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ABSTRACT.

In this paper we derive an existence theorem for the implicit
defferential equation

Fit,,2)=0 ; =x() =

where F is a f-Lipschitz or a-Lipschitz operator in the second va-
riable. The existence of maximal and unlimited solution is studied
and a continuous dependence theorem is proved.

1.— INTRODUCTION AND NOTATION.

Some existence theorems for an implicit differential equation in
a Banach space B were given by ABIAN-BROWN [1] and CoONTI [4]
when B has finite dimension. This problem has been studied in the
infinite-dimensional case by PurLvireNntI [11] for Lipschitz-continuous
and completely continuous operators, CARMONA [3] for Lipschitz-
continuous operators and DoMiNGUEZ [7] for a-Lipschitz and f-Lip-
schitz operators.

For the explicit differential equation in a Banach space some
existence theorems have appeared in the latter years. (See DEIM-
LING [6] pag. 29 for references). However, some fundamental pro-
perties of the solutions, especially the continuous dependence problem,
have not been studied more than lightly. A continuous dependence
theorem for Lipschitz-continuous operators has been stated by
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Lasora-YorkE [9]. This result has been questioned by VIDOSSICH
[12], who thinks that it is necessary to use additional hypotheses.

This paper concerns the study of fundamental properties of the
solution of the implicit differential equation

F,xx)=0 ; x(H) = (D
Most of these results were known for the explicit differential equation

¥ =fit,) 5 xli) =%

but Corollary 3 had not been stated before. We derive an existence
theorem for (I) and study the behavior of the unlimited solutions
and the continuous dependence of the solutions on the initial values
and the operator F. The contniuous dependence theorem, in the par-
ticular case of the explicit differential equation (Corollary 3), shows
that Lasora-YorkE's hypotheses suffice and that it is possible to
weaken them.

In the following B will be a Banach space with norm || - ||. When
S is a subset of B, B(S, ) will denote the set {x € B:d(S, x) <7}
@d(S, x) = inf {||y — || :y €S}) and B(S,r) will denote the closure
of B(S, 7). Recall the definitions of non-compactness measures [10],
13]. Let X be a metric space, £ a bounded subset of X, the f- and
a-meastre of non-compactness of 2 is defined by f(2) = inf {¢ > 0:0
can be covered by finitely many balls with centres in X and diame-
ter &, a(Q) = inf {¢ > : Q2 can be covered by finitely many sets of
diameter less than ¢. (In [13] a comparison is made between these
measures). We shall write i (£2) when it is necessary to specify that
the centres are in X.

Let T be a cotinuous mapping from X into itself which maps
bounded sets into bounded sets. We say that T is a-Lipschitz (resp.:
B-Lipschitz) if there exists a real constant % such that

x(T'(42)) < ka(8) (resp.; B(T(2)) < k(%))

for every bounded set 2 in X. In the case & < 1 we say that T is an
a-contraction (resp.: f-contraction).

Let R be the set of real numbers, £ a subset of R X B X B
and F:Q2 - B a continuous mapping. We say that F is locally
a-Lipschitz (resp.: locally f-Lipschitz) in the second variable if for
every point (fy, %, #p) in £ there is a neighborhood V X W x U
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of this point such that f(¢, -, %) is a-Lipschitz (resp.: g-Lipschitz) on
W for every point (¢, ) in ¥V x U.

2. — LooCAL AND GLOBAL EXISTENCE OF SOLUTION.

The following existence theorem was proved in [7]. Here we de-
velop a much simpler proof than the one that was made in [7]. This
improvement can be obtained because the integrodifferential opera-
tor used in [7] (the same as in [11]) is replaced by another integro-
differential operator which was introduced in [3].

Theorem 1. Let a, b, ¢ be positive numbers, (£, %o, #g) a point in
R X B X B. Let A be the set

A= (% u) e RXBX Bily—to| <a,|lx — xoll <b, |l — ugl| <}
and F:4 - B a uniformly continuous mapping that satisfies
F(ty, x0, ug) = 0 (1)

and the following condition:

(L) F is p-Lipschitz (resp.: a-Lipschitz) in the second variable
with modulus /; there exists a continuous linear injective mapping
u:B —> B and a real constant L,0 <L <1 (resp.:0 < L < 1/2)
such that

llw + u F(t, x,u) —upl) <c (2)
o —v 4+ ulF@xu) — FEx0)]|l <Llu—o] (3)

for every (¢, x, %) and (¢, »,v) in A.
Then there exists a positive number 6, § = min (a, (1 — L) /44,

b/(ljugl| + ¢)) (resp.: 0 = min (a, (1 — 2L)/[2h, b/(||ug]] + ¢)) such
that a solution of (I) is defined on (¢y — 9, { + 9).

Proof. We define the mapping g: 4 -~ B by g(¢, x, ) = u +
+ wF (t, #, u). This mapping satisfies

(a) g(to, %o, wo) = g

(b) llg(t, %, u) — 1y || <c for every (¢, x, u) in A.
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(c) ilg(t, x,u) —g(t x,v) || <L|u— v|| forevery (¢, , 1) and (¢, x, v)
in 4.
(d) g is p-Lipschitz (resp.: a-Lipschitz) in x with constant & = & |||
Let V be the set B(ig, c), W the set B(%, b) and J the interval
(.o — 0, % + 0). We denote C(J, V) the set of all continuous mapping
from J into V. We will assume that this set is equipped with the
topology of the uniform convergence on J. Let I: C(J, V) -~ C(J, W)
be the mapping defined by

Ix (t) = % -+ r %(s) ds

Jt

For every positive number o define (as in [11]) the real valued function
w(o) = sup {lg(t1, Ix(t), x(t1)) — g(t2, Ix(t2), ()l = t1, £2 € I,
%() e C(J, V), [lh — tal < o}, By using [[Ix(t) — Ix(t)|| <
< ity — tl(c + llipl]) and the uniform continuity of g we obtain

lim w(o) =0 (4)

a— 0+

Let K denote the subset of C(J, V) of all mappings satisfying
x(to) =x9 ; iix(t) —x(2) [l S o (ft —l)/(1 — L)

It is easy to prove (as in |11]) that K is a non-empty, closed and
convex set. FFurthermore, condition (4) implies that K is equiconti-
nuous. We define the operator 7 : K — K by

T (t) = g (¢, Tx(t), (t)

Consider the a-measure case. Let H be a subset of K. Since H and
TH = {ITx(-):x((-) e Hy are equicontinuous sets, theorem 2,3
in [2] is satisfied. Hence

«(H) = sup @(H(9) : ¢ € J)
«(TH) =sup {«(TH(t):te]}

By using TH(t) c g(¢, IH(f), H(t)) and lemma 3.2 in [7] we can
write

«(TH(t) < «(g(t, IH (), H(t)) < ka(IH(t) + 2L 2(H (£))
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Since I is a Lipschitz operator with constant (1 — 2L)/2k we obtain
«(TH(®) < (1 —2L)J2 + 2L) a(H{) = za(HE) 0 <z < 1)
and taking supremum
«(TH) < ya(H)

Darbo’s Theorem [5] implies the existence of a fixed point of T" which
is solution of (I).

Whenever the f-measure is concerned we consider the metric
space X of all mappings from [ into B that are continuous unless for
finitely many points where they have bounded jumps. Iet ¥ o X
be the set of all mappings x(-) € X satisfying x(J) o V. It can be
proved as in [7]

B, (H) = sup By (H (#))
te]
where H ¢ C(J, V) is an equicontinuous set. Lemma 3.2 in [7] im-
plies By (g(t, IH (), H() < 2 k5(IH () + LBy (H(1) < (2k8 +
+ L) By (H(t) <y By (H () where 0 < 3’ < 1.

Taking again supremum we prove that T is a f,-contraction.

Hence T has a fixed point ([7] Th. 2.3) which is solution of (I).

Corollary 1. Let £ be an open subset of R X B X B, F a locally
uniformly continuous mapping in C(Q, B) (i,e.: for every point
(fo, %o, o) in 2 there is a neighborhood U of this point such that F
is uniformly continuous on U. This condition is satisfied by a con-
tinuous function when dim B < -- o0). Assume

(L") F is locally fS-Lipschitz (resp.: locally a-Lipschitz) in the se-
cond variable and for every point (fy, %, %) satistying F (¢, %, #9) = 0
there is a neighborhood V of this point, a real constant L, 0 < L < 1
(resp.: 0 < L < 1/2) and a continuous linear injective mapping u
such that (3) is satisfied in V.

Then for every point (fy, g, %) in Q satisfying F (£, %o, #o) = 0
there exists a maximal solution ¢(f) of (I). Furthermore this solu-
tion is unlimited, i.e.: (¢, ¢|(¢), ¢'(f)) has no limits in 2 as £ — ot
or t —f-.

Proof. Let (f, xp, #9) be a point in £ such that F(fy, xp, 1) = 0.
Let U be a neighborhood of (fy, %g, %) such that F is f-Lipschitz
(resp.: a-Lipschitz), uniformly continuous and satisfies (3) in U.

14 — Collectanea Mathematica
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Take positive numbers a’,%’,c¢ such that B(fy, @’) X B (%, b’) X
X B(uy, c) is contained in U. We can choose two positive numbers
a,b(a<a,b <¥) such that |lug + uF (¢, x,u) || < (1 — L) ¢ when
[t —t| <allx— x| <b. Then ||u + F(¢ x, u)|| <c and we can
use Theorem 1 to obtain a local solution.

The partial ring of the solutions of (I) and Zorn's Lemma
imply the existence of a maximal solution. This solution must be
unlimited, because the condition lin; @t ¢(2), ' (t) = (B, x5, up) in

t—

Q implies (F (B, %4, ug) = 0. Then we can define a solution on a
neighborhood of § contradicting that ¢ is a maximal solution. These
arguments apply equally well to lim (¢, ¢ (2), ¢'(¢)).

t—>a

In order to obtain a definition interval J = (fy — 6,% + J)
independent of the g-Lipschitz modulus % we introduce the following
lemma.

Lemma 1. Let 2 be an open subset of R X B X B, (t, %y, %) a
point in 2, F a mapping in C (R, B), a, b, ¢ positive numbers such that

A = B(ty, a) X B(%y, ) X B(ug, c)

is contained in 2 and F is uniformly continuous on A. Assume that
there exists a mapping u and a real constant L as in Theorem 1 such
that (2) and (3) are satisfied on A. Define = min (a, b/(|| #l| + ¢)),

I=(tg—nto+mn), V=B(x,b) and

o (o) = sup {|| g (b1, Ix(¢1) #(1)) — g2, Ix(t2), x(¢1))|| 1 x(-) e C(L, V),
by —t| <o}

Let 8 be a positive number ¢ <# such that w(d) < (1 — L{(c, and
¢ and unlimited solution of (I). Then ¢ is defined on (fy — 9, {y -+ 9).

Proof. Consider the interval [#y, {y + 0). Assume that ||¢'(f) — uy|| = ¢
for some ¢ in this interval. Then

c=|1¢'(t) — woll Zllg(t ¢(2), ¢'(2)) — g(to, %o, ")) +
+ 1lg (to, %0, ¢'() — moll < ¢

Hence ||¢'(f) — uol| < cin [, fy + 6). Furthermore we have
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i9'() — G < (1 = L)1 o(lt —s|) (5)

and
l1¢(€) — é(s) Il < (¢ + [luoll) It — s (6)

for every ¢ and s in [4, {) + 9).

Let [ty, ty + 0) be the maximal definition interval of ¢, and assu-
me § <ty + d. Then (5) and (6) are Cauchy’s conditions that assure

the existence of lim ¢ (¢), lim ¢'(¢). These limits must be in B (%, b) X
t—f—

_ t—>f—
X B(ug, c) contradicting that ¢ is unlimited.

The following result is a straigthforward application of Corollary
I and Lemma 1.

Corollary 2. Let Q and F be as in Corollary 1; a, b, ¢ positive num-
bers such that 4 = B(f, a) X B(%y, b) X B(ug, ¢) is contained in
Q. Assume that F is uniformly continuous on 4 and conditions (1)
and (L) in Theorem 1 are satisfied. Let 6 be a positive number defined
as in Lemma 1. Then every solution of (I) can be defined on

J = (to— 0,4 + 9).

3. — CONTINUOUS DEPENDENCE

We will prove that the solutions of (I) continuously depend on
the initial values and the operator F.

Theorem 2. Let £ be an open subset of R X B X B, Fy a mapping
in C(2, B) as F in Corollary 1. Let {F,} be a sequence in C(Q, B)
which converges to F, uniformly on bounded sets in Q. Assume
(C) For every point (fy, %y, i) in 2 such that Fy(fy, %o, %) = 0 there
is a neighborhood U of (fy, %y, %), @ sequence {Lr} in R+ and a se-
quence {ur,} of linear continuous injective mappings such that (3)
is satisfied on U for every # = 0, 1,... Furthermore {Lp} - Lr, and
{ur,) = pr,.

Tet (b, %9, #y) be a point in 2, {(4,, %,, #,)} a sequence in Q that
converges to (¢, %p, #g) in Q. Assume

i) F,¢, %, u,)=0

(ii) The implicit differential equation
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Folt 2, %) =0 5 x(t,) =%, (11)
has unlimited solution ¢, % = 1, 2, ...
(iii) The solution of (II) is unique when # = 0.

Then for every compact interval J contained in the maximal
interval of definition of ¢, there exists a positive integer #, such
that ¢, is defined on J for every # > ny and {¢,(f)} - ¢o(¢) uni-
formly on J.

Proof. We shall assume that Fj is a locally «-Lipschitz mapping.
The argument for this proof applies equally well to the g-Lipschitz
case. (1) Local case. Let U be a neighborhood of (fy, %y, #¢) such that
F is uniformly continuous and condition (C) is satisfied on U. Choose
a real number L', 0 < Lz < L' < 1 and positive numbers a, b, c
as in Corollary 1 (replace L by Lg,, u by ur,) so that (L) is satisfied
when we replace (2) by

lle + pr, Fo(t, x, 1) — ugl| < ¢’ (2')

on A = B(ty, a) X B(xy, a) X B(ug, c). (Here ¢’ is a positive constant,
L'c < ¢’ < c¢). In order to do that it suffices to take a, b small enough
so that |lur, Fo (¢, #, #)|| is smaller than ¢’ — L'c.

Let g, be the mapping u, + ur, F,(¢ %, u) (» = 0,1, ...). Since
{g,} — 8o uniformly on bounded sets we have

[ltg — £, (8, %, u)|| < ¢ 4)

on A4 when % is large enough. Let J be the interval (fy — 6, o + 9)
where 6 = 4-1 min (a, b/(c + ||ul|), (1 — 2L)/2k). Assume that
w(20) < (1 — L')¢’ (otherwise we can replace 6 by 6’ < §). Denote

V = B(ug, c) and K’ the set of all mappings in C(J, V) satisfying
2 () — 2@l < @(f — £20) /(1 — L)

where w is an increasing function, w strictly smaller than w, such that
lim @(o) = 0. Let N be a positive integer such that Ly, < L', ||x, —

c—>0+
— x|l < 8/2, |t, —tl < 6 and (4) is satisfied for every » > N.
Define the operator T,,: K' -~ C(J, V) by

T,x(t) =g, Lx(®),x®) #»n=0NN-+I,..
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where

Lx(t) =, + r %(s) ds

Jon

For every # > N we define the function

(D”(O’) = sup {Hgn(t’ Inx(tl)) x(tl)) — &n (t2: Inx(tZ): x(tl))H :
lth— 6| <o, x(-)eC(], V)

It is easy to prove that {w,} — o uniformly on [0, 6§]. Hence, for N
large enough we have T,(K’) c K', ¢, is defined on J and the res-
triction of ¢, to J isin K’ as soon as # > N. Indeed, since g, satisfies
(4) we can obtain

llet,, — &4 (6, 2, w)ll < ¢ (4)

and o,(28) < (1 — L) ¢ in B(t,, a/2) X B(x,,b/2) X B(u,,c') c A.
Lemma 1 implies that ¢, is defined on (f, — 24, 4, + 26). Hence ¢,
is defined on J. Furthermore as soon as # is large enough one has

(1) — (Gl < w,(lty — ta]) + Ly, || $u(t1) — S48l <
< o(ty —&l) + L6, (1) — ¢, ()]

and this inequality implies that ¢, is in K'.

We have proved that the restriction of ¢, to J is a fixed point
of the operator T,(» =0, N,N + 1, ...). It is easy to check that
{T,} - Ty uniformly and that K’ is an equicontinuous set.

Replace K by K', T by Ty, in the proof of Theorem 1. Then T
becomes an a-contraction with modulus y << 1. Let H be the equicon-
tinuous set {¢'g, 'y, #'ni1, ...} and assume «(H) > 0. Choose ¢ > 0,
e < (1 — g) a(H). There exists an integer m > N such that ||T¢ —
— T,¢!| < €/2 for every ¢ in K’. Then one has

OC(H) = “({¢,O’ ¢,m’ ¢,m+1J }) = O(({JRO ¢’01 Tm¢'7;w }) <
< «(B(TH),¢/2) < «(TH) + ¢ < a(H)

Hence o (H) = 0 that means H is a relatively compact set. From the
uniqueness of the solution of (II) for » = 0 we derive {¢',} — ¢
and {¢,} — ¢ uniformly on J.
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2. Global case. We shall study the problem on the right of .
Let [ty, ] be a compact interval which is contained in the maximal
interval of definition of ¢,. Consider the set.

S = {t > fy: there is an integer N such that for every » > N ¢,
and ¢, are defined on [#y, #] and converge to ¢y and ¢, uniformly on
itg, t]} From the local case we know that S is non-empty set. Denote
o =sup S and assume 7 > ¢. Then (o, ¢(0), ¢'(0)) is in 2 and we
can take a «security bally V = B(o, a) X B(¢(0), b)) X B(¢ (o), ¢)
contained in 2 such that condition (C), uniform continuity of F,
and condition (L) (replacing (2) by (2')) are satisfied on V (replace
(fo, %o, #o) by (o, ¢(0), #’'(0))). Choose 6 as in local case and tale o’ < ¢
such that ¢ — ¢’ < §/2 and w(c —¢') < (I — L) (¢ — ¢’)/3. Con-
sider the point (¢/, ¢(0"), ¢'(¢")) € V and the set W = B(o’, a/2) X
X B(¢(c"), 8]2) X B(¢'(¢'), ") where ¢'" = (¢’ 4+ 2¢)[3. Since W
is contained in V conditions (C) and (L) are satisfied in W repla-
cing (2) by

Hé'(0") — g2, x, u)i| >c”

where ¢ = (2¢' 4+ ¢)[3 < ¢'".

From local case in the point (o', ¢(0’), $'(¢”)) we get a solution of
(II) in (¢’ — &', 0" + ¢') where & = 4-1 min (a/2, b/(2c + ||uo]l),
(1 —2L)/2k) and w(28") < (1 — L') ¢”. Then 6’ > §/2 contradicting
the fact ¢ = sup S. Hence 7 < ¢ and Theorem 2 is proved.

When the differential equation is explicit Theorem 2 can be
stated much more easily. This statement is more general than Lemma
2 of [9] and Lemma 3 of [8].

Corollary 3. Let 2 be an.open subset of R X B, fy a mapping in
C (2, B) that satisfies the following condition
(E) fo is locally uniformly continuous and locally g-Lipschitz (resp.:
a-Lipschitz) in the second variable.

Let {f,} be a sequence in C(£2, B) that converges to f, uniformly
on bounded sets in Q. Let (¢, %) be a point in 2, {(¢,, ¥,)} a sequence
in Q that converges to (£, xp) in 2. Assume

(i) The explicit differential equation
Ltx) =2 5 x)=x, (I11)

has unlimited solutions ¢, (n =1, 2, ...)
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(i) The solution of (III) is unique if » = 0.
Then, the assertion of Theorem 2 holds.

Proof. By putting F (¢, x, u) = 1 — f(¢, ), conditions (L’) and (C) in
Theorem 2 are satisfied.

Remark. Condition (C) is satisfied in the implicit case when we assume

(i) There exists the partial derivative D3 F, (n =0, 1, ...) in .

(ii) The sequence {D3F,} converges to Dj3F, uniformly on
bounded sets in Q.

(i) D3Fy(t, x, u) has inverse for every (¢, », u) in Q.

Indeed, let (¢, %o, %) be a point in Q. There is an integer N such
that D3 F,(fo, %o, #p) has an inverse (» = 0, N, N + 1, ...). Putting

lu” = — (D3F”(t0, xo, %o)"l , g” = '{'” + ;unFn

we obtain {u,} — po and Dy gy (fg, %, 1p) = O0. Hence
D3 go(to , %o, #g)|| < L < 1 on a neighborhood ¥ of this point. Since
{D3g,} — D3go uniformly on bounded sets we get ||D;g,(t, x, u)|| < L
on V as soon as # is large enough. Condition (3) is a straightforward
application of this result.
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