Leb of Chapter 1.4.), and in (22), where the naturally
bounded sets are called cquibounded. Provided with its natural bornology, we
denote this space by LE(E, G). Now, 4.14. can be rewritten:

B(LX(E, F)) = LX (L, BF).

Using this terminology, we can writc now:
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4.15. COROLLARY. If ¥ is an infratopological LBS, and E is an LBS with
LX(ki, F) £ 0, then LX(E, F) is infratopological.

Proof: It follows from the identity LX(E, F) = B(LY(E, F)). This result can
also be proved directly, without constructing cffectively a quasilinear topology
whose canonical bornology is the natural bornology on L*(E, F). Indeed, Ict H
be bounded in Br(LX(E, F)) and A C L be bounded. Being F infratopological,
for H(A) to be bounded, the boundedness of its sequences is sufficient. Put
(n)n € A and (hp)p C LI (ty)n is null in K, every subsequence of (tphp)y
admits a subsequence which is M-null in LE(E, F). If (tnjhnj)j is such a sub-
sequence, M-lim tn.hnj(xnj) =0 in F. Hence (tyh(xp))y is null in F, and
(hp(Xp))n is bounded in F. QED.

We prove now the converse of 4.15. Let E, F be LBS and assume FX # 0. If
ueE*, u #0, for every yeF we can indentify u® y ¢l:* ¢ ¥ with the map:

E——F

X —— (ux)y,

and denote by u ® F the linear subspace of L*(E, F) obtained by this procedure.
Now:

4.16. PROPOSITION. With the same terminology as above, u 2 F is an M-closed
linear subspace of L} (E, F).

Proof: It is pure routine. [f wanted, it can be copicd from the proof given in
my paper (4) for the case of an equicontinuous bornology.

4.17. PROPOSITION. Let E and F be LBS, with L*(E, F) # 0 and E* #0. Then
LAk, ¥) is infratopological if and only if F is infratopological.

5. ANOTHLR WAY TO OBTAIN THLE MACKEY-CLOSURE TOPQLOGY.

We closc this paper with the study of certain questions rclated to reflexive
CBS. If E is a reflexive CBS and v is the natural topology on its dual (topology
of convergence on bounded subsets of E in the usual sense), (E5)’ = E. This
identity is a bornological one when the corresponding equicontinuous bornology
is considered on the dual (EX). We can look now at the topology »' (resp. pih,
i.e. the finest topology (resp. locally convex topology) which coincides with
a(E, E*) on every bounded subset of k.

5.1. PROPOSITION. Let E be a reflexive CBS and v the natural topology on EX.
Then the topology vl (resp. y! f) is finer than the topology of 7 E (resp. TE).
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Proof: For »f it is sufficient to prove that every M-null sequence (xp,) of
K is null in »f. We remark only that the sct:

X={xn: neN}U{O }
is bounded in E, and, being (x,)n o(L, E*)-null, converges to zero in o
For »!f, note that, being EX complete, the dual of E(w!f) is L. Then v! is

compatible with the duality < E, EX >, and thercfore fincr than the topology of
TE. QED.

5.2. PROPOSITION. Let E be a reflexive CBS, and v the natural topology on
EX. Then:

i) IfE is a Schwartz CBS, the topology of TE is VL.

ii) If K is infra-Schwartz, the topology of 7L and v have the same closed
convex sets.

Proof: Suppose E Schwartz, and A closed in 7E. If B C L is bounded, ab-
solutely convex and o(E, E¥)-closed, there is a bounded absolutely convex subset
D C I such that B is compact in E)y. Then, B is closed in 7E, and, being A
closed in 7, A N Epy is closed in Eyy, and therefore A N B is compact in Epy.
Finally, A N B is weakly compact.

Now, let E be an infra-Schwartz. CBS, and A closed and convex in 7E. If B
is bounded in L, absolutely convex and o(F, E*)-closed, there is an absolutcly
convex bounded subsct I> such that B is weakly compact in Ep. Being A N Ep
closed in EX, it is weakly closed, and A N B is weakly compact in Ep, and there-
forc o(E, E*)-compact. QED.

NOTE: If £ has a countable base, EX is Fréchet. Then, the Krein-Smulian
theorem applied to ii) implies that the closed convex sets of » coincide with
the o(E, £¥)-closed ones, and we obtain thus the Proposition VII.5.2. of (9)
as a particular case of 5.2.i). In this situation, E} is uliracomplete in the sense
of (17). The first part of 5.2. has been proved by Moscatelli in (17) in an un-
direct way.

5.3. EXAMPLES. If E has jts maximal bornology, E = E(f) # TE = E(»!?),
when E has uncountable dimension.

If E is a reflexive infinitc dimensional Banach space, its VN bornology
is clearly infratopological, but not Schwartz. Now, v is the norm topology on
E’ and E = TE is the primitive, space. v!! is the topology of convergence on
compact sets of E’, and it does not coincide wilth the norm topology, ncither
does ». We see now that the assumption on the convexness of A is essential in
5.2.ii).
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