THE MAXIMAL FUNCTION AND DERIVATION OF INTEGRALS IN A SPACE OF LOCALLY INTEGRABLE FUNCTIONS

BALDOMERO RUBIO (University of Madrid)

Given an increasing continuous function $\varphi: R^+ \to R^+$ such that $\varphi(0) = 0$ and $\varphi(t) \ge t$ for large t, we can define the space L_{φ} of measurable functions $f: R^n \to R$ which verify

$$\int_{\mathbb{R}^n} \varphi\left(|f(y)|\right) dy < \infty.$$

It is clear that every function in L_{φ} is locally integrable. When $\varphi(t) = t^p$, $1 \le p < \infty$, this space is $L^p(R^n)$.

If a homothecy invariant Busemann-Feller basis \Re in R^n differentiates $\int f$ for every $f \in L_{\varphi}$, then the Hardy-Littlewood maximal function M associated wit \Re has a property which generalizes the property of weak type (p, p). We proved in [3] this theorem in the case $\varphi(t) = t^p$ and more general bases.

We begin with some definitions. A Busemann-Feller basis in R^n is a collection $\mathfrak R$ of bounded open sets such that for every $x \in R^n$ there exists at least a sequence $\{R_k\} \subset R$ such that $R_k \to x$ (i. e. $x \in R_k$ and, given a neighborhood U of x is $R_k \subset U$ for large k). $\mathfrak R$ is homothecy invariant means $\mathfrak R$ contains the homothetic sets of its members. Being $f: R^n \to R$ locally integrable, the upper derivative of f, with respect to $\mathfrak R$, in f is defined by

$$\overline{D}(f, x) = \sup \lim \sup \frac{1}{|R_k|} \int_{R_k} f(y) dy$$

where the sup is taken over all the sequences $\{R_k\} \subset \Re$ such that $R_k \to x$. The lower derivative $\underline{D}(f, x)$ is defined setting inf \lim inf above. When $\overline{D}(f, x) = \underline{D}(f, x) = f(x)$ a. e. in R^n , we say that \Re

differentiatiates f. The Hardy-Littlewood maximal function M associated with R is defined by

$$Mf(x) = \sup_{x \in R \in \mathfrak{R}} \frac{1}{|R|} \int |f(y)| dy.$$

Since $\{x: Mf(x) > \lambda\}$ is an open set, Mf is measurable.

Then we will use the following covering lemma, which is a special case of the Vitali theorem and can be proved easily.

Lemma. Let P be a compact subset of R^n with positive measure, and $\delta > 0$. Given a bounded open set G in R^n , there exists a disjoint sequence $\{P_j\}$ of sets homothetic to P such that $|G - \cup P_j| = 0$ and, for every j, $P_j \subset G$ and diameter $P_j < \delta$.

Now we can state our theorem.

THEOREM. Let \Re be an homothecy invariant Busemann-Feller basis in R^n . If \Re differentiates if for every $f \in L_{\varphi}$, then there exists c > 0 such that

$$|\{x: Mf(x) > \lambda\}| \le c \int_{\mathbb{R}^n} \varphi \left[\frac{|f(y)|}{\lambda} \right] dy$$

holds for every $f \in L_{\omega}$ and $\lambda > 0$.

Proof. If the theorem is not true, for every k we can choose a non negative function $f_k \in L_\varphi$, $\lambda_k > 0$ and $\alpha_k > 0$ such that

$$|\{x: M_k f_k(x) > \lambda_k\}| > c_k \int_{\mathbb{R}^n} \varphi \left[\frac{f_k(y)}{\lambda_k} \right] dy$$

where M_k is the maximal function associated with the basis $\{R \in \Re: \text{diameter } R < \alpha_k\}$, and the c_k 's will be fixed later on. Taking $g_k = f_k/\lambda_k$, it is clear that $\{x: M_k f_k(x) > \lambda_k\} = \{x: M_k g_k(x) > 1\}$, and some compact P_k contained in this set verifies

$$|P_k| > c_k \int_{\mathbb{R}^n} \varphi(g_k(y)) dy.$$

Now for every k we can use the lemma to cover the unit interval Q in R^n by a disjoint sequence $\{P_{kj}\}_{j=1,2,\dots}$ of sets homothetic to P_k , such that the ratios ϱ_{kj} of these homothetic transformations verify $\varrho_{kj} \alpha_k \to 0$ as $k \to \infty$.

Define g_{kj} in the following manner: $g_{kj}(x) = 0$ if $x \notin P_{kj}$ and $g_{kj}(x) = g_k(y)$ being x the image of y in the homothetic transformation which carries P_k onto P_{kj} . So we have

$$\frac{\int_{P_{kj}} \varphi\left(g_{kj}\left(y\right)\right) dy}{|P_{kj}|} = \frac{\int_{P_k} \varphi\left(g_k\left(y\right)\right) dy}{|P_k|} < \frac{1}{c_k}$$

and

$$\int_{P_{M}} \varphi\left(g_{kj}\left(y\right)\right) dy < \frac{1}{c_{k}} |P_{kj}|.$$

Now, define $h_k = \Sigma_j g_{kj}$ for every k, and $h = \sup h_k$. We have

$$\int_{Q} \varphi(h_{k}(y)) dy = \sum_{j} \int_{Q} \varphi(g_{kj}(y)) dy \leq \frac{1}{c_{k}}$$

and

$$\int_{Q} \varphi(h(y)) dy \leq \sum_{k} \int_{Q} \varphi(h_{k}(y)) dy \leq \sum_{k} \frac{1}{c_{k}}.$$

It is possible to choose the c_{k} 's to obtain $\int_{Q} \varphi(h(y)) dy < \frac{1}{2} \varphi(1)$

On the other hand, the construction above proves that $\overline{D}([h, x) \ge 1$ a.c. in Q, and so we have also $h(x) \ge 1$ a.c. in Q, and

$$\int_{Q} \varphi(h(y)) dy \geq \int_{Q} \varphi(1) = \varphi(1).$$

This is a contradiction.

* * *

As an aplication of this theorem we obtain the following: Let φ be the function $\varphi(t) = t (1 + \log^+ t)$ for $t \geq 0$. It is known (soe Jessen, Marcinkiewicz, Zygmund [2]) that the basis of intervals in R^2 differentiates f for every $f \in L_{\varphi}$. Then, there exists c > 0 such that

$$|\{x: Mf(x) > \lambda\}| \le c \int_{\mathbb{R}^2} \frac{|f(y)|}{\lambda} \left(1 + \log^+ \frac{|f(y)|}{\lambda}\right) dy$$

for every $f \in L_{\varphi}$ and $\lambda < 0$. In particular, if f is the characteristic function of a set E with finite measure, it holds

$$|\{x: M \chi_E(x) > \lambda\}| \leq \frac{c}{\lambda} \left(1 + \log \frac{1}{\lambda}\right) |E|$$

for $0 < \lambda < 1$.

With other methods, Burkill [1] obtained the inequality

$$|\{x: M \chi_E(x) > \lambda\}| \leq \frac{c_1}{\lambda} \log \frac{c_2}{\lambda} |E|$$

in the same conditions.

Acknowledgment. These results are contained in my doctoral thesis at the University of Madrid, being M. de Guzmán my thesis adviser, to whom I wish to thank for his help.

REFERENCES

- [1] J. C. Burkill, On the Differentiability of Multiple Integrals, J. London Math. Soc. (1951) 244-249.
- [2] B. JESSEN, J. MARCINKIEWICZ and A. ZYGMUND, Note on differentiability of multiple integrals, Fund. Math. 25 (1935) 217-234.
- B. Rubio, The property of weak type (p, p) for the Hardy-Littlewood maximal operator and derivation of integrals. Studia Mathematica, t. LVII (1976).