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ABSTRACT

It is well known that the Dirichlet problem for hyperbolic equa-
tions is a classical ot well posed» problem. In this note we extend to
n-dimension a 2-dimensional theorem that was done by Fritz John
[1]. We treat uniqueness of solution of the Dirichlet boundary value
problem for the system of hyperbolic equations u,. = 0; j #1;
i,7=1,..., ninaclosed domain whichis a closed and bounded convex
set in #-dim. such that any line parallel to the xaxis wi=1,..., n
will intersect the boundary in at most two points.

INTRODUCTION

Hadamard [2, 3] rejected the Dirichlet problem as unsuitable for
hyperbolic equations. Bourgin and Duffin [4], and Fox and Pucci
[5] treated the Dirichlet and Neumann problems for u,, — %, = 0
for a rectangle in standard position. John [1] treated the Dirichlet
problem for the equation #,, = 0. The author and Diaz [6] treated
the Dirichlet, Neumann and many mixed Dirichlet-Neumann boun-
dary value problems including a «general mixed problemy where,
at each point which is not a corner, the boundary condition is either
of Dirichlet or of Neumann type. Dunninger and Zachmanoglou [7]
treated uniqueness of solution of the Dirichlet problem for the equa-
tion ., + ... 4 %y, — %, = 0 in coordinate rectangles.

In this paper we consider the problem mentioned in the abstract
above,
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DEFINITIONS AND 7THEOREM

Our closed domain that we use will be denoted by G and it is
a closed and bounded convex set in #-dim. such that any line parallel
to the x-axis y + = 1, ..., #, will intersect the boundary in at most
two points.

We denote the boundary of G by hd.

We remark that in our domain the general solution of Uy, =0
is u (%), %3) = f1 (¥1) + f2 (x2) and that the general solution for the
system

Uy =0, 7 F#11, 7=1,2,..., n
is w(x, %, ..., %) =f1(x) + f2(®) + ...+ fu (%)

Now take u (xy,...,%,) =f1(*¥) + ... + f,(x,) defined on G,
where f; (;) is continuous on G y 7 = 1, ..., #. We define a function
v on the boundary as follows:

v(x, ..., %) =u*x,...,%,), ¥p=(*,...,%,) €bd, so that
v(x, .., x,)=f(x)+ ...+ (x), ¥vPp=(%1,...,%,) €bd and
v(p)=HB)+ ...+ fu(p) VI = (%1, ..., %,) ebd.

We define the following transformations that map the boundary
into the boundary: Let p = (%, %5, ...,%;, ..., x,) €bd.

Aii(x, %2, 00, %, 00, %) = (%, %2..., %, ...,%,)€bd,1=1,2,...,n.

These transformations A; are natural ones, since a line parallel
to the x;-axis will intersect the boundary in at most two points. So
that if a line parallel to the x,-axis passes through the point p € bd,
then 4, (p) € bd is also on this line. Of course if the line intersects the
boundary at one point p € bd only, then A4, (p). This is the same for
all 7=1,2,,..., n.

We define the mapping T (p) on the boundary as:

T (p) =T:|I'A,~ (P) =Andpa... A2 41 (p) = An(An—r ... (A2(41(p)))).

The sequence p, T (p), T2(p), ..., T*(p), ... will be called A(p),
where p € bd.
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We will say that a function u (x, %,, ..., x,) is a solution of the
Dirichlet problem for the boundary values v, if

@ @, %2 ..., %) = fr(®1) + fa(®2) + ... + (%)

where f; (x;) is continuous for @; < x, < b, yi=1.2...., n.

(0) w(xy,2,...,x,)=0v v (¥, 2, . .., %,) € bd.

THEOREM:

The solution of the Dirichlet problem is uniquely determined
if either one of the following two conditions is satisfied:

(i) If there exists p € bd such that A(p) is dense on the boundary;

(ii) If for every two points p, g € bd, the intersection of the sets
of limit points of 1(p) and A (q) is non-empty.

Proor:
Let v(p) =0 ypebd,

u ®n %) =fi(x) + ...+ f,(x,), £, (%) continuous
VO ) = fi(5) o S8, = (5, .., %) € bd

and  v(p) =fi(p) + ... + fu(p), pebd
We have the following,

T(p) = ]jA.- ()

f:(®) = f; [ T4;(p)) for any number of 7's

j#4

and  fi(4:(p) = £, (T (p)) = f: (A4, T T4, (p)) for any number of 7's
) i#i
Let h, = u — f; everywhere, &; is continuous, since # and f; are
continuous. '
Now v p €bd, we have

Wp) — b (T (8) = S U(2) (T (9] = S17/(8) ~ (4, 5]
i=t
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and

F# j#i
i=1 i=1

8) —o (T T4;(8) (Lf,( P)+ /(b ))

i jE i#7
i=1 j=1 i=1

(S‘ff TT4,6) + £ (T T4, (zb)))

— /) ]‘:]f, T]A (#)), since ﬁ(p):ﬁqu,-@»
1 i=1 j=1 i=1

With the help of iteration we get,
hi (p) — B (T2 (#)) = (A () — A (T (P))] + [ (T (p)) — i (T2 (p))]

= ( —vq_[A(p ) + v (T —v(r[AT(]b
e i
1
=¥ [w(T*(p) — v ]_]'A T (p
K=o i#i

i=1

By induction get for all integers # > 0,

b (p) — k(T (p) = V [v (T*(p) — v TTA T*(p
i

ie., & (p) — h; (T (p) may be written in terms of v for the points of the
boundary. But v = 0 on the boundary, hence A (p) = %, (" (p)) V¥
integers # > 0, p € bd. Hence %; has the same value for all the mem-
bers of the sequence 1(p).

Now if A(p) is dense on the boundary then 4; is constant on the
boundary, since A; is continuous.
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If for every two doundary points p, g, the set of limit points of
the two sequences A(p), A(g) have a non-empty intersection, then
clearly again 4; is constant on the whole boundary.

Now f; = u — &, and on the boundary we have

fi=v—h;=0—h = —h, since v =0 on the boundary.

But % is constant on the boundary, hence f; is constant on the
boundary. _

Now to show that f; is constant everywhere, we let fi(p)=¢
pebd. Then let g = (xy,%,,...,%;, ..., %,) be an interior point and
take a line through ¢ parallel to the %-axis (any j £ 4), then this
line will intersect the boundary at some point p = (%, %5, ..., %, ...,
%, ..., %,) on the boundary whose ith coordinate is the same. Hence
fi(#) = £ (), but since p ebd then f,(p) =c, and hence fi(g) = ¢
Hence f; is constant everywhere.

The same can be done for all 1 =1, 2, ... , n to show that f; is
constant for allz = 1,2,..., ». Hence u (%1, %, ..., x,) is constant
everywhere. But # = 0 on the boundary. Hence # (%1, %3, ..., x,) == 0.
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