THE GEOMETRIC MEANS OF AN ENTIRE
FUNCTION OF ORDER ZERO (1)

P. K. Jawx anp V. D. CHUGH

The geometric means G(7), g,(r) and g,*(r) for a non-constant en-
tire function of order zero are considered and certain relations in-
volving the comparative growth of the same relative to each other
are obtained. It is shown that the logarithmic orders of the loga-
rithms of these means are separately equal to the logarithmic
order of the function. The difference in the results regarding the
growth of the pairs (G(r), g,(r)) and (G(7), g,*(7)) have also been
observed.

1. INI'RODUCTION

For a non-constant entire function f(z) of order zero, the logarith-
mic order, o*, and the lower logarithmic order, A*, are given as [8]:

sup loglog M(r, f) o*

lim =" (I < 2* < p* < o),
r»c0 inf log log ¥
where, M (r, f) = T“TX £ (2)].
2| =7

Let us define the following mean values of |[f(2)]:
1 2 .
(1.1 G (r) = exp {——- [ log | f(re")i dﬁ},
27‘[_ 0

k41

(1.2) g (r) =exp { - (, x* log G (x) dx}, (0 <k < o),
S0

gyl

(1) The work of this author has heen supported partially by the Univer-
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and

(1.3) g* () = exp {(f—i_l—{: (log x)* log G (x)%}, (0 <k << o).

The mean value (1.2) was introduced by Kamthan [6] and a num-
ber of properties regarding its growth with respect to G(r) and other
auxiliary functions for an entire function of order o were obtained
in ([21 [3] [6] [7)). We introduce a new geometric mean g,* (v) as
defined in (1.3) and call it logarithmic geometric mean. Our aim
in this paper is to investigate certain relations involving the com-
parative growth of G (v), g, () and g,* () relative to each other for
entire functions of order zero. In section 2, we discuss certain pre-
liminaries, whereas the remaining sections are devoted to our main
results.

2. PRELIMINARIES

Throughout this paper we assume f(z) to be a nonconstant entire
function of order zero. For these functions, we have

oo
0, =g Lb {z2>0and ¥ T < oo} =0,

n—1

where, {r,}52; denotes the sequence of the moduli of the zeros of
f(z). To have a more precise description of the distribution of the
zeros of such functions, let us consider

0¥ =g l.b. {#:0>0and S_‘C" (log 7,) ™ <C oo}.

n-=1

In analogy with the convergence exponent, g;, of the zeros of f(z),
0.* will be called the logarithmic convergence exponent of the zeros
of f(2).

In a recent paper [4], we have proved that if f(z) has atleast one
zero, then

1) tim sup 5 k(0 < 0% < =),

r—o00 log log 7 N

where, n(r) denotes the number of the zeros of f(z) in |z| < 7. Also,
it been shown therein that p* = o,* + 1.
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Further, in analogy with the lower convergence exponent, A
the limit inferior in (2.1) may be named as lower logarithmic conver-
gence expornent of the zeros of f(z) and denoted by 4%, i.e.

#

(2.2) lim inf l_o_gl@ = %, (0 < A% < o).
) log log7
Also, let
(2.3) N () = J ") g,
o X

where, it is assumed without any loss of generality, that n(r) =0
for » < 1.
Also, for a real and non-negative function P(7), increasing for
7o < ¥ < oo, where 7, > 1, the logarithmic order, u, and the lower
logarithmic order, », are defined as
(2.4) im S 8L _# 5 < p <y <o),
r—»ooinf loglogy v

3. MAIN RESULIS

TaroreM 1. The logarithmic (lower logarithmic) orders of the
functions P, (r) = log G (r), P, (r) = log g () and P; (r) = log gi* (¥)
arve the same.

The proof makes use of the following lemmas:

Irzvva 1. For 1 <7 < R,

log R)*+1! .
3.1) logg*(#)<logG(r) < —— ( log g% (R).
(3.1 g g1 (r) g G(7) (log R)*1 — (log 1)+ g & (R)

Proof of the lemma. We have

log g;* (r) = kol f 4
1

—— 1T~ | (logx)tlogG (x) —
(log )+ (log %)* log G (x) p»

(3.2) < log G (7).
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Further

1 % R k N
og g&* (R) = —Ig—Rﬁ (log x)*log G (x) —x—
: "

(R+1) (r dx
z — 7 log x)*log G (x) —
fog T j (g 41086 (5)

> B Dlog €1,
X

(log R)#+1

_ (log R)¥+1! — (log 7)1

(3.3) flog 51

log G(7).

Combining (3.2) and (3.3), the lemma follows.

LemMa 2. [7]. This is

RE1
(4 1og g0) < TogG () < o —— - log g (R), R>.

Proof of the theorem. By JENSEN’s theorem (see Boas [1], p. 2),
we find that

(3.5) log G () — rn—t(t—)dt—{—log I/ (0)].
Jo
Therefore
rr2 72
log G (r2) > ?%(i) dt > n (r) [ ? = n(r). log 7,

which, in view of (2.1) and (2.2), implies

; L
lim SUP log log G () > |

0,*
r—»ooinf  log log 7 *+

bl

—
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Again, from (3.5), we get

" n(t)

log G (7) :( 5 i+ o), 70> 0

< n(r)log7 (1 4+ 0(1)).
The above inequality coupled with (2.1) and '(2.2) gives
*
lim SUP log log G (7) <Y + 1 ‘
r»ooinf  loglog# A 41
Hence

(3.6) tim > loglogG(r) _e* + 1
r-sco0 inf lOg log ¥ 21* + 1

Further, by putting R = 12 in (3.1) and R = 27 in (3.4), we ob-
tain respectively

k1
3.7) log,* () < log G (r) < zljl — log g¢* ()
and
ki1
(3.8) log g (r) < log G (7) < CYRrw—T log g: (27).

Making use of (3.6) in (3.7) and (3.8), theorems 1 follows.

REMARK. It is interesting to note that inspite of the fact that
the logarithmic orders of log g,(r) and log g,*(#) are separately equal
to the logarithmic order of the entire function f(z), still it seems that
log g(r) is of larger growth than log g;*(). Consider, for example,
the function

It is clear that f(z) is an entire function of order zero and logarithimic
order 2, since # (r) ~logr. Also, log G (r) ~1/2 (log 7)2; log g;*(7) ~

2€€k—|——|_135 (log 7)2 and log g, () ~1/2 (log 7)2.

~
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4. Derivatives of G (), g,* () and g, (7).

THEOREM 2. Let G'(r), g (r) and g’ (v) be the first derivatives
of G(r), &* (v) and g, (v) respectively. Then

@) lim sup log # G’ (r)/G (r)} _ o*
: "e? inf log log 7 A’
lim sup log {rg,* (v) [gx* ()}  o*
(4.2) rco T
r¢& inf log log 7 ll*
and
lim sup log {rg. (v)/gx ()} _ 0%
(4.3) oo . =
rel inf log log 7 Ay*

where E 1s a set of the values of v of measure zero.
Proof. Differentiating (3.5) with respect to 7, we get

r G (7)

(4.4) G o)

= n (7),
for all values of 7 excluding a set E of measure zero. Therefore, in
view of (2.1) and (2.2), (4.1) follows.

Further, we find that

& () _ iy 108 & (r) — log g¢* ('~ €)
(4) 18 >0 v — i€

S R T " (log #)* log G (v) &
(log 7)¥* 1V es0 (r — 7179 J4 x

Jﬂrl(lf)g x)* log G (x) d_x}

(1—eF1), x

= Bt lim ! r (log x)* log G (x) ax
(log 7)¥1 es0 (r — 7€) )4 X

— r (log x)* log G (x'79) @}
1 X

¢
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45 — Pl g ] )U’{logG(x)—logGoc}_-_e)_}

(log 7)k+leso (r — 7' )1 (x — %179

(1 — x7€) (log %)* dx]

N ~y _ - 1--€
7 (10g 1})/{ 1 | Q€—>0 (x _ x1~ C)

K41 J G (%) (log x)* dx

7 (log 1)1 G (%)
== __ﬁ_l__ v gl_(}“_) 1 N dx - 0 (71 (L — k=1
7 (log 7)*1 |, G (%) (log x)* dx -+ 0 (71 (log 7) )-

Since xG’ (x) /G (¥)} is an increasing funstion of x by (4.4), the above
inequality implies

6 0)_G 0y
i) G oW

for all sufficiently large values of 7.
Hence

(4.6) i SUP log U8 () et () e
r—»oc inf log log v A‘*

Again from (4.5), for n > 1, we notice that

gt _ kA1 oo 1 [(’" log G (v) —1log G (x'~)

gk*(rr]) (lOg 71})k—i~1 >0 1,71__1,17(1—6) x — xl—-C

(1 — x7€) (log x)* dx]

R+1 lim 1 l‘r” log G (x) —log G (x' ) ‘

(lOg 1,7])/! “1es0 71)__717(1—-6) ¥ — xl—vC

(1 — 2 €) (log %)k dx]

kAt 1 (um l:r"f)[Jyvlinl %E)g G () —log G (xl_c)} |

1. pF Y (log 7)F+1 \es0 | — 77 7€ ¢ €0 x —x€

(log x)* dx]
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kA I‘ﬂ ¢ (x) (log x)* dx

T 2 (log 7)), G ()
- ’ 71
- B4 G (y)f .
P11 k2 (log 7)*1 G (r) %
ol —1 G ()
P G

which implies

logw = log {7’ G’ (») o).
gk* (7’") G 1/)
Hence
(4.7) lim log {rg,*' () lgs* (7)) > 0%, .
7500 log log » 2%,

Combining (4.6) and (4.7), we obtain (4.2).

Now, proceeding on the above lines, we find that

& ) _ { log g, () —log g, (r —Ef)}
g:(r)  eso0 e
G ()
(4-8) <G—(¢')+ 0 (1),
and
(4.9) & () BTG 0) gy,

& (A7) g2 G ()

for all sufficiently large values of 7. The inequalities (4.8). and (4.9)
coupled with (4.1) imply the relation (4.3).

NotE: For completeness sake the ontlines of the proofs of theo-
rems 1 and 2 above have also been given elsewhere by the authors.

5. CoMPARATIVE GROWTH OF G(r) AND g*(7).

THEOREM 3. If

b

. 5D {gk* @ }; L

. —— \N(r) =
r—>o00 inf

| G (7) M
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then
*
(5.1) exp (~'1’—+1-) <L
k42
and
(5.2) el'<M<L <1,

provided A* < oo.
For this, we need the following lemma:

Lyavia 3. This is

(5.3) lim iufng A4 L

o N @)
Proof of lemma 3. Suppose (5.3) is not true; then we have
n(@#)logr < (A*+1+2€)N((7),7 =7 (), e> 0.
Therefore, for R > #,, we find that

R ] R P
071429 [N @ o2 2 2 < [N ) log moae-roe
7o X

X J 7o

R
= ( (log x)=#*~1=¢dN (x)

J T

= |N (x) (log x)~#—1-€ 72k

[x=rg

+ (L*+ 146 (RN (%) (log x)~ 21~ 2—cd_x

.« o

>

which implies

R
GJ (log x) "#"1=2=€ N (x) @ N (R) (log R)~h*—1-¢
X

7o

n (R) (log R)=**—€

G4 (A*+1+2¢)
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Also, by (2.2), we have
n (R) (log R)"#*¢ -0,

for a sequence of the values of R tending to infinity. However, the
integrand in (5.4) is positive and R is independent of 7, so this makes
(5.4) impossible. Hence (5.3) must be true.

Proof of theorem 3. By (2.3) and (3.5) we have

59 {20t = e [ N tog e~

G () N (r) | (log 7)* x
1 i e dx
== exp [ — f\_f(_ (l(—)g—rk—ij n(x) (log x) _xJ
| 2 logr
> exj l (k4-2 le

Hence (5.1) follows when lemma 3 is used in the above inequality.

Again, from (5.5), we have

(5.6) {

and

(5.7) {gé (:))}v(r) < exp [N .

So, (5.2) is proved.

}-l—, > LXPIV—](;) (N (1) -- N(r))J~e",

(N () - N (r))EI — 1.

THEOREM 4. For a class of entire functions for which log log G (r)
is a convex fumction of log log 7, we have

(5.8) fim °UP 19g3§k_*_(7_)$ _ log 4

. r>ooinf log log 7 | log B ’

where

(59) m Sup 510g F ) 10gmlonr == A )
L e
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and
log; X = log log log X.
To prove this theorem we require:
IrMmMA 4. Under the hypothesis of theorem 4, (log 7)*+! log G(r)
is a convex function of (log 7)¥+! log g,* (7).
Proof. Since log log G (r) is a convex function of log log 7, we have

(c.£.[5], equation (4), p. 73.)

log log G (r) = log log G (r)) = log log G (ry) + Jr w (x). d (log log x),

T

where, w(v) is non-decreasing and tends to infinity with x. Also.

d [(log 7)*"! log G (7)] d [dr [(log 7)k+1log G (r)]
)

d[(log 7)1 log g* (r)]  d/dr [(log 7)¥* ' log g* (r)]

rG' (v) log 7
(k + 1) G(r) log G (7)

Therefore

(log 7)¥+1 log G (r) = 0 (1) —I—J', w* (x). d ((log x)*+! log g*; (¥)),

To

where

Hence the lemma follows.

Proof of the theorem. 1t is readily seen from the definition of g,*(r)
that

log {(log 7)** ' log gi* (r)} = O(1) + (B + 1) J " logG(x) dx (ro > 1),

ro log g* (x) xlogx
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<o(l) + (k+ )| (4 4 epesrorr 9
7 x log x
€1 log log 7
_ (kA1) (A + €)s® Lo,
log (A 4 ¢€)
and so
* (s
(5.10) lim sup logs &% (7) <log 4,
=00 log log 7

since, using the hypothesis in theorem I, A, = oo.
Again, for > 1

" log G (v)  dx

log | (log 77)* ' log g* ()] = (k + 1)
1 log g% (x) x log x

/
J

Plog G (x)  dx
, log g% (x) xlog x |

< (k+ l)(

By lemma 4 and the relation (5.9), the above inequality reduces to
log [(log 7)*" ! log g,* ()] > (k + 1) (4 — €)'e*e" log 3,
for a sequence of values of » which tend to infinity.

Consequently

%
(5.11) lim sup log, g:* () > log 4.
=00 log log 7

Thus the proof for the limit superior in (5.8) follows from (5.10) and
(5.11). The proof for the limit inferior in (5.8) can similarly be dis-
posed of.

6. ComPARATIVE GROWTH OF G(r) AND g, (7).

THEOREM 5. If

1 K
lim SUP {gk (r) }— A
r>oco inf
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then

(6.1) el B<gd=1,

Proof. Using (2.3) in (3.5) we notice that

(6.2) ’Q —} vl(r) = exp [-Nl(r) {/?;/:11 (; ¥* N (x) dx — N (r) }J

1
cmexp | — ———— | xk.m (x) dx
1[ N(r)r’“'fo ) J

> exp ["’ (* -;nger' ) ]

Now, applying lemuma 3 in the above inequality, we get

P e £

which implies
(6.3) A >1

Also, from (6.2), we have

(6.4) {gG’ Er;}m exp [N o IN@© —N@ )}J

-1

~e

and
g ()] | DN - avml ]
(6.5) { Npg) > exp N NF) —-N@FL=1
G(f N S
Therefore
(6.6) e '<B <A<l

Hence (6.1) follows from (6.3) and (6.6).

12 — Collectanea Mathematica
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THEOREM 6. If

logr
lim sup g"—g—)lﬁ(‘f) =H,
G ()f

7—>00 7

then

(6.7) exp. (— A

provided A% < co.

Proof. Following the earlier part of the proof of theorem 5, we
see that

Ni) > exp -

For> =@ rval

In view of lemma 3, the above inequality implies (6.7).

Ri:MARK. It is worth-noting that some of the results for the func-
tion g;* (r) and g, (r) arc analogous but at the same time quite dif-
ferent from each other. Compare, for instance, (5.2) with (6.1).
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