ON PROJECTIVE VARIETIES OF MINIMAL DEGREE

by

S. XAMBO

DLFINITIONS AND NOTATIONS

Let IP" be the n-dimensional projective space over an algebraically closed
field. We consider reduced equidimensional projective algebraic varieties
V=V, U...,UV,C [P not contained in any hyperplane (unless otherwise
stated) and set g = deg(V), d == dim(V). We will say that this variety is connec-
ted in codimension one if it is possible to arrange its components in such a way
that

(:Od.imvj Vj NV, u... UVj_1)= l

for j=2, ..., r. For equidimensional varieties this definition coincides with the
analogous definition given by Hartshome [H2]. In fact, for any non-negative in-
teger k the following two conditions (a) and (b) are equivalent: (a) For any
closed set W C V such that codimy W > k, V-W is connected; (b) Forj=2, ..., 1
(possibly after rearranging), codim\/i V; N (Vy UL U Vi) < k. Varieties
satisfying these conditions are said to be connected in codimension k.

For any subset S C IP" we write < S > to denote the linear span of S. In
particular we will set Lj = <V;>, and n; = dim(L;). The degree of V; will be
denoted g;.

By a normal rationul scroll (or just a scroll) we understand an irreducible
variety obtained as the image of the projectivized bundle of O(n;) + ...+ O(ng)
over P! under the complete linear system |O(1)l. Such a scroll will be denoted
S =8(n,, ..., ng). Here d > 1 and we may assume, without loss of generality,
that n, > ... > ngq. The cmbedding dimension of Sisn=n, +...+nq +d-1
and its degrece n-d + 1. For d =1, S = S(n) is a nonrmal rational curve inlP".

The scroll 8(n,, ..., ng) admits a more down to earth description (sce
[H1]). Take independent linear spaces L,, ..., Lq in P, say of dimensions
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ng,... ng, such that L; + ...+ Ly =IP". For each i sclect a normal rational
curve C; of degree n; in L; and isomorphisms h;: I’' - C; whenever oy > 1. 1f
nj = O then L;, and hence Cj, is a point and h; will denote the constant map
P! — C;. Then the linear spaces < h, (t), . . ., hq(t) >, when t varies inIP', sweep
out an S(n,, .. ., ng), and conversely, any scroll can be obtained in this way.

A surface in IP® will be called a Veronese surface V4 if it is projectively
equivalent to the image ofIP? under the complete linera system |9(2)1.

A variety is said to be ruled when it is the closure in the Zariski topology
of IP" of an ! family of codimension one lincar spaces, which will be called
generators or mulings of the variety. A set of lincar spaces is said to be an oo!
family if they are the linear spaces corresponding to the points of a curve on
a Grassmannian varicty.

OVIRVIEW

Assume V is irreducible. Then it is well known that g>n -d + 1 (see the
first paragraph of the proof of theorem 1). When g=n — d + 1 we get irreducible
minimal degree varieties. The classification of these varieties, up to projective
cquivalence, is the content of what I will call Del Pezzo/Bertini/l larris theorem
(theorem 2 below).

In this paper we first look at varicties V (in the sense explained above)
which are connected in codimension one and such that g<n d + L. These
appear to have a quite simple structure (theorem 1). In particular it turns out
that g=n - - d + 1 always, so that for these varicties the minimum valuc of g is in
fact the same as for irreducible varietics.

Next we apply theorems 1 and 2 to describe the set-theoretic structure of
equidimensional linear sections of scrolls (thcorem 3). In particular this theorem
says that any irreducible linear section of a scroll is itself a scroll. I{ also implies
that an irreducible variety is a scroll if and only if it is the set of common zerocs
of the 2 X 2 minors of a 2 X q matrix of homogencous linear forms.

We also apply theorems 1-3 to study some aspects of the geometry of
surface scrolls.

Finally we show how thcorem | and a few simple properties of Veronese
surfaces V3 can be used to simplify somewhat the arguments currently involved
in the proof of theorem 2.

CONNECTLED IN CODIMENSION ONE MINIMAL DEGREE VARIETILS

1. Let V be such that g < n - d + 1. Assume also that V is connected in
codimension one. Then we have.
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(i) gi=n d+1

(ii) g=n- d+ 1, and (possibly after rcarranging)

@) Vin (Vi V... UV ) =LN(Ly +... 4 Lj,), which is a linear
space of dimensiond 1(=2,...,1).

Proof: If V is irreducible then g = n - d + 1. This is casily seen by induc-
tion on d: if H is a general hyperplanc then FH NV has dimension d — 1, is irre-
ducible ([W1}, p. 300), has the same degree as V ({S2], p. 106), and its linear
span is 11; if d = 1 then H N V will contain at least n points, so that g = n, and
hence the inequality is true for curves; if d > 2, then by induction H N V satisfies
the inequality, so thatg=(n—1) (d—1)+1=n- d+1.

Now let us return to a connected in codimension one variety such that
g<n-d+1LSetej=dimLjN(Ly +...+Lj1)j=2,..., 1. Then the dimen-
sion formula tells us that ¢j=n; + dim (L; +...+ Lj,) dim(L; + ... +1;).
Adding up all these equalities we see thate; +... + e, =n; +...+n; — dim
(L, +...+ L;). By the first paragraph of this proof we sec thatn;<g;+d - 1.
On the other hand L, -+ ...+ L, is cqual tolP", since V is not contained in any
hyperplane. Moreover, g < n — d + | by hypothesis, and g = g, + ... + g;.
Finally we may assume, possibly after rcarranging the components, that
¢j = d — 1, since V is connccted in codimension one. Combining all these rela-
tions we deduce the incqualities

r -1D(d D<ey;+...+e=n;+...+n n

Kg+r(d 1) a<@-1Dd- 1)

From thse inequalitics we infer that all inequalities used before must be equa-
lities, and in particular (i) and (ii) follow. We also get ¢j = d - 1. Since
VN (Vy U... UVj,;)also has dimension d 1, (iii) follows as well. QED.
Remark: Theorem | admits the following converse. Suppose that L, ..., L;
are linear spaces in[P" such that ¢j=d 1, where ¢j is defined as in the proof
above. Assume also that Ly + ...+ L; =P". For cach j choose and algebraic
irreducible subvaricty V;j « Lj whose degree g; satisfies gy =n;  d + I, where
nj = dim Lj, and such that (iii) is truc (take {orinstance a scroll of dimension d
and degree nj such that one of its rulings is Ly N (L, +. ..+ Lj.;); notice that
the condition on the degree alrcady implies that < V; > = Lj). Then
V=V, U...UV;is connected in codimension one, of degreen - d + 1, and
not contained in any hyperplanc.

We thus see that theorem I reduces the knowledge of connected in co-
dimension onc minimal degree varietics to the knowledge of irreducible minimal
degree varictics. And the classification of the latter, up to projective equivalence,
is given by the following theorem of Del Pezzof Bertini/llarris ([P], [B1], [H1]):
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2. If V is a irreducible minimal degree varicty of P" then V belongs to pre-
cisely one of the following three classes:

(i) Scrolls

(ii) Quadrics of rank not less than five

(iii) A Veronese surface or a cone over a Veronese surface.

Note: For the case of curves thcorem 1 is already contained in [A]. As far as
theorem 2 goes, the surface case is due to Del Pezzo [P]. Later Bertini [B1]
found a generalization which can be stated as follows: An irreducible minimal
degree variety which is not a quadric, nor a Veronese surface, nor a cone over a
Veronesc surface, is a rationally ruled variety, i.c., the locus of a rational oo !
family of (d  1)-dimensional lincar spaces. Finally J. Harris [H1] proved that
the oo! family ocurring in these varieties actually tums them into scrolls. The
theorem of Del Pezzo has becn proved by other authors a number of times
(cf. for instance [E1], [B1], or [N]). On the other hand, Saint-Donat [S1] states
a theorem similar to theorem 2 above, although he apparently gets more cases
duc to his restricted use of the word scroll. However he does not provide a
proof, nor can such a proof be found in the references he quotes. Finally J.
Harris uses in his proof the Lefschetz hyperplane section theorem, which can be
avoided and substituiled by a direct argument. In the last section we write down
a rather detailed proof of theorem 2. In one of the main steps we use teorem 1.

LINL:AR SECTIONS OF SCROLLS

In [B2] it is shown that if S; j, is the Scgre embedding of P! X P" inP2"* 1
and if L is a linear space which cuts each (n-dimensional) ruling of 8§, , in
exactly one point then L M S, , is a normal rational curve (loc. cit., Satz 2). In
this section we gencralize this result. in fact we describe the set-teoretic struc-
ture of any cquidimensional lincar section of a scroll. We also point oul a couple
of applications.

3. Let S =S(ny, ..., ng) be ascroll inP™ and let L be a linear space such
that L N S is equidimensional. Then

LNS=SUF, U...UF,,

where § is a scroll (possibly empty) and where each F; is a lincar space contained
in a ruling of S. If S is non-emply, each [j meets S along a ruling. In any case
L N S is a connected in codimension one minimal degrec varicty in its lincar
span.

Proof: If d = 1 the theorem is true in a trivial fashion for in this case LN S
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is finite and this is connected in codimension one, and has minimal degree in
its lincar span (see descending induction below). Assume thus that d > 2.

Let p be the common dimension of the components of L N S. It is clear that
for any ruling G of S we have dim (L N G) < p. If dim (L N G) = p for all ge-
nerators G then L U G is independent of G and hence it is a p-dimensional linear
space S contained in all rulings of S. In this case L NS =S and this satisfies the
conditions of the statement. Assume now that dim (L N G) < p for aleast one
ruling G. Then dim (L N G) = p can be satisfied by only finitely many rulings
Gy, ..., Gy of S (of course s may be zero). Set Fj = L N Gj. It may happen that
LNS=F, U...UT,, in which case the result also holds. Otherwise let S de-
note the closure of the union of the intersections L N G, where G runs over all
rulings of S such that LN G ¢ F; U...UF;. We claim that for any such G we
have dim (L N G) =p - 1. In fact, if inf dim (LN G)=p werclessthan p 1,
then dim (L N G) = p’ for all rulings G of S but a finite number, and L N S
would contain a component S’ of lower dimension than p, namely the closure
of the union of all L N G where G runs over all rulings G of S such that
dim (L N G) = p’. Consequently we may assume that S is an irreducible com-
ponent of L N §; the other components are F,, ..., Fg. It is clear that 'S is
ruled.

Next we observe that p < dim (L) < g + p — 1, where g = deg (S). The
first incquality is clear. To sce the second, let G be a generic ruling of S. Then
dim (L) =dim (L+ G)+dim(LNG) -dm(G)<n+p 1-(d- 1)=
g+p- l,sinceg=n d+1.

We also observe that L M S is connected in codimension one. To see this
it is enough to show that F; N S is (p -- I)-dimensional. And since ScLitis
enough to see that G; N S is (p -- 1)-dimensional, or equivalently, that G N Sis
(p  1)-dimensional for all rulings G of S. If nq 2 | then any two rulings are
disjoint and we have a projection map u:S - IP' whose fibers are the rulings of
S. Let v be the restriction of u to S, so that if G is the fiber of u over telP' then
G N S is the fiber of v over t. But by construction the generic fiber of v is
(p 1)-dimensional. It follows that all fibers of v are (p — 1)-dimensional. This
proves the claim when ng 2 1. If ng =0 then S is a cone over an S(ny, ..., ng.; )
with vertex the point Ly and the c¢laim follows easily by induction.

To procced with the proof we may restrict ourselves to consider only linear
subspaces L such that L=< L NS >. In fact, if L’ = < L N S > then
L'NnS=LNS.

Now suppose first that dim (L) =g + p — 1. Then since deg (L N S) < deg
(L-S)=g=dim(L) p-+1,andsince L NS is connected in codimension one,
we can apply theorem 1 to conclude that S has minimal degree in < S >, that
deg(L N S)=g, that F; NS is a ruling of S, and that L N S has minimal degree in
its linear span, namely L. Notice also that S is a scroll, by theroem 2.
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Therefore we can assume that p < dim (L) <g+p- 1. In this case we are
going to usc a descending induction argument on dim (L). We sce that
dim (L + Gj) = dim (L) + d — 1 — p, since dim (L N G;) = p. Hence dim
(L+G)<g+p—-1+d- 1—-p=g+d—2=n -1,andL + G;is a proper
subspace, so that it can contain at most a finitc number of rulings of S. Thus there
exists a ruling Gg and a point Py € Gy such that Py ¢ L + Gj fori=1,...,s.
If &’ # G;, a similar computation as above shows that dim(L+G")<n,so that L+’
will not contain a generic point Py of a generic ruling Go, if G’ is itself generic.
In other words, we can select G so that L. + G’ does not contain G, but for
finitely many G’ # G;. Let Gy, , . . - , G; denote the exceptional rulings G’ such
that L + G’ contains G,. Define L¥ = L + 1. Then L* is the linear span of
L* M S. Moreover, a straightforward computation shows that

dim(L* N G)=pif G=Gy,-+ -, Gy Gesys -+ » G,

= p —1 otherwise.

Since dim (L*) = dim (L) + 1, by descending induction we may assume that
L* N S satisfics the theorem. But L* N S=S U I'; U ... UFUF,U...UF,,
where F; =L N Gjalso fori=s + 1,...,r. From this the theorem follows
immediately. QED.

As a corollary we have.

4. 1f the set-theoretic intersection of a scroll and a linear space is irreducible,
then this intersection is itself a scroll. The intersection is irreducible if the lincar
space cuts the rulings of the scroll in linear spaces that have constant dimension.
In particular, a hyperplane that does not contain any ruling cuts a scroll in an
irreducible variety that is itself a scroll.

To simplify terminology we will say that a varicty is a crown if it satisfies
the conclusions of therorem 3, that is, if it consists of finitely many lincar spaces
going through rulings of a scroll and in such a way that it is minimal degree in its
lincar span.

Now recall that scrolls have equations given by the vanishing of the 2 X 2
minors of a 2 X g matrix of linear forms. In fact given S — S(n,, . .., ng) there

cxists a system of projective coordinates X;; in P", wheren=n, + ...+ nyg
+d- 1,1<i<d, 0 << nj, such that S is the sct of common zcroes of the
2 X 2 minors of a matrix of the form (A, | ... |Aq), where

Xi0 xil Xi,ni-l
A=
Xii Xig - Xi,ni

(sce [B1] for the surface case; the general case follows just as casily). Also, as
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D. Kisenbud poinis out to me, the homogencous ideal of the unique normal
rational curve going through n + 3 points in general position in [P" is generated
by the 2 X 2 minors of a matrix

Xu Xl/"' xn—l
Yo Yy +- Yna

where the X;’s arc the homogeneous coordinale functions of IP" and Y; =
(an Xi 2 Xp)(an - a3), and where we normalize the points so that the first
n + 1 are the vertices of the reference pyramid, the (n + 2)-th is the unit point,
and the last is (ag, ..., a,). In the presence of these facts one may ask what
kind of varietics V we can get by the vanishing of the 2 X 2 minors of a2 X q
matrix of lincar forms

*) (“1 e “q)
Vl " e Vq
5. ¥f the 2 X 2 minors of (*) cut out en cquidimensional variety V, then V
is a crown. If V js irreducible then V is a scroll.
Proof: Let m = dim <uy,...,uq, Vi, .., vq >. Let us take new homo-
geneous variables Xpn41,..., Xn+p, =2 q — m, and let us replace p of the forms

Upyeens Ugy Viseens Vg by Xpuys o oo, Xnep in such a way that the 2 q com-
ponents of the matrix

) <U,1 .. .ufl'>
Ve vy

which we get in this way are linearly independent. Let V' be the variety in
IP"*? given by the vanishing of the 2 X 2 minors of the matrix (). It is the
Segre embedding of P! X IPY"! in PP and in particular il is a scroll. Now our
varicty V is a linear scction of V', V =V’ N L, where L is the linear space given
by the cquations X wj =0,j=1,...,p,and where w,,. .., wp denote those
entries of (*) which have been substituted by the new variables. Therefore V is a
crown. QED.

6. With the same notations as in 5, if V is not contained in any hyperplane
of IP" and if its codimension equals the generic codimension for these kind of
varietics then deg(V) =q.

Proof: In this case V is a crown spanninglP™ and hence deg(V)=n—-d+1=
codim(V) + 1 = codim(V’) + 1 = q. QED.
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The last corollary to theorem 3 involves the polar variety L* of a linear
space L CIP" with respecto to a pencial of quadrics Q = {Qt} ,telP'. Suppose
that the polar space L§ of L with respect to Q; has constant dimension p. Then

7. L* isascroll of degree n - p, where n = dim L*.

Proof: It is an straightforward computation to see that L.* has equations
given by the vanishing of the 2 X 2 minors of a 2 X (in + 1) matrix of linear
forms, where m is the dimension of L. If dim(L{") is independcnt of t then L* is
irreducible and consequently it is a scroll. QED.

EXAMPLES COMING I'ROM RULLD SURFACES

We are going to apply theorem 2 to some ruled surfaces whose construction
we describe presently. Let L, and L, be proper linear subspaces inlP" and set
m; = dim(L;), i = 1,2. We will assume that m, > m, > 1. Fori=12,let Vi C L;
be a curve such that < V> = L; and assume we have a birrational isomorphism
h: V; = V,. Let S be the ruled surface swept out by the line that joins pairs of
corresponding points, that is, S is the closure of the union of lines < t, h(t)>,
where t is a point on V, at which h is defined and which is not a fixed point for
the correspondence. Let Q;, ..., Qg be the fixed points of h, which we will
assume to be simple both on V; and on V,. Then if deg(Vj) = gi,i= 1,2, we
have a formula for the degree of S, namely

8. The degree of S is g, + g, - 5. Moreover, S has minimal degree in IP"
(assuming that L; + L, =IP") if and only if V; is 2 normal rational curve in L;,
ands=m + 1, where m =dim(L, NL,).

Proof: Let L be a generic linear space of dimension n — 2. We want to find

out the number of points in L. N S. To this end, consider the pencil Z of hyper-
planes I that contain L and the correspondence f from Z to Z whose graph
it € Z X Z is formed with pairs (11, H’) such that H NV, contains a point
which corresponds under h to a point in H’ N V,. This is an algebraic corre-
spondence, since Gy is the image of Gy C V; X V; under the morphismp; X p;:
Vi X Vy » Z X Z, where p;: V; > Z is given by P — P + L. Next it happens that
the correspondence f has type (g, g2)- In fact grom the definition it turns out
that f(t1) = po(h(H N V), £ (H) = p, (7' (H" N V,)). By Chasles principle,
f has g; + g, fixcd points. Our hypothesis on the fixed points Q; imply that the
hyperplanes Q; + L are {ixed points for the correspondence f and that they have
multiplicity one. Thus f has, aside from the hyperplanes L + Q;, g1 + g2 — s
fixed hyperplanes, which all count with multiplicity one due to the fact that L
is generic. This means that there are g; + g, - s hyperplanes in Z which contain
a ruling of S, and that the remaining members of Z cut all rulings of S at a single
point. Fron this we infer that L N S contains exactly g; + g, - s points.
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To sce the second statement, notice that my; + m, = n + m, so that S has
minimum degree if and only if g; + g, — s =m; + m, --m — 1, that is, if and
only if

(gl m1)+(g2—ln2)+m+1=s.

On the other hand if we take m; — m - 1 general points of Vj, these points and
the s fixed points Q; are contained in a hyperplane of Lj, so that s < (g; — m;) +
m + 1. Since this relation is true for i= 1, 2, we get, together with the previous
relation, that actually g; = m; and as a result also s=m + 1. QED.

We can apply some of the previous results to give a rather weak characteriza-
tion of the so called directrices of a surface scroll. A curve D on a ruled variety
V is called a directrix if it cuts each ruling in exactly one point and <D>N V=D,

9. Let D be an irreducible curve on S = S(n;, n,) which is not a ruling.
Assume thatn, 2 n, =l andsetn=n; +n, +1,g=n— 1. Then we have:

(a) The following conditions are equivalent:

(i) Dis a directrix, )

i) <D>#0P",

(iii) deg(D) =g.

(b) If D satisfies these conditions then D is a normal rational curve.

(¢) If D, and D, are two distinct directrices of S then they meet in exactly
m; + m; -- g points, m;j = deg(D;).

Proof (cf. also [B1]): That (i) implies (ii) is obvious. Assume (ii). Then if
L=< D >,L NS contains D as a component, and possibly contains also a finite
number of rulings. By theorem 3, D is a normal rational curve and hence deg(D)=
dim < D ><n — 1 =g. Thus(ii) implies (iii). Now assume (iii). Then dim<D><
deg(D) < g=n- 1,andso D is a normal rational curve by the same argument as
above. If < D >N S # D then <D > would contain a ruling G of S. Take g — m
generic points on S, where m = dim < D >, say Py, ..., Pyyy. Then <D >+
Py + ...+ Py is contained in a hyperplane I1 of P" which cuts S at least along
D and g -- m + 1 rulings, which contradicts the fact that S has degree g. There-
fore < D >N S=Dand D is a directrix. Statement (b) has already been proved.
And (c) follows immediately from thcorem 8. QED.

A PROOFF OF THE DIL PIiZZO/BERTINI/HARRIS THLOREM

We first prove a preparatory lemma which is a slight improvement of a si-
milar lemma in [HI].

10. Let S be an irreducible minimal degree surface in IP", x and y two
distinct points of S, and L the line joining x and y. If L contains a third point of
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S, or if x ory is singular for S, or if L is tangent to S at x or y, then L is contain-
edinS.

Proof: Project P" onto IP™? with center L and let S’ be the projection of S.
If L were not contained in S, and S’ were a surface, then deg(S’) would be deg(S)
(namely n -- 1) diminished in the number of points, counted with multiplicities,
that a general codimension two linear space through L has in common with S. If
any of the assumptions in the statement is true then this number is at least three,
so that deg(S’)<n - 4. But this is a contradiction because $’ spans'P""? and the
minimal degree of such a surface is n - 3. Therefore if L is not contained jn S,
then S’ must be a curve. If x or y is simple, then S’ contains a line, namcly the
line corresponding to the tangent space at the simple point, and consequently
S’ is a line. This is only possible if n — 2 = 1, which implics that n= 3, and hence
that S is a quadric, which does satisfy the lemma. And if both x and y are
singular on S, then by what we have already proved the plane joining x, y and z,
for any simple z, is contained in S, hence also L is. QED.

Next theorem is due to J. Harris [111]. It appears to be a natural comple-
menl to Bertini’s generalization of Del Pezzo’s theorem. We prove it using
thcorem 1, but the idea is alrcady contained in Berlini’s proof of Del Pezzo’s
theorem (surface case).

11. Let V be an irrducible minimal degrec varicty of P". If V is ruled, then
V is ascroll.

Proof: It is clear that we may assume d 2 2. Set p =[—3—] and pick out p

generators Ly, ..., Ly of V. Then since dim(L + ...+ Lp)<p(d 1)+
p—1=pd 1<n 1 wescethatthere exists a hyperplanc H which contains
L; +... +Lp.ThenH NV is the union of a finite number of rulings Ly, ..., L
(thus m = p) plus a component V, such that Vo O L D H N L for all rulings
L#L;,i=1,...,m.In fact Vg is the closure of the union of the linear spaces
H N L, where L runs through the rulings such that L ¥ L;,..., L. Thus
Vo N L contains a linear space of dimension d 2 for all rulings L. In fact let
C be the curve on Gry g.; (the Grassmannijan variety of (d — 1)-planes inlP™)
whose points correspond to the rulings of V, let h:X -» C be a desingularization
of C, and consider the rational map s:X - Gry g., given by s(x) =H N Ly x),
where Ly (x) denotes the (d  1)-dimensional lincar space corresponding to h(x).
Then s is regular everywhere, because X is non-singular and Gr, g., is projective.
Since Ly(x) € Li(x) for generic x € X, it turns out that Lyx) € Lp(x) for all
x € X. From this the claim follows immediately.

If Vo were contained in L.; U. ..U L,,, then cither Vy has dimension d 2,
in which case it must be a linear space contained in any generator L, or else V,
has dimension d 1, in which case Vo =L; for some i, say Vo =L;. In the first
case V is a cone over a normal rational curve with vertex a (d - 2)-dimensional
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linear space, hence a scroll. The second case can not occur, {or such a property
is stable under general hyperplane scctions and also under projections form a
general point of -the variety; since the hypotheses in the theorem are also pre-
scrved under such operations, we would find that an irreducible quadric in ip3
would satisly the properly, which does not.

Therefore we may assume that Vy is not contained in L; U ... ULy . We
can also assume that the previous construction has been carricd out so that m
is maximum (in any case m is bounded form above by the degree of V).

Now < H N V >==H, for otherwise H NV would be contained in ahyperplane
IT" of H and then if Q is a general point of V, IT" + Q would be 4 hyperplane that
would contain at least m + 1 rulings of V. On the other hand, deg(HH N V) <
n-d+1=(n 1)-(d 1)+ 1. Since Il NV isconnected in codimension
one, by thcorem 1 we conclude that Vy has minimal degree in <Vy>, that
degli NV)=n — d + |, and also that Vo N L; is a lincar space of dimension
d 2, Thus deg(Vp)=n--d+1- manddim<Ve>=n -m- 1.Since V, is
ruled, by induction it is a scroll, say of type S(n,, .. ., n44 ), where this time we
will assume n; <...< ny.;. Set C; to denote the normal rational curve of V
corresponding to the summand O(n;) of the bundle which defines V. Set
E;, =<C; >. Ifn; =0, then V, is a cone with vertex E,, form which it follows
that V itself is a cone with vertex E; (by 10). The directrix of this cone is a
general hyperplane section of V, which by induction is a scroll, so V itself is a
scroll. We may thus assume that n; 2 1. Notice that by construction any ruling
of Vy, and hence any roling of V, cuts C; at a unique point. We have the follow-
ing bound for n; :

n; =deg(C,)<(degHNV)/(d 1=(n-d+1 m)/(d 1)
Butm+ 12 p+ 1>n/d,sothatdm >n d and consequently

n < (dn--d(d 1)-dm)/d(d-1)
<(@n--d(d 1) n+d)/d(@ -1)

n(d-1-dd D+d/dd 1

nfd—1+1/(d 1)

< n/d.

This shows that if we take rulings L}, ..., Ly, of V such that they cut C,
inn, distinct points Py, ..., Pp, then

dim(Lj+..-+Lg)<n (d-1)+n -1=nd--1<n- |
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In particular there exist hyperplanes 11" which contain 1.7 + ...+ Ly, . Since
this last linear space intersects £y along Py + -+ * + Py, which is a proper sub-
space of I}, we may select I in such a way that it does not contain E,. In this
fashion H’ intersects C; exactly at the points Py, ..., Py, and by an argument
similar to one used above, H’ can contain anly the rulings Ly, ..., Ly, of V.
Again as before I NV = Vy UL U...U Ly, where Vg is a scroll, say
S(my, ..., mg.1), which culs every ruling of V along a linear (d -- 2)-dimen-
sional subspace. Moreover, Vi does not cut Cy. In fact, E; and Vg are supple-
mentary subspaces of IP", for<Vp >+ E; =<V >=P" and deg(Vo)=n d+
1. n;,s0that dim < Vi >=n--n; + 1=n dim(E;) + 1. This implics
immediately that V itsclf is a scroll of type S{n;, m,, ..., mqg.;). QED.

Now we proceed to the proof of theorem 2. If d = 1, then V is an irre-
ducible curve of degrec n inIP" and hence it is a normal rational curve, that is,
a S(n).

Next assume that d = 2. If n= 3, V is a quadric of rank 3 or4, hence a scroll
of type §(2,0), or of type S$(2,1). If n =4,V is a cubic surface in P*.IfV is
singular then, by 10, V is of type S$(3,0). And if V is non-singular then we can
show that V is of type S(2,1) as follows (cf. [XXX]). Let x,, x5 be to general
poinis of V and let Q;, Q, be the quadrics of IP* formed taking the cone of
vertex x; and directrix V,i= 1,2.Since V is non-singular, they are rank 4 quadrics.
Then Q; N Q; =V U L, where L is a plane. Take coordinates so that L is given
by Xo = X; = 0. Then we can arrange the equation of Q; as XoG; X, Fi=0,
where Fj, G; are lincar forms. We clearly can assume tha F; =X, and G, = X;.
Moreover, one of the forms I';, G, must be lincarly independent of Xg, .. . X3,
given that their vertices arc different. Thus we can suppose that F, = X,. We
conclude that V is the variely given by the vanishing of the 2 X 2 minors of the

matrix
( Xo X2 Xa
X1 X3 G
where G = G, is a lincar form in X, . . ., X4. Now it is easy 1o see, by row and
column opperations, that in fact G may be assumed to be Xo. Thus V is indced
of type S(2,1).

So we may assume that n = 5. Assume also that V does not containoo?
conics, so that through a general point X on V do not pass oo! conics contained
in V. Let V’ be the projection of V in P*? from x. Then V’ has minimal
degree in P™! and contains a line (corresponding to the tangent of V at x),
say L, so that in particular V’ is not V3. By induction we can assume that
V’ is a scroll. It happens that L. is a ruling of V’, for otherwise the rulings of V’
would cut L and thereforec they would be projections of conics through x on
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V, against our assumption. We sce then that V itself is ruled. By 11 it is a scroll.
And if V contains o conics, then it is a fact that V must be a Veronese surface
V3 inlPS (cf. [B1]; however, see Note | at the end).

So assume that 3<d<n 2(ford=n 1,V isa quadric). Take a generic
linear space L of dimension n — d + 2. Then L NV is a minimal degree surface
in L. We distinguish two cases: (i) L NV is a scroll; (ii) L N V is a Veronese
surface V3.

In case (i) V is ruled, hence a scroll; {or if Vy is the union of lines contained
in V that go through a generic point x of L NV, then L NV, is the unique linc
of L N V that goes through x, hence Vy is a (d - 1)-dimensional linear space
and V must be ruled.

In case (ii) it is cnough 1o see that if n 2 6 then V is singular, since then it
will be a cone over a generic hyperplane section V' (by 10), which has again
propery (ii), so that by induction V’ is a cone over a Veronese surface V4, thus
V itself is also a cone over a V3. To see that V is singular when n > 6, assume
first that n = 6. Then under the assumption (ii) the degree of V is 4, hence d = 3.
In this case (ii) says that the generic hyperplane section of V is a Veronese sur-
face V3. Suppose that V were non-singular. Then we derive a contradiction.
Let x be a generic point on V and le W be the projection of V from x into P,
Then W is a non-singular cubic threefold intP® (again by 10), which, by what we
have already proved, will be a scroll. It therefore contains an o' family of
disjoint planes. This and the hypothesis on V imply that V3 contains lincs,
which is the desired contradiction. If n > 6, the fact that V is singular follows
immediately by induction laking a generic hyperplane section, which will satisfy

(ii).



NOTES

1. We do not nced the general result stated in |B1| according 1o which any surface
with oc? conics on it is cither a V% or a projection of a V‘;. We only necd to prove that if V
is a mlmm,ﬂ dcgrcc surface infP, n 2= 5, that contains oo conics generically irreducible, then
Visa Vz inIPS. And this can be proved casily using 10. Indeed, let Vo =V and define V;
recursively, n 1 2 j 24, by taking the projection of Vj, to 1P from a genceral point of
Vij+;. Then Vj is a minimal degree surface and the projection V]+l — Vj is a birrational
isomorphism (by 10). Each V contains o conics. In particular Vg is a cubic surface inlP
that contains o0? conics. I'hcrclorc, V4 is a surface of type S(2,1), since S(3,0) does not
contain conics. Now S(2.1) is also the projection of a v‘; from a point, so that it exists a
birrational map f: P2 — V, which corresponds 1o the linear system of conics which go
through a fixed point P. This map sends lines through P to rulings of V4 and all other
lines to conics. Consider the birrational map g: P2 — Vg given by composing f with the in-
verse of the projection Vg = V4. This projection sends conics on Vg that pass throuL_h the
center of the projection Vg — V4 (there are oo! of them) to rulings of V4 and so g: ip? Vs
sends lines of IP2 1o conics. ‘This implics that g is given by 6 lincarly independent homo-
gencous quadratic polynomials, so that Vg is a V4 Since a V is normal we conclude that
aclually n =35 and hence that V=Vgisa V4

2. For the structure of the homogcncous coordinate ring of a minimal degree varicty,
see |1:2] and [1:3].

3. Theorem 2 can be applied to give an “‘cnumeration” of the quartic varieties so-
mewhat more explicit than Swinnerton-Dyer's [S3]. See [X1] or [X2]
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