THE DUAI, AND BIDUAL OF AN ECHELON KOTHE SPACE
by

J. A. Lo6pez MoLINA

Let (E, A, u) be a measure space. We study the class of echelon
Kothe spaces A?(E, A, u, &), p = 1, and their a-duals (4?)*. With a
natural topology on 4%, if p > 1, (A4?)’ = (A#)=if and only if (E, A, p)
has the finite subset property, and if p = 1, A’ = A* if and only if
(E, A, u) is localizable and has the finite subset property. We define
the concept of K-isomorphism. We give also a representation theo-
rem of certain Frechet vector lattices and we show that every
AYE, A, u, g) is K-isomorphic to I'’(T, M, v, ¢,) with (T, M, ») lo-
calizable and with the finite subset property. We prove also that
[A4”, (A", A%)] is isomorphic to an echelon Kothe space and we
give an example which proves the incorrectness of an affirmation of
Dieudonné in [1]. '

The vector spaces we use here are defined over the field R of
the real numbers. Given a topological vector space [E, 7] we denote
by E’ or [E, 7], and E” the dual and bidual of E. If (E, Fy is
a dual pair, it is denoted by o(E, F) and B(E, F) the weak and strong
topologies on E respectively, and by (%, y) the canonical bilinear
form on E X E’. Given a measure space (E, 4, u) we denote by Q(E)
the set of all real valued 4-measurable functions on E. We shall
identify two functions f; and f, of Q(E) if fi(x) = f,(x) almost eve-
rywhere (a.e.) on E. The quotient set will be denoted by 2y(E). We
shall use the same symbol to denote the elements of Q(E) and their
equivalence classes in £2y(E), when there is no risk of confusion.
Given the function f € 2(E), we define the support of f as S{f) =
= {t e E[f(t) # 0}. If feQy(E) we define S(f) as the support of any
element of the class of f. Then S(f) is a well defined set, except a
set of zero measure. The characteristic function of a set 4 will be
denoted by x,.
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If (E, <) is a vectorial lattice and x € E, y € E, we denote by
*V Yy, x Ay the sup {x,%} and inf {x, y} respectively. We define
2t =xV 0and x~ =(—%x) V0, and |x| =xV (—x). Aset BCE
is called normal if |%| < |y|, y € B implies x € B.

We say that a measure space (E, A4, #) has the finite subset
property if given 4 e A with u(4) > 0, there is Be A so that
BcA and 0 < u(B) < . For every 4 € 4 with u(4) < o,
let f, be a measurable function with support in 4. If
feQ(E) we denote by f* its class in Qy(E). The family (f3,
u(4) < oo} is called a cross section on E if for every 4 and B of
finite measure, (f4q8)* = (fu-¥aq8)* = (f5- Xan8)*. This family
will be denoted by {(fi). The measure x and the measure space
are called localizable if, given a cross section {(f{) on E, there is
a measurable function f so that fi = (f. X,)* for every A of finite
measure. Then we say that (fi) is determined by f.

Let (E, A, 4) be a measure space. Let {g)%2 , be a sequence of
A-measurable functions so that g,(x¥) > 0 for every xeE, ke N
(the set of natural numbers) and

w( 0 weEiam =0) =0
If peR, p > 1, we define the echelon Kothe space of order p as

1/p
1 =08, 4,8 = | fe @R = ([ radn) <o vren

and its «-dual as

() = {feoous)/jEm h] du < a0 Vhem}
We shall write 4 and A¢ instead of A! and (A4')*. The formula
G wy =J fhag  fedr, he(dps )
E

defines a canonical bilinear form on the cartesian product A? X (A#)~
Then we have
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PrROPOSITION 1. Let A*(E, A, u, g) be an echelon Kithe space, p > 1.
42, (A%)*) 1s a dual pair in vespect of the bilinear form (1) if and
only sf (E. A, u) has the finite subset property.

Proor. Let us suppose that (E, A, y) has the finite subset pro-
perty. Let he(A?)®, h # 0. Working with — A if it is necessary,
there is a set B of non zero measure so that 4(x¥) > 0 if x e B. By
the finite subset property, we can suppose that 0 < u(B) < . We
construct inductively a sequence of sets {B,}52., and an increasing
sequence of natural numbers {n;}32 ,, so that, if B = By, 0 < u(B,),
B, ¢ B, ,, u(Bi_; — B) < # ‘p(B) and g(x) < »; if x e B,
i € N. In fact, if B, and n, are defined,

B, = Ul {x € By/gs., (%) € [0, n}
Then, there is #,,, > n, so that, if we define

By, = {x € By[gyy (%) € [0, 1, 3

1
we have 0 < u(By,,) and u(B, — B,,,) < iz u(B).

by 1
Let M= 1 B,. It is easy to see that u(B — M) ST,u(B)
h=1

1
and u(M) >7y(B) > 0. As g,(¥) < mif xe M and u(M) < oo,

we have y, € AP, Then

JZMhd,u>0
E

Now, let fed?, f 0. Then by the hypothesis on g, and the
finite subset property, working with — f if it is necessary, there are
keN and a set B so that 0 < u(B) < o, f(x) >0 if xe B and
&(x) >0if x e B. If p = 1, it is clear that yp. g, € 4% and yz. g, 7% 0
and

_J;:ﬁ X & 3 > 0
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If p > 1, and h eA?, by Holder inequality

h 1p p e e 1 1
au < htg. d 7 —
L' A8 &i*| du (JEI 1”& ﬂ) (L_xsdu) < o s + . 1

Then we have yp - gif e (A?)* As x5 - gii? # 0 and

[ 7emau>o,

(AP, (A?)*) is a dual pair.

Conversely: let (A4?, (A#)*) be a dual pair. Let D be a set so
that u(D) = + oo and so that, if B € D, B € A, we have u(B) =10
or u(B) = . By hypothesis on {g}52., there are ke N and a set
M c D so that g,(x) > 0 if x € M and u(M) > 0. Hence u(M) = co.
Let fed?. As '

o0

g 1
uasp= U= {semnsgiver-an >},

n=1

u(M,) must be zero, because if it were not, f¢ A?. Then f-y) =0
and y, € (4#)= As y;; 7 0 and there is no f € A? so-that

J;_f'XMd,“ # 0

we conclude that (4?, (A?)*) is not a dual pair, which is a contra-
diction. Hence (E, A4, u) has the finite subset property. g.e.d.

By Minkowski inequality, P, is a seminorm on A?. Then we
shall consider always on A? the topology 7 defined by the family
of seminorms {P,, & €N} except when otherwise is clearly stated.
This topology is separated, because if f € A7, f # 0, we have u(S(f)) >0
By hypothesis, there is ke N so that

u(d) = pix € S(f) gu(x) > 0} >0
Then

nin=([ e > ([ rad) o

and 7 is Hausdorff.
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We observe that, given the echelon Kothe space A?(E, A, u, g) if
k
we define g = Y g; and
i=1

i =([, v )"

we have A?(E, A, u, &) = A*(E, A, u, gs) and the topologies on A?
defined by the family of seminorms {P,, k€ N} and {g,, % € N} are
the same. Then, we can always suppose that g,(x) < g4, (%) for
every x € E and k € N. Hence, we shall always ‘suppose this condition
except when otherwise is clearly stated.

We define on £y(E) the order relation f < 4 if and only if f(x) <
< g(x) a.e. on E. This order induces an order on A? and (4#)=. It
is clear that with this order, A4? and (A*)* are normal vector lattices
and [4?, 7, <] is a topological vector lattice.

Given the echelon Kéthe space A?(E, A4, u, g), we shall consider
the measure spaces (S(g), A uy) where 4, and u, are the g-alge-
bra A restricted to S(g;) and the measure p restricted to 4,. This
measure will be denoted by u again. Then we consider the spaces

45 = £5(e)) = | 7e 205 12 =( [ e ) <o

provided with the order induced by £24(S(g,)) and with the topology
Ji defined by the norm P,, because now P, is a norm. A2 can be
considered as an echelon Ko6the space with all the echelons equal to
g, restricted to S(g,). Its a-dual is

(4f)= = {feao(S(gm /Lm’ fllbdp < o ¥ hem;}

We note that for every ke N, S(g,) c S(g,.,) because we suppo-
se g, < g+~ Then we define a map I :A? > A% so that, if feA?,
I,(f) is the restriction to S(g,) of f. For every n < m, we define a
map I, : Af - A4 so that if feds, I,,(f) is the restriction to S(g,)
of f. Then, it is clear that [4?, 7] is isomorphic to the projective limit
lim I,,(4%,7,). Then we have the following theorem.

THEOREM 1. An echelon Kithe space A*(E, A, u,g), p 2 1, s a
FErechet space. If {f}3°, is a J-convergent sequence tn [A?, T] to the



164 J. A. Lépez Molina

Sunction f, there is a subsequence {f, 3., so that Um f, (x) = f(x)
k—>»00
a.e. on E.

Proor. If L? is the Lebesgue space on S(g;), the map ¢, 44~ L?
so that, if feAl, @, (f) = f gh? is clearly bijective and is an iso-
metry from [4%, J,] onto L?. Then, [4%, J,] is a Banach space. As
[4,T] is isomorphic to the projective limit lim I,,, (42, 7,), [4?, 7]

-
is complete. As [4?, J] is metrizable and locally convex, [4?, 7] is
a Frechet space.
Let {f,}3% 1 be convergent to f on [A4?, J]. Then, for every ke N,

"1_1:330 grt1 * Lnt1(fa) = &rt1 * Luay ()

on L?(S(gy+,)). Then, by a well known theorem of Lf-spaces and
by a diagonal procedure, there is a subsequence {f,}$; so that
lim f, (%) = f(x) a.e. on E. q.e.d.

k~—»co

Now, we define the notion of isomorphism for the structure of
echelon Ko6the space. An echelon Kothe space A?(E, A, u, &), is
K-somorphic to the echelon Kothe space I'’(T, M, v, @) if there
is a linear bijection g from A? onto I'? so that

Jrlw(f)l"%dv=Llfl"gkdﬂ Vfedt YkeN (1)

A subspace F of A?(E, A, u, &) is K-isomorphic to I'? (T, M, », ;)
if there is a linear bijection y from F onto I” so that (1) holds for
every fe F.

It is clear that a K-isomorphism is a topological isomorphism.

PropoSITION 2. Let AP(E, A, u, g), p = 1, be an echelon Kithe
space. If feA?, S(f) is a o-finite set.
Proor. Let

B,y = {(zeS(f) [ |f(%)IP-&a(x) > 1/m}

Then p(B,;) < o because feA?. But

4= weS() o) %0 = U Ba
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and u(S(f) — kl;J1 A,) = 0, being A? an echelon Kothe space. Then

S{f) is o-finite. g.e.d.

PropoSITION 3. Let AP(E, A, u, &), p = 1 be an echelon Kothe
space. Then : a) The set of simple functions of AP is dense in [A?, T]
b) If fed?, f > 0. there is a sequence {S,}°., of simple functions
of A? so that, for every x € E and every neN. 0 < S, (%) <S,4; (%) <
< f(x) and Hm S,(x) = f(x) and Lim S, = f in [A?, 7). ¢) The

conclusions a) and b) are true for (A%, 7.].

Proor. If fed?, f=f+ — f~. Then it is enough to prove &).
Given f > 0, feA?, there is a sequence {S,}32., of simple funtions
so that, for every x € E

0 < S,(%) < Spiq() < fl#) lim S,(x) = f(x)

As |f — SiP-g, < |f|P- g, for every &, n e N, we can apply the do-
minated convergence theorem of Lebesgue, and then lim S, = f

in [4%,7]. g.e.d.

PROPOSITION 4. Let T be a compact topological space. Let u be an in-
ner regular measuve on T. Let A2 (T, A, pu, &), p > 1, be an echelon Kithe
space so that every g, is integrable on T. Then the space C(T) of conti-
nuous real functions on T, is dense in [A?, T].

Proor. If f e C(T), f is bounded on T. As g, is integrable over
T, C(T) c A?. Let x4 eA? with 4 € 4. Given ¢ > 0, thereis § > 0,
so that, if u(M) < 8, we have

€
JMgk du < P

By Lusin theorem, there is a closed set F so that u(T" — F) < § and
the restriction f of y, to F is continuous on F. By Tietze extension

theorem, f can be extended to a continuous function f on T and
bounded by 1. Then

J | x4 —flpgkdﬂ=J |24 —f[f’gkdlusﬂj g lp < &
T T—F ? T_F

Hence, C(T) is dense in [4?, 7] by proposition 3. g.e.d.
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PROPOSITION 5. Let A?(E, A, u, &), p = 1 be an echelon Kithe
space. Then, for every ke N, I,(A?) is dense in [4%, 7,].

PROOF. As f= f+ — f~ if fedf, we can suppose that f > 0.
Further we can suppose that f is a characteristic function y, €4%.
Then A4 is a o-finiteset A= U 4, 4, c 4,,, and u(4,) < oo for

n=1
every e N. Let ¢ > 0 be given. As g, is integrable on A, there is
3 > 0 so that u(M) < 6, A o5 M, implies

P
JMgk du < Py (1)

Further, there is #y e N so that, if 49 = 2, we have u(4,) >0
and

oo I3
J gdp= X & dp < 5
A—dyy

'I’=ﬂn+1 An_An—l

Now, we define inductively a contractive sequence {B,}%2
of subsets of 4, with 0 < u(B,) < © and u(B,_, — B,) < y[2+!
where y = inf (8, u(4,,)). In fact, if By = 4, and B, ; has been
defined, we have 0 < u(B,_,) < u(4,,) < © and

B_,= U B, = U1 {x€B,_ /g (¥) <

ne=1

Then, there is B, = B,,, so that 0 < u(B,) < o and u(B,_; — B,) <

< 3,);—land &4, 15 integrable on B,.
x 1
Let B = rn B, It is easy to see that u(B) > B3 r(d,,),

=1
8
% < 7and that yg € A?. Then we have

p(4,, — B) <
J |XA_xBlpgkd1“=J &y =
E A—B

& &
=J & d#+J g dp < 5+ =c¢
A — Ang Ang— B 2 2

and the proof is complete. q.e.d.



The dual and bidual of an echelon Kéthe space 167

The first application of the latter result is to the problem of find
the topological dual of A2,

THEOREM 2. If p > 1, the topological dual of an echelon Kithe
space AP(E, A, u, g) s (A2)* if and only if (E, A, p) has the finite
subset property. If p =1, the topological dual of A(E, A, p, &) 18
A% if and only if (E, A, p) is localizable and has the finite subset pro-
perty.

Proor. First, let us suppose p > 1 and that (E, A, u) has the
finite subset property and that (E, A, u) is localizable if p = 1. Let
h e (A?)*. Let us prove that the formula

o) =| fohau fen

defines a J-continuous linear form on A?. As [4?, 7] is bornological,
it is enough to prove that ¢ is bounded in the bounded sets of [4?, J].
If it is not so, there is a bounded normal set B c A? and a sequence
{f,}So. , contained in B so that

J|f,,h|d,u> Jf,,hd,u >mVneN
E E

There is also a sequence {M}3%,, M, > 0 so that

i 1/p
(J | ful? & d.“) <M, VneN keN
E

Then
n -lf_‘l co
{5"=;§1 2 }

n=1

is a Cauchy sequence in [A?, J], because by Minkowski inequality

(L IS, — S.l? & dﬂ)w _ ( JE[(.;;H lf;_zl) é’i’?]?d,,,)”" )

- \fil? t o
< X (JEWE'MM) <M, X &

i=m+1 i=m+1

and this sum is arbitrarily small when m increases. Then there is
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¢ =lim S, eA?, By theorem 1, as {5,}%°, is monotonous increa-
”

sing, we have

8

|f; (x

px) = X

almost everywhere on E. Then

3 lfllhl &
JE}?’hldM Y| T2 du> X 5=

i=1 i=1 72

which is a contradiction with the fact that ¢ e A?. (We have used
the Lebesgue monotonous convergence theorem.) Then ¢ e (4#)’.

Conversely, let ¢ € [4?, 7). First, we suppose that g,(x) > 0 for
every x € E and k € N. Then there are g, and ¢ > 0 so that |p(f)] < 1
when f belongs to the J-neighbourhood of zero

{fEA"/L If1P & dn < 8}

As ¢ is bounded in the intersection of the unit ball of (42, 7,]
with A%, ¢ is continuous on A? with the topology induced by 7,.
According to proposition 5, ¢ can be extended continuously to a
continuous linear form on [4%, 7,] which we shall continue denoting
by @. As the map from L? onto A% which assigns to fe L?(E, A, u)
the function f- gz V? €A%, is an isometry from L? outo [4%, 7,], we
can define a continuous linear form on L? by means of

1 4
‘P(")=‘P(gk1/p) rel?

If p > 1, as (E, 4, u) has the finite subset property, there is 4 e L?
with 1/p + 1/g = 1, so that.

&(r)zjh-rdy relL?
E

If p = 1, as (E, A, p) is localizable and has the finite subset property,
there is 5 € L* so that
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@(r)zjh-rd‘u relLl
E

Then, if eA? and p > 1,

o) = (7 ) =Lf-hg},”’ d

Let us see that h-gl? e (A?)*. Let A = {x € E|h (%) g,; ()2 > O
B = {x € E[h(x)gy(x)!"* < 0. It fe AL, w — |fly, — |lzs also belongs
to A%. Then

|, irharian = 1 vgimian + [ 191 metian -

N T
E

and hence kg}? e(A%)* « (A?)*. By proposition 1, we can identify
(A%)" with (A?)= ‘
In the general case, as A? is an echelon Kéthe space, the sequence

of sets {S(g)}§2. ; is increasing and u(E — ij(gk)) = (., For every
k=1

ke N, we consider the subspace of A?

Ap=1{f"Zs, fea?

If we consider the echelon Koéthe space I'f(S(gy), As %, @) where
Ay and p are the o-algebra and the measure induced by 4 and u on
S(g:) and @, (%) = g44,_, (x) for every x € S(g,) and 7 € N, the mapping
iy : I, > A7 so that if fe I}, 4,(f) is the function zero on E — S(g,)
and equal to f on S(g), is a topological isomorphism from If, onto
A, with the topology induced by 7. Then the restriction of ¢ to A4,
is continuous. By the previous result, there is %, e (I'f)* so that

oo = [ hesin ver

If fel}, let j(f)el%,, be the function zero on S(g,,,) — S(g)
and equal to f on S(g). Then 4,(f) =4,,,(j(f)). Hence we have

P(0(f) = (84, ((f))) and
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fhy dp = J F () gy G = J i Vfelf
g S (gx+1) S (e}

S (gx)

It is clear that %,,, restricted to S(g;) is an element of (I%)*. By
proposition 1, we have h, = &, a.e. on S(g;). Then we can define
a function %4 on E by the rule A(x) = &,(x) if x € S(g,) and A(x) = 0

if xeE — U S(g), cha.nging the values of the %4, on a set of zero

measure 1f it is necessary.
If fe A?, it is easy to see that f = 11m S %sy in [4?, T] because,

given r e N, if & > #, we have S(g;) o S(g,).

Then, k € (A?)* because if f € A?, the function f’ so that f’ (x) = f(x)
if f(%) - h(x) > 0 and f'(x) = — f(¥) if f(x) - h(x) < O, belongs to A?,
f'+h >0 and

OSJ Ifhldy:Jf hdp = lim f-hdp = lim Fohdu =
£

Eb>oo JSig : koo js(g)

ZkETO‘P(f" Zsk(gk)) = ‘Pk(ﬁbmf' * Asen) = () < + .

Then, by the dominated corvergence theorem, V feA? .
oUf) = lim olf row) =fim [ fhdu=| fhdu.
A— 00 ) E

Hence, by proposition 1, we can identify (4?)’ with (A7)

Conversely: let us suppose that (A?)* = (4?)’. By proposition
1,if p > 1, (E, A, u) has the finite subset property. Let us see that,
if p=1,(E, A, p) is localizable. Let (f%) be a cross section on
E. Yet us see that (f%) is determined by a measurable function
f. We can suppose that f, > 0 for every 4 € 4, u(4) < oo. First, we
assume that there are a € R and ke N so that 0 < f, < ag, for
every A € 4 with u(4) < . By proposition 2, if hed, h > 0, we

have S(h) = |J E, with u(E,) < o, nelN and E, n E, = if
n=1

n # m. We define
W= |n(% £.)\d
o (h) j (Elf,.) p
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Then ¢ is a well defined map from A into R, because for any other
decomposition S(h) = U T,,, u(T,,) < woifneN,and T, n T,, = o
m=1

if n s m, as (f%) is a cross section, we have

§ Jeu)hdu = § hfendp = of] E B fen' XBanTa B =
Jo(E5) R

n=1 n=1/FE, n=1m=1,
= 2 E h'fEn XEw\Twm d1u= E 2 h.me xEnnde#=
m=1n=1_JE, m=1n=1)JE,
= 3 [ wesndu=| 0 ¥ r)an.
m=1)7T,, JE m=1

having used the theorem of Lebesgue and the fact that every term
of the series is positive.

If aeR, a #0, S(a-h) = S(h) and hence p(a-h) = a- p(h). If
hied h; 20 1 =12, we have S(h;1 + hy) D S(h)) U S(hy). If

S(hy + hy) = f_jlp,, with u(P,) < ®, P, n P, — o for n #£m,

we have S(h) = U (P, n S(4)). Then, by definition of ¢

n=1

L hi( E fp,)d,u: 053 [ b frodp = OEO i fon XPunr sy dp =

n=1 n=1/E n=1JF

oo

= Y | hife.asedp =J hi( 3 annS(h«)) dp = (k) 1=12
E

n=1/E n=1

and hence ¢(hy + hy) = @ (k1) + @(hs). It is known that in this case,
@ can be extended in a unique way to a linear form over the whole
A, putting @ (k) = @(h)) — ¢(hs), being h = h; — h, any decompo-
sition of 4 in difference of two positive elements of 4.

Further, ¢ is continuous on {4, 7} because

()l = lp(h* — A7) < lp(H) + le(h7)] <

< otJh*‘g,,d‘u,-{—u(h_gk d#=°¢JV"| & dp.
E JE E

Then, by hypothesis, there is f € 4 so that
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<p(h)=fh-fdu hed (1)

E

Let us see that (f¥) is determined by f. If u(4) < oo and % > 0,
hed,we have S(h-y,) ¢ 4 and by (1) and the definition of ¢

plhys) = [ hya 'fAnS(hu) dp = { hyafa X405 (kra) dy =
JE JE
=J hyafadp =J fhxadu.
E E

Then, if % is arbitrary, we have the same formula for %#. Hence, as
(E, A, u) has the finite subset property, by proposition 1, we have
(fr20* = (a - fa)* =f4.

Now, we examine the general case. Given the positive cross sec-
tion (f%), we define f, ,(x¥) = inf (f,(x), #n-g,(x)). Then the cross
section {f¥ 4) is determined by a function f, € A% f, > 0. As {f¥.)
is increasing with #, we have f, < f, | a.e. on E for every n e N.
Then it is clear that (f%) is determined by f so taht f(x) =
Hm f,(x) ae. on E. q.e.d.

Our next target is to prove that we can suppose without losing
generality that (E, A, u) is always localizable and has the finite
subset property. For this objective we develop our theory in the more
general setting of certain wvectorial lattices. Afterwards, we will
apply these general results to obtain certain properties of the strong
bidual A" of A. ‘

Let (X, J) be a locally convex topological vector space and let
{M;, +el} be a family of subspaces of X so that M; n M; = {0}
if § 5% j. We shall write :

21‘61 @Mz

to represent the set of the elements x € X so that x is the sum of
an absolutely summable family {x;, i e I} with x, € M, for every
i e l. In a lattice (X, <), if 4 ¢ X, we define 41 = {x € X/|»| A
ANyl=0,Vyedyand AtLl = (AL)L. H A = {u}, we write AL = ul
and ALl = 4ll ., We have now the following theorem:

TrEOREM 3. Let [E, 7] be a Frechet topological vector lattice
so that 7 is defined by an increasing family of lattice seminorms
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Ul - lle, e N}, so that theve is p > 1 so that ||x + 32 = x|z +
+ Yl of » Ay=0, keN.

Then, if M is a closed sublattice of X, M < {0}, there is a Jamily
{u;, 1 € I} of positive elements of M so that

M =Yuer ® (w1l n M).

ProOF. We note that a seminorm |- ||, its called a lattice semi-
norm if || < |y| implies ||#||, < |[y]ls. Let us see that, in the hypo-
thesis of theorem 3, [E, 7] is order complete. Let 4, = {x ¢ E [11%]|, = 0}.
A, is a closed ideal in [E, 7). The completion of the quotient space
(E, || - lls)/As is an abstract L?-space. By a result of Bernau (see [2]
p. 133), we have ||x + ||yl > I|]if + [yl8if % > 0,y > 0, 5 < E, y ¢ E.
Then, it is known (see [2] p. 21) that I+ 1l5 is order continuous. Hence,
if {4, @ € D} is an upwards directed set with respect to the order on
E, which has an upper bound, {x,, d € Dy is a Cauchy net in [E, 7].

Then, there is x =lim x,€E. But we have x — sup #; because
4€D ' deD

[E, 7] is a topological vector lattice (see [4] p. 90). Hence, it is easy
to see that [E, J] is order complete. It is also clear that if Zlariis
an order bounded increasing sequence of positive elements of E,
there is x € E so that x = lim #, = sup x,.

Now, let M+ = {x e M|x > 0}. By Zorn lemma, there is a maxi-
mal family {u,,7 eI} of non zero elements of M+ pairwise disjoints.
By Riesz theorem, if # > 0, there is a projection J, from E onto
the band #ll generated by u, given by the formula

Ju(%) = sup (x* A nu) —sup (¥~ A nu) =

= Hm (x* A nu) — lm (x~ A nu).

Let us prove that Juvw=Ju+ Juo if 4, jeI, i54 If x>0
nlu; o) Nx=n(u; \V w4+ u, \w) Ax=n(u\ ;) N %=
= (wu; A %) V (nu; A\ %) = (nu; A %) + (nu; A\ %) — (mu, A x) A

A (o A %) = (mu; A %) + (nu; A\ x).

Taking limits when # increases, we have Jutu (%) = Jui (%) + Ju, (%).
If x e E is arbitrary, ¥ = x* — %~ and the same formula holds for x.
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Then Ju v, = Ju, + Ju- It is easy to see that given a finite num-
ber of different elements #q, %,, ..., #,, we have the same property

respecting ¥ ...
i=1
As E is order complete, each band #;1 . is closed in [E, 7]. Then
Ju (M) =u,ll n M. Now we shall see that if x > 0, x e M the
family {J, (%), 7 € I} is absolutely summable in [E, 7], and that its
sum is #. First we note that if u; # u;.
Ju(®) A Ju(®) = Hm (x A na) A Ju(x) = lim (x A nw; A Ju (%)) =

=lim (imx A nu; A x A\ mu;) =0.

" m

Then, as for every finite set F ¢ I we have 3 Ju,(x) = J 5, (%) <%
i€F i€F

by hypothesis, we have

2 1 Jw () = 1] EJFJW ()% < [lxllg VkeN (1)

ieF
Hence, {J,(x), t+el} is an absolutely summable family in [E, J]

and the net { Y J, (%), F c I, F finite} is convergent to an element
i€F

Y Ju(x) € M. Let us see that x = Y, [, (x). As [E, J] is a metric
iel . iel

space, there is an increasing sequence {F,}3%; of finite subsets
of I, so that

n i€F, n j€F,

lim 3 Ju(x) = sup % Ju(x) = X Ju(r) < %.

Let 2 =% — Y, Ju,(x) = 0. If z % 0, by the maximality of the set
iel
{u;, 1 €I}y, there is 2 € I so that z A\ #; % 0. But
0<zAu=(x—XJu®) Au <
jel
< (x _]“.(x)) A u; < J"i(x _]“i(x)) =0

because [, is a projection. But this is a contradiction with the
choice of #;. Then z =0 and x = Y, J,,(x). If x €M is arbitrary,
el

x+ e M and x~ € M because M is a lattice. Then x = Y J,, (#*) —

sel
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— Y Ju(x") = X Ju(#) is the sum of an absolutely summable
iel el

family of elements x; with x,eu,lL, fel.
Let us see that this decomposition is unique. First we note that

I]"c(x)l < IJus(x+)l + I]"f(x_)l = j“i(x+) +J“‘(x-—) <zt 427 = |x]

Then, the projections J,, are continuous from [E , J] onto ;1 L, being
provided this space with the induced topology. Hence, if we have

0= Y x; with x;, eu;L L for every i eI, we have also for every jel
iel ‘

0’ = i(—_‘zlju’(xi) = EI]“jU“c(x)) =
= B Ju, lm gt A i — lim oz A\ i) =

= 3 (lim im %+ A nu; A mu;, — im lim %~ A nu, A mu) =

sel m ” " »

=lim x* A mu; —lim %~ A mu; = J, (x) = (2)

Then, the decomposition is unique.

Conversely, every absolutely summable fammily {x;, 1 €I} with
x€M n ull for every sel, defines an element xe M, M being
closed. Then

M=2®Mnutl).

i€l

It is important to note that if 0 < x = Y J,. (%), all the terms
il

Ju(x) are zero except a numerable set. In fact, from (1) we obtain
that {|| ], (¥)!|§, ¢ € I} is summable for every k € N. Then it is known,
that for every ke N, all the terms [| ], (%), are zero except a nu-
merable set. Then except for a numerable set of 7el, we have
|| Ju,(#)||x = 0 for every ke N. As [E, 7] is separated, Ju®) =0
except a numerable set of 7 € I. It is clear that the same is true for
an arbitrary x € M, because the decomposition is unique. g.e.d.

From the first part of theorem 3. we obtain the following corollary.

CororLARY. Let A? (E, A, u, &) p 2 1 be an echelon Kéthe space.
A? is order complete. If {f 15> 1 1s an order bounded monotonous in-
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creasing sequence of positive functions of AP, then there is sup f, =
n
= lim f, wn [A?, 7].
"

Proor. Obvious. :
We now prove the following main theorem.

THEOREM 4. Let [E, Jo] be a Frechet topological vector lattice so
that 7y is defined by an increasing family of lattice seminorms {|| - ||,
keN3}, so that there ss p > 1 so that ||x + y||§ = ||x]8 + {y1IE
if x Ny=0, keN. Then [E, Ty] ts isomorphic to an echelon Kithe
space A* (T, M, u, @) so that (T, M, u) is localizable and has the fini-
te subset property, Further. the lattices E and A? are order isomorphic.

Proor. By theorem 3, applied to the space E, there is a family
{ue;, © € I} of positive elements of E, pairwise disjoints, so that

E=Y®@iinE) =Y ®ull.
i€l

i€l

a) Let us show that every #,lL with the topology induced by
Jo is isomorphic to an echelon Ko6the space I'?(T;, A;, u;, i) with
wi(T;) < oo. We write u instead of #;. Let

A= {xeull]x N\ (4 — x) = 0}.

We define the join and the meet of two elements x, y of 4 as x v ¥
and x A y respectively, and we define the complement of x as # — x.
With these operations, A4 is a boolean algebra because

FVvIIAN@B—EV)=QEVvYAu) —xVvy)=02xAuYy
VEyAu) —Evy)=EA@m—x)+x)y(yA@—y+y —
—@Vy)=2vyy—xyy=20

and hence x \y ¥ € 4. Analogously x A y € 4. Given x € A,
(uw—20Nw—(u—2x)=@m—2Ax=0

and then % — xe 4.

By the Stone representation theorem, there is a compact topolo-
gical space T, totally disconnected, so that there is an isomorphism
@ of boolean algebras from A onto the boolean algebra T of open-
closed sets of T. Let C(T) the space of real valued continuous func-
tions on T, with the topology defined by the norm | f|| = sup {|f(¢)!,
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teT}. It is clear that, if 4 € 7, we have y, € C(T). Let § be the set

n
of simple functions f= ¥ o; yu, so that M;e T, 1 =12, .. %;
=1

M,nM;=0ifi#j and |J M;=T. Then S € C(T). Clearly §
=1

is a subalgebra of C(T) which contains the constants. Given two
points ¢y #%¢, of T, as T is a totally disconnected compact space,
there is M € T so that ¢, e M, ¢, ¢ M. Then yx,, €S and y,((;) = 1
and g, (¢) = 0. Then § separates points. By the Stone-Weiertrass
theorem, S is dense in C(7).

Now, we shall define for every &2 € N, a positive continuous linear

form on C(T). If f= X o; y4,€S with the A; pairwise disjoints
" s=1
and | 4;,=1T, we define

i=1

"

@ (f) =i2 o ||P1(A)I[5.

It is easy to see that ¢, is well defined and linear on S. using the
isomorphism @ and the hypothesis of the theorem. Further ¢, is
continuous on S with the induced topology by C(7), because, if

= X a; x4, with the 4, pairwise disjoints and l:l A, =T, we have
i=1 iz

BNl < B Lol 1971 (AIE < SUP oy - 3 110-1(A)I] = 171|102 (D).

Hence ¢, can be continuously extended to the closure of § in C(7).
But § is dense in C(T). Then ¢, is defined on C(7). Now let us see
that ¢, is positive on C(T). If fe C(T),f = 0, given & > 0, there is

n
s= ¥ o, €S so that
i=1
sup |f(t) —s(®)| < e.
teT
?
We define s’ = ¥ B; yu,; where ; = «; if a; > 0 and §; = 0if o, < 0.
i=1
Then s’ €S, s’ > 0 and

sup f@ —s' @) <e. (1)
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Hence f is the limit of a sequence of positive function s eS. As
¢r(s’) = 0, we have also @, (f) = 0.

Then, by the Riesz representation theorem, there is a ¢-algebra
A, containing the Borel sets of T, and a regular Borel measure ¥,
defined on A, so that

qok<f)=Lfdvk V feC(T)
2s(14) =Lm dy, = n(d) = [O-1(A)|  V AeT

Then, as T €T, ¢u(xr) = n(T) = |2~ YD)} < o and # is finite.
Let B be the family of Borel sets of T. Clearly B € F]o Ay and
k=1

the set function

2 %(B)
‘II(B) = ,-gl 2_'. vi(]_,) Be B
2 (T)#0

is a measure on (T, B). Let us see that u is inner regular. If 4 € B
and & > 0, there is #y so that

k 1 €
2 <7

As every w; is regular, there are compact sets F;, ¢ = 1,2... %y so
~that F;, c 4 and

vi(d — F) < " 2 v(T)

2%0

fo
Then, F = |J F, is compact, F c 4 and it is easy to see that
=1

u(d — F) <e.

It is also obvious that every v, is absolutely continuous respec-
ting . Then by Radon-Nikodym theorem, there is a B-measurable
function g, > 0 so that

7 (B) ZJngd/l' VBeB
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It is clear that u ( N ¢eTig@t) = 0}) = 0. Then, let us consider
k=1

the echelon Kothe space 3#(T, B, 4, &). We shall see that ¥ and
ull are isomorphic and order isomorphic.

First we want to define a mapping p:X? > wull Ttisclear that
Sc Xt It MeT, gyeX? and we put

V() = P~ (M).

y is extended by linearity to the whole of . It is easy to see that y
is well defined an linear on §. Given the zero-neighbourhood in ul 1,

V={xeull]||x||2 < &, e >0, we consider the zero-neighbourhood
induced by 3? on §

v foesif ot < ]

" "
Lets = ¥ o yu, € W, with the M, pairwise disjointsand U M, = T.
i<l imt

We note that

7

21 o, @1 (Ma)} < igl o] [P~ (M)| =

i=

= 3wl 07 0) =| 8 juf 0 1)

and that |e| =1 (M;) A |y O (M;)| = 0 if ¢ 7§, because @ is an
isomorphism of boolean algebras and M; n M;=gw. As |||, is
a lattice seminorm, we have using the hypothesis of the theorem,

IO =1 0 O~ QL)< E ol 01 QL) = 5l |81 (1) [f =

= X loP 5, (M) = 3 |“¢|P[ g dp =J IslP g, dp < e.
1=1 f= 1 M, T

Hence (W) c¢ V and y is continuous from S, with the induced
topology by X7, into #Llt. Then y can be extended by continuity to
a linear mapping, again denoted by p, from the closure of § in ¥,
into u#ll, because ull is complete, being closed in [E, J5]. Let us see
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that S is dense in X?. If fe C(T), f is bounded because T is compact.
Then C(T) € ¥*. Given fe C(T) and & >0, there is s&€§ so that
sup {|f(¥) —s @), teT} < e Then

J = sPE.dp < & j &y du = & 9 (T)
T T

and S is dense in C(7) with the topology induced by Jo. But by
proposition 4, C(T) is dense in [¥?, 7]. Then S is dense in 3? and y»
is defined on ¥?.

Now, let us see that, for evety ke N, if fe X?

Lw& du=llp (DIl

If fe 37, there is a sequence {S,}7- of functions of §

Dn
S, = 2 %in Xdin

=1

with 4;, n 4;, = & if ¢ #j; A;,€ T for every ¢ and #, and so
that f = lim S, in the topology of 3?. Then |f| = lim |S,| because

J = 1S, 2 A < J f—S.P 8, du.
T T

Then by the continuity of seminorms, as @ is an isomorphism
of boolean algebras and noting that |a;, | (x4,,) = la,l PT1(4,,) = 0,
we have

Pal . PaY . ﬁ”
J P evdp = tim [ [S,Padp=tim S ol (i) =
T

>0 T #>00 §= ]

~fim 3 fol -1 ()2 = im 3 lasal? Il (a)ls? =

n—>00 ;' 1 7->00 ;= 1

Pn i4
Y loul ¥ (A || =

. Pn .
= hm 2 H lainiy)(xzi;,.)”kp = lim
B—>00 ||ls =1 »

N—>00 5 1

= Hm

H—>00

| S e v + 8 bl v e

a >0 otin <0 k
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But

0 <( )y la,-nlw(xA.-n)) /\( Y """*""’("“"‘))<

Gin 20 ain <0

< (MAX {|o;,1) -[(%2201/;(;5,1‘")) A ( 3 w(xA,,))] -

1<igpn oy <0

= (MAX {lainl}) ['P(Z &) A{n) A 'I’(Z v Acn)] =
1<igpn %20 <0

Gng

= (MAX {la;,3) (P=1( U 4;,) NP7 U A,)=0.
Ugn 2

1<i<tn otgn <0

Then, as in a lattice we have [x +y| =|x —y| if x Ay =0,
the formula (2) gives

=1m | ¥ o) v(a) — B log.l w(d)lle =
n—>00 ||ain = oy <0
- lim | $ o pzad| =B IS = 1| Em p(S)I = (Al (3

Then, the mapping y is injective, because if y(f) = 0, for every
k e N we have

()1l = J fPEdn=0

and hence f must be 0, 3? being separated. Let us seethat p: X7 > ull
is surjective. By (3), v is an open mapping. As ¥? and #L 1 are metri-
zable complete spaces, by the Banach-Schauder theorem, o (X?) is
closed. If we can prove that y(3?) is dense in #ll, we will have
»(3?) = uil, Let us see that (3?) is densein #ll, First,letx endl
be so that there is m e N so that 0 < ¥ < mu. It is known by the
general theory of vectorial lattices that, given & > 0, there are ele-
ments v;eull, ¢ = 1,2,.. n, and real numbers 4;e€[0,1],7=1,2,.. %

so that

” x n

Y4, <s—< Y4+ eu

i=1 mo =1

u N(w—v)=0 o9, ANv;=0 4,j=12.n %]

because #L 1 is a band and hence is order complete. As the seminorms
are monotonous
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<
k

” "
2 a,-'U,-—}— EU — 2 a; U;

i=1 i=1

’i—_f; av, = e lul,.

m f=1

k

But v; € A. Then, x can be approximated by elements of the type
”
Y a;v; which belong to y(X?). Let x be now an arbitrary positive

i=1
element of ull. Then, with the notation of theorem 3, by hypothesis
we have

x=J,(x) =sup x A nu =1m x A nu.
n n

Then x can be approximated by elements of y(3?). ff xeull
is arbitrary, ¥ = ¥+ —x~ and the same conclusion holds. Hence
wll =y(X?).

v is an order isomorphism: It is clear that if fe§, f > 0, then
w(f) 2 0.If feXPt, f > 0, fis the limit of a sequence of positive func-
tions of §, because if S, converges to f, then |S,| converges to | f]| = f.
As the positive cone of %4 L is closed, »(f) > 0. With p~1 the argument
is the same because a positive element x e#i!l is the limit of a se-

quence of positive elements of the form ¥ a;v;, v;e 4, = 1,2..n.
i=1
Now, let us see that changing the definition of é\k, keN, on a
set of zero measure, if it is neccesary, we have @k < §k+1 keN. Let
M, = {teT/é\,,(t) >§k+1(t)}. If u(M;) > 0, arguing as in the pro-
position 1, there is a set 4 € M, so that u(4) >0 and x, € ?.
Then

4
k

T

Il ()11 =J X4 é\k du ?J
T

X4 /ék+1 dp = H'P(%A)
+1

But by hypothesis

”#’(XA)H/: < lw(a)llesa

and hence

J é\k au =j é\k+ld‘“'
4 4
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But ,gA}b —§k+1 > 0 on A. Then g/;, =é\k+1 a.e. on A, which is a
contradiction. Then u(M,) = 0. Then, changing the definition of

the :g\,, on J M, we get g'k(t) < §h+1(t) for every t € T. Hence, ull
B=1
is isomorphic and order isomorphic to the echelon Kothe space 33?.

b) For every 7 el, let p; be an isomorphism and order isomor-

phism from u;LL onto the echelon Kbéthe space X7 (T}, B;, ,u,-,g,,,-)
so that

2]} = j s )P &y dps Y w e uLL.
Ty

Let T be the disjoint union of the sets T3, ¢ € I. Let M be the family
of sets

M= MM = LJIAi: A;eB}
i€

It is easy to see that M is a o-algebra on T. For every ke N we de-

fine the function g, on T so that g,(f) = Iéki(t) if teT;. Tt is clear
that g, is M-measurable and that the set function

( }EJIAi) =i§ﬂi(-45)

is a measure on (T, M). X u;{4,) is the sum, finite or not, of the fa-
i€l

mily of real numbers y;(4;), in the sense of the summable families
As p;(T;) < o by a), we have that u is localizable and has the fi-
nite subset property.

Now we consider the echelon Kothe space A? (T, M, u, g)-
We define ¢ : E » A? by the rule

p(x) = § ¥i, (%i,)

n=1

where {£,}52; is the sequence of natural numbers so that, in the uni-

que decomposition x = ¥, x;, x; € 4;L L, we have x;, # 0. Each func-
i€l

tion w;,(%;,) is considered as an element of A? zero on T — Tj,.

Then, y is well defined, linear and, by continuity of seminorms,

we have y(x) € A? because
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J |Q‘U (x)lP gk dlu = S Iwin (x‘in)lp Ek‘in d'ui" = 2 Hxin”kp =
T

n=1/T; n=1

= [Jxll¢ < o VkieN

This equality shows that p preserves the seminorms of elements. Then
y is injective. p is also surjective, because if f e A? by proposition 2,
S(f) is o-finite. Then f is zero on every T; except in a numerable set
{T:,)5~1. It is clear that the pre-image of f is

°§ vin 1(f " %)

n=1

and then y is an isomorphism. As the y; are order isomorphisms,
v is also an order isomorphism. g.e.d.

From this theorem we can obtain important results. The first
theorem is the following:

THEOREM 5. Every echelon Kithe space AP(E, A, u,g), p = 1, is
K-isomorphic and order isomorphic to anm echelon Kithe space
(T, M, v, @) with (T, M,v) localizable and with the finite subset

property.

Proor. It is an immediate application of the theorem 4.

For this reason, we shall always suppose that the measure spaces
(E, A, p) are localizable and with the finite subset property.

Now we study some properties of the dual (A?)x. In (A%)* we
have the relation of order f < g if and only if f(x) < g(x) a.e. on
E, in the same manner as on A?. But (4%)* is the dual of [A?, T]
Then we can also consider the order between f € (A4#)* and g e (A4?)*:

E

fsgifandonlyiff Fhdp <Jghd,u Vhed, hz0
E

We note that the two definitions are the same : in fact, if f > 0 in
the latter sense but u(d) =pu{xeE/f(x) <0 >0, as (E, A4, u)
has the finite subset property, there is a set M c© A of finite measure
different from zero. Arguing as in the proposition 1, we get a set
D c M so that y, € A? and p(D) > 0. Then

J 1o fdu <0
E
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which contradicts the assumption about f. Then the order of (A#)
is the puntual order of functions.

By theorem 2, (4,2) = (4))*. As I,: A* - A is continuous,
its transposed map I,” maps (4,2)* into (A?)*. Let us see that, if
fe (A= I,/ (f) is the function f equal to f on S(g,) and equal to zero
on E —S(g). If heA?

() )y = JEIk'(f)-hdy=<Ik(h>,f>= J hfdu = j hfau.

Sgw) E
Then, by proposition 1, I',(f) =]/‘\. Now, we have the following cha-
racterization of equicontinuous sets of (A#)*,

THEOREM 6. Let M be a subset of (A?)=. If p = 1, the following
are equivalent: 1) M is J-equicontinuous. 2) There are 'k € N and an
equicontinuous ‘st M' of (Ay)* so that M = I',(M’). 3) There are
keN and C > 0 so tha |f] < Cg, for every fe M.

If p > 1, the following are equivalent: 1) M is J-equicontinuous.
2) There are k € N and an equicontinuous set M' of (A2)* so that M =
= I",(M"). 3) There are ke N o« > 0 so that if 1/p + 1/g =1

1/
SUP([ Lf1? g,—9* d,u) q=a< 0.
J Sler)

teM

Proor. 1) = 2). Let p > 1. By 1) there are ¢ > 0 and ke N so
that M c V0 where

V= {fem/f 1P & du < } -

Hence we can suppose that M is normal. if A e M, and 4 = E — S(g,),
we have % -y, = 0. In fact, if 4 is not zero a.e. on 4, arguing as
in proposition 1, there is D ¢ A so that u(D) >0, 2p-h #0, ypeA?
Hence, for every neN, n-y,eV. As |kl e V9, 5,k must be 0,
contradiction. Now, it is enough to show that M’ c W°, where M’
is the set of restrictions on S(g,) of the elements of M, and

W={feAk”/J fredu<=l.
| S(ew) 2
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TLet heM', h > 0 and let fe W, f > 0. By proposition 5 and theo-
rem 1, there is a sequence {f,}52 1 € A? of positive functions so that
hm I(f,) (%) f(x) a.e. on S(g,) and hm I,,(f,,) fin[A4,2, 7;]. Then

there is #y so that if # > #,, by M1nkowsk1 mequahty

1/p ¢ 1/p
(j lf,,v’gkdy) s( If"—fl"gkdu) +U |f|ﬂgkdu) <
S(er) Sigr) S{gr)

<[ Sm)lfl”gkd,u)w 4 (] S(mlfifg;du_)"’ -2

Hence f, e% V. By Fatou lemma, as M c V9, we have

J Fohdu =[ imf,hdp < lim| fohdp <—.
S(ew) S ) S@w 2

Then, if fe W, as f+ and f~ also belong to W, |(f, k)] < 1. Hence
h e (A,2)* and &k € WO, because every r € A,? is absorbed by W, Then
as M’ and WO are normal, we have M’ c WO.

2) = 3)If he M, his zero on E — S(g;), and there are £ e N and
e > 0 so that M’ ¢ W9, where

1]p
={feAk"/(J 17+ gudn) se}
“AJ S(er) -
for every p 2 1

Iet p=1.1f fed,, f > 0, f #0, the function

&

fredp

Sexr)

f

belongs to W. Hence, if he M’, 2 2 0

J ef-hdp < | fedu Vfed [0, f#0.
Sew S(ex)

Then, by the remarks previous to the theorem, % < —L g, and
. 3
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hence |k} < —lgk for every i e M, because M can be supposed nor-
&

mal.

Ifp>11let he M. If re L?(S(g), A, u), 7 g~V e A,?. Hence
h-gy~ Ve (L?)* = L% where 1/p+ 1/g =1, because (S(g,), A, )
has the finite subset property. As for every 7 of the unit ball of
L*(S(g), A, p), e+ 7 gy~ 1P e Wand he M’ € W9, we see that e b - g,~ 1?
is an element of the unit ball of L?(S(g,), A, x). Then

1/q 1
(J |h14gk—wazy) <~ VheM.
S{er)

e
3) = 1) If p =1, it is clear that
0

MC{fe/l/Llfgkldﬂ <i}

If p > 1, by Hoélder inequality, if 2 € M and fe V, where

v ={feAP/(fE;fvgk dn)”” < %} ,

we have
j hfdu|< j hg 17 g fl A <
E S(ex)
1/q 1/p
<(j lhl“gk‘q”’du) (f IfI”gkdu) <1
S (gx) E
Hence M ¢ V0, g.ed.

CoroLrLARY. If A? (E, A, p, &) 1s an echelon Kithe space -

Iy ((42)%) -

1

[} o

k

(AP)« _—

Proor. It is immediate because (A?)= is the dual of [A?, 7].

Example. In [1], Dieudonné develops a theory of Kéthe func-
tions spaces similar to ours. Dieudonné considers a locally compact
topological space T, a Radon measure on T and the space £, of
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the classes of locally integrable functions on 7. Given a subspace
A, € 2, Dieudonné defines its «-dual as

Ayt = {fe!zl/j flIMdp < o VkeAD}.
T
In particular, he considers the echelon space

A ={fes21/Pk(f) -~ ngk dp<w ¥ ke‘N}

for a given sequence {g,}$% . The theory of Dieudonné has an incon-
venience: the topological dual of 4; with the topology 7, defined
by the seminorms {P,, & € N} can be different from A,*. We give
an example which proves this assertion. This also proves the inco-
rrection of an affirmation by Dieudonné. He says on pag. 113 that
the topological dual of [4,, 7p] is Ap*. This is not true:

Let E = [0, oof with the measure of Lebesgue. Let g be the func-
tion ,

g(x) = { e~V if % €]0, 1]
1/e if x €1, oof U {0}.

Let A, be the space of Diendonné
Ap = { £ locally integrable on E | J “fledn < oo}
| ; o ;
and its a-dual in the sense of Dieudonné
Ay = { # locally integrable on E | f “lflhldp< o Vi eAD}
. |

As every fedp is integrable on [0,1], we have yx,1; € 4p* But
%0,1; is not a linear form over [4p, Jp] : let {A,}3% 1 be the sequence

hx)=4n H  xel01/n]
" 0 if xe[ljn, of.

As h; is locally integrable on E and



The dual and bidual of an echelon Kéthe space 189

o0 1/n B —n
0

0 » e

we have k, € Ap and lim &, = 0 in [4,, 9p]. But
n

. 1 1/n
im | A,dp = lm ndu=1

#—>00 J o n—>00 /g
and hence o ;) is not continuous.

We observe that for our space A;([0, o[, A, u,g), %01 ¢A41*
because, by theorem 6, if y1; € A;* there is C > 0 so that gy <
< C e~V* But this is impossible because lim g(x) = 0. q.e.d.

. z—> 0+
Finally, we apply the theorem 4 to the study of the strong bi-
dual [A4”, (A", A%)] of an echelon Ko6the space A(E, A, u, g,)-
In general A # A" because it is known that there are non reflexive
echelon sequence spaces. Further, in [3] we characterize the refle-
xive echelon Ko6the spaces. Now, we have the following important
theorem.

TuEoREM 7. The strong bidual [A”, (A", AY] of an echelon
Kothe space [A (E, A, p, 8), 7] is isomorphic and order isomorphic
to an echelon Kdithe space.

Proor. A" as dual of the topological vector lattice [A%, f(A4%, A)]
has a canonical order given by the rule:

pred”, pred” @1 <@y <= o1, f) <L pa,f) Vfedy f>0

We use the following notation: let V, the J-neighbourhood of zero
1
Ve={realf nain<)
E k
If feV,0, we write

1flls = SUP [<h /| = SUP

th d,;l — SUP

hGVk

fhdnl

S(exr)

because by theorem 6, every fe V;%1is zero on E — S(g,). If peA”’
we write ‘ ‘ :
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llplle = sup g, 7).
rEVy?

Note that |lg|l, << oo because V,9 is o(A% A) compact and hence
B(A%, A)-bounded and ¢ is (A%, A) continuous. Clearly {|¢|];, < llolly + 1
becausel® ¢ V0, ;.

If

Wo={rea)| \figan <+

S(gx)

we have I’ (W,9) = V9 (taking the polar W,9 in (4,)%), because put-
ting & = 2/k in the formula (1) of theorem 6, we show that I, (V)
is dense in W, with the topology 7,. Then if fe V,0

lifll = SUP

hel (V)

j h~Ik'-1(f>dﬂ|=SUPJ h-Ik'-l(f)du‘.
Si{gx) Siex)

he Wy

As A, is an abstract normed L-space, A,* is an abstract normed
M-space. Then, if fy, f, € V,9, we have |[f; V/ folly = SUP (I fully» |1 fally).
Hence (4,)"” is an abstract normed L-space and using the bitrans-
posed I";, we show that, if p € 4"

liplls = SUP (g, by| = SUP [(I"4(g), Iy~ 1 (A))| = SUP KI"(9), Byl (1
hEVO heVy® hEeWyd

Hence, if ¢; > 0, ¢ > 0, g1, p €4”, we have |lg; + @a|l, = |lo1lls +
+ llgallg -

It is clear that the topology f(A", A%) is determined by the semi-
norms {|lglly, 2 €N, g € A”}. These seminorms are lattice seminorms,
because if peA” and hed®, b > 0

Hul@) By = SUP (I"u(p),y — 25,y 20,220, y +z=h, y, 24 =
=SUP{(e, '(y —2)), 20, 220,z24+y=h, y,ze A5 =
= el L' (B> = {T"(lpl), h) -

Hence, if 1, g2 € 4", |p1| < |@2|, and hed2, b > 0, as I', (k) > 0,
we have |I"4(p)| < [I"4(g2)]. Then [lgill; < ligall, because by (1),
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lip|ls is equal to the norm of I',(p) in (4);" multiplied by a fix cons-
tant, and this norm is a lattice seminorm. Then, by the theorem 4
with p = 1, [4”, B(4”, A%)] is isomorphic and order isomorphic to

an echelon Kothe space of order 1. qg.ed.
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