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by
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IxTRODUCTION. This paper deals with isometric immersions of
Riemannian m-manifolds into Fuclidean #-space. If ¢: M — R" is
such an immersion we introduce first an operator 0 which in the
case # = m + 1 reduces to the second fundamental form. Then
we derive four intrinsic relations corresponding to the classical equa-
tions of Gauss-Codazzi. An operator which satisfies these relations
will be called a Gauss-Codazzi tensor field.

Finally we show that if 6 is a Gauss-Codazzi tensor field on a
simply connected manifold M, then there exists a global isometric
immersion of M into R” such that 6 is the second fundamental tensor.

The proof is based on the following idea: consider the vector bundle

=1, E¢

where 7,; denotos the tangent bundle of M and ¥ is the trivial bundle
of rank 7. Define a certain linear connection in & and use the Gauss-
Codazzi equations to show that this connection has zero curvature.
Now apply the theorem, which states that every vector bundle over
a simply connected manifold with a flat connection is trivial, to
construct the immersion.

Norarion. If M is a smooth manifold, S(M) denotos the ring
of smooth functions on M. The vector fields on M form a module
over S(M) wich is witten as X(M). The derivative of a smooth map
f: M — R" with respect to a vector field X is denoted by dy f. It is
again a smooth map from M to R”. Finally, the module of cross-sec-
tions in a vector bundle £ is denoted by Sec &. Thus in particular,
Sec 7y, = X (M), where 7, denotes the tangent bundle of M,
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1. IMMERSIONS INTO R*. Let M be a smooth manifold of dimen-
sion m and let ¢: M -~ R* be an immersion of M into an #-dimensio-
nal vector space. It determines a vector bundle u over M whose
fibre at x is the space Im (dgp), and dg is a strong bundle isomorphism
from the tangent bundle 7, onto 7. Under this map every vector
field X on M defines a smooth map @y : M - R* given by

Dy (x) = (do), X(x) xeM.
Clearly,
By .y = By + By
and
Dy =f. Dy feS M).
Moreover, the map X — @, is injective.

Henceforth we shall identify every vector field X with the corres-
ponding map D,.

Izvya I Tet X and Y be vector fields on M.
Then

(1) ayY —dy X ={X,Y],
where [,1 denotes the Lie product.
Proor: Choose a basis 4y, ..., of R" and write
PW=3f (W.a
Then we have for every vector field X
(@), X() = 5 du () a.
Under our identification this equation reads
X = ; dx f'. a,.

It follows that
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dy X =X dydy f'.a
g
whence

dx Y —dy X = 2 (@dy dy — dy dy) f*. a; = Z d[X,Y]fi' a4 = d;.x,y19/)-

Suppose now that M is a Riemannian manifold with metric
tensor g and that R" is a Fuclidean space with inner product {,).

Then ¢ is an isometric immersion if and only if for any two vector
fields X, Y

(2) X, Yy =¢(X,Y)
as follows from the definition.

THI, OPERATORS Oy AND fy. Let 74 denote the normal bundle of
M with respect to immersion ¢. Its fibre at x is the orthogonal com-
plement of the space Im (dp), in R*. Let &l @75, 73 be the strong
bundle map obtained from the obvious projection.

Now fix a vector field X on M and consider the map

0y : X(M) - Sec i
given hy

0x(Y) = nml(dy Y).
If fis a function on M we have
O(fY) = ml(dyfe Y + fodx ¥) = fomi(dy ¥) = f. 0x(Y)
and so Oy is S(M)-linear in Y. Clearly,
0x(Y) = f . 0x(Y).
Thus the operators Oy define an S(M)-bilinear map
6: X (M) x X(M)— Sec ty.

We shall call 6 the second fundamental tensor field for the immersion
@. Lemma I implies that
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0x (Y) — 0, (X) ==nl (dx Y —dy X) ==l [X,Y] =0,
whence
6(X,Y)=0(Y, X).
The adjoint operator
0% : X (M) < Sec Ti.
is determined by the equation
3) g (Bxe, V) = (e, 057> YeX (M) ecSecth.

Next, consider the bundle map =z : 7y, -~ 7, obtained from the

orthogonal projections z,: R* — T, (M) (recall that we identify 7., (M)
with its image under (dg)y.

ILrMMa II: The operator fy satisfies the relation
7 dy(e) = — Ox(e) ¢ € Sec Tir.
Proor: In fact, let Y € X(). Then formula (3) yields

g (0x(e), Y) = (e, 0x(Y)) = (e, L dy Y)Y = (e, dy V).

On the other hand,

g (7'[ (ZX e, Y) - (ﬂdX e, Y> == (dX e, y’)
Thus

g (0x(e) +mdye, V) =(e,dx Yy + (dye, Y> = dy (e, Y)Y = 0.
Since Y is arbitrary it follows that
0x(e) + mdy e = 0.

REMARK: If # = m + 1 and if ¢ denotes the unit normal field,
then § and 0* are given (respectively) by
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0,(Y) =H(X,Y).e
and
) (e) = — X)),

where H is the second fundamental form and % is the bundle map
Ty — Ty defined by

g(h(X),Y)=H(X,Y) X, Y e X (M).

3. THE LINEAR CONNECIIONS V AND v1. The immersion ¢ de-
termines linear connections v and vl in 7, and 4 by

Vy Z =a(dy 7Z) ZeX(M)
and
VY e = al(dye) e € Sec 4.

PropostrioN: Let Z e X(M) and e e Sec 74. Then the following
decompositions hold:

(4) dy Z =y Z + 0, Z
and
(5) dye= — 0y e+ Ve

Proor: In fact,
dy 7 = 5 (dy 7) + wi(dy Z) = Vy Z + 04(2)
and
dye=m(dye) +al(dye) = — 0y e+ Vye

4. Tur BQUATIONS OF Gatss-Copazzi. Applying dy to (4) and
using (5) we obtain

dx dy Z = dy Vy Z + dx (05 2) =
=y Vy Z+0xVy Z —0x 0y Z + V% 0y Z,
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Now interchange X and Y and subtract observing that
dy dy — dy dy = dix, v

This yields the relation

dix,v1Z=(VxVy —VyVx) Z + (0xVy — 0y Vx) Z —
— (0x 0, — Oy 0) Z + (V& 0y — V¥ Ox) Z.

Finally, apply # and wl to this equation and use the formulae

ndix, vy £ = Vix,v1 Z

and
al dx,vi £ = Oy, 0 Z
to obtain
8} R(X,Y) = 6y 0, — 0y 0y
and
(IT) O, v1 = (Ox Vy — Oy 7x) + (V& Oy — Vv 0,)

where R denotes the curvature tensor of the linear conmnection V.
Similary, applying dy to (5) and using (4) we find that

dy dy e = —dy Oy e+ dy Vi e=
= —UxlOye — 0y 0ye —0xvee+ Vi vie

It follows that

dix, vy, 6 = — Uy Oy e + 7y 0}6— 0X0;r6+
40y 0xe — 0x VY e+ Oy Vi e+ 7k VE e — VE Vi e

Now apply the projections n and m! observing that
7T d[X’ vy € = — ng, vyl € and wl d[X, y] € = \7{{‘“ y] €

to obtain the equations
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(IIT) Ox. v = (0;{ Vi — 0y vE) + (Vx Oy — Vy 0%)
and
av) RL (X, Y) = 0y 0y — 0y 0

where R1 denotes the curvature of the connection VL.

5. Gauss-Copazzr TENSORS. Let M be a Riemannian manifold
of dimension m and let# be a vector bundle of rank 7 over M equipped

~ ~N
with a Riemannian metric ¢ and a Riemannian connection 7 with

curvature tensor R. Consider a symetric bilinear map
0:X (M) x X (M) — Secq
and let
6y : X (M) — Sec n
be the operator given by 6y (Y) = 0 (X, Y). Let
0% : X (M) < Secy

be the adjoint operator. We shall call 6 a Gauss-CODAZZI TENSOR
FIELD, if 6 and 6* satisfy equations I-IV (with 71 and RL replaced

by v and R, respectively).

THEOREM: Let 6 be a Gauss-Codazzi tensor field on a simply
connected Riemannian manifold M. Then there exists an isometric
immersion ¢ : M - R* (n = m + 7) and an isometric strong bundle

map «:7— Ty such that
(6) m(dy X) = Vy X
(7) ml (dy X) = a(by X)
Proor: Consider the vector bundle
&= 1, D.

Define a Riemannian metric g in € by
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Z(Z1® oy, Zy®0y) =g (21, Z2) + & (01, 02)
Z;,eX (M), o; € Secn, 1 =1,2

and a linear connection by
Ty (Z,0) = (Vy Z — 0y 0, Vyo | Oy Z).

It is easy to check that v is a Riemannian connection with respect
to g

TumMa IIT: The connection v has curvature zero,
R(X,Y)=0.

Proor: We may assume that [X, Y] = 0. It follows from the
definition of \V that

gx :y (Z, o) = (Vx W*O;T: Y/7\x T+ 0x W)

where
W=vyZ—0yoand 7=vy0+ 0y Z.

Set

VW —0y7t=0(X,Y)
and

VeT 40, W=W¥(X,Y).
Then

DX, Y)=VxVyZ —Vgbyo—0xVyo—0x0yZ

and so

D (X,Y) “(D(Y:X):(\_/'XVY_"Vyvx)z_VXO;'U‘FVYB,*\’O'—
— 0y Vy o+ Oy Vyo— Ox 0y Z + 6% 65 Z.

Hence equations (I) and (III) imply that
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®(X,Y) — ®(Y, X) = 0.

On the other hand,

W (X,Y)=Vx (Vyo+ 0y Z) + 0x (vy Z — by o)

and so

2

VX, Y)—W(Y,X)=R(X,Y) o+ Vx 0y Z —y0x Z+
F 0y VyZ —0,VyZ —0y0y0+ 0,00

Thus, by (II) and (IV),
Y(X,Y)—¥(Y, X)=0.
It follows that

(\N/,\ '3)/ — "\:/4)’ 7‘() (Z,0) =0

whernce

~

R(X,Y)=o.

6. THE CROSS-SECTIONS g;. Since R == 0 and since M is simply
connected there are # (n == m + 7) parallel cross-sections o; in &

such that the vectors g, (X) (i = 1... #) are linearly independent for
every X € M (cf. [3], p. 92 or [2] p. 361). More precisely, fix a base
point a e M and choose an orthonormal basis Ay, ... h, of T, (M)

and an orthonormal basis & &k, in the fibre F, of ainn. Set

m-+1, .
{ (h;, 0) (i =1...m)
A7 (00 k) (G =m+ 1. m).

Since the connection v is Riemannian,

20, 0)=06; (,j=1.n).

1?2 13

Now wite o, = (Z;, 0;) Z € X (M), o, € Secq.
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Then the relations /o, = 0 imply that

(8) Vx Z, = 0x = (9))
and (i=1..m)
9 V0 = — 0x(Z).

Let o' denote the 1-form on M corresponding to the vector field
Z )

o (X) =g (X, Z) (2 = 1...m).
Lyvma IV:
(1) Z oi(X)Z, =X

X e X (M)
2) Toi(X)o=0

(3) Tei(X) o (Y) =g(X,Y) X, Y e X (M)

4 = g0, 0) =0 o € Sec .
(5) The 1l-forms o' are closed,
dw = 0.

Proor: (1) and (2): In fact,

@
o

S ol(X) o, =3g(X, Z)o, =Zg(X@®0,0) 0, = X
(since the o, are orthonormal). It follows that
To(X)Z; =X

and
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(3): Since
w'(Y) =¢(Y, Z)
it follows from (1) that
S0/ (X) o (V) =S (X) g (Y, Z) =g (¥, S (X) Z) =
=gV, X) =g (X, 7).

(4) Observe that

;gm ) (0@ o) = ;g(o@ 0, Z,®0)0E ) =080

to obtain

(0, 0) 0 =o.
$

(5) Let X and Y be vector fields such that [X, Y] = 0. Then
dw'(X,Y) =dyw(Y) — dy o (X).
But, in view of (8),
dx o' (Y) =¢g(Vx Y, Z) +g(Y,Vx Z) =
=g(VxY, Z)+g(Y,0x ) =g(Vx Y, Z) + ¢ (0 X, 5)
Since, by hypothesis, 6, Y = 6, X

it follows that
00 (X,Y) =0.

7. 'TH1Y IMMERSION FUNCIIONS. Since the 1-forms o' are closed
and since M is simply connected, there are functions f* on M such
that

off = o' (t=1..n).

Now choose an orthonormal basis ay, ...,q, in R* and define ¢ by

<P(x)=§]fi(x)ai xeM.

14 — Collectanea Mathematica
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Then we have

(10) o h=2% o' (% ) a; xeM
' heT, (M)

and so by Lemma IV, (3)

(do), h, (dg), > =g (x; h, k) xeM
kel (M)

I'his shows that ¢ is an isometric immersion.

8. THr BUNDLE MAP «. Let E, denote the total space of 5 and
define functions A on E, by setting

A (z) = g (2, 0;, (%, 2) z€E,,

where m,:E -- M is the hundle projection. Let «:E -3 X R
be the strong bundle map given by

n*

a(z) = XA (2) o zekE
Then we have by Lemma IV, (2),

), 22y =X o (5,h) X (2) = 3 o (v, ) g (z 0, (v) =

= é(z, z o' (x, ) o; (x)) =0 zek,, x=m,2.

1

I'his shows that «(2) € T, (M)L.
Moreover, if u € IF, and v € I, we have

ut, vy =20 A (u) M) = Z g (u, 0, (x)) g(v o;(x)) =

=g (1, 2 g, o) o(x) =g (1. 7)

(cf. Lemma IV, (4)).
Thus « is an isometric bundle map from 7 to the normal bundle of .M,

@i ———> TH.

It remains to be checked that the immersion ¢ induces the given
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lincar connection and that the second fundamental tensor of ¢ co-
rresponds to 6 under the bundle map «.
Write equation (10) in the form

(1) X =3 0'(X)o=2g(Z, X)q

and apply d,. It follaws that

1

4y X =58 (7y 2, X)a + Sg(Z, 7y X)a, = B g (04 o, X)a, +

-+ Z 10} ("-»7 v X, = Z é’ (0',-; Ty X)e + Z o (‘1 X)a,.
Now observe that, by (11),

Do (vy X)a =7y X,

On the other hand,

~

% (0y X) = B (0y X)o, = Zg (Oy X, o).

t

1

Thus we have
dy X =y X + o (0y X)
whence
a(dy X) =y X
and
ai (dy X) = «(0y X).

This completes the proof of the theorem.

14* — Collectanea Mathematica
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