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1. INTRODUCTION

In the following, the product of two distributions f and g is de-
fined, as in [1], as the limit of the sequence {f,g,}, provided this
sequence is regular, where

fﬂo :f* 6”’ gﬂr = g* (s"’ 61!: (x) = ,;zg (nx)

for n=1,2,... and p is a fixed infinitely differentiable function
having the following properties:

(1) e(®) =0 for |x|=>1,
(2 e(®) =0,

3 e(x) =o(— =),

(4) ng(x) dx = 1.

It is obvious that {,) is a regular sequence converging to the Dirac
delta-function 6 (x).

If the sequence {f, g} is regular the product fg is said to be
convergent, otherwise it is said to be divergent.

We will now suppose that f, g, F and G are distributions for
which the products fg and FG are both divergent. We will suppose
further that the sequence {f,g, + F,G,} is regular and converges to
the distribution 4. Then, as in [2], we will say that the sum of the
products fg and FG exists and is equal to 4 and write

fe+ FG=h,
even though the individual products fg and FG are divergent.
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2. We will now counsider the product xf'!. A, where A4 > — 2
and 2, 4 #0, - 1, 4- 2, ... It is obvious that if 2 + > — 1 then

X x’f. == 0

and it was proved in 1] that

2T = — 1z cosec (r2) 0 (v)

for A0, -1, +2,.... We will therefore consider the product
+2

x’;Ln"_ with —2 <2+ u< —1 and Jop#E0, 1,2 ...

We will first of all suppose that 2, u > — 1. Then x and ¥“
are ordinary summable functions and

(¥ =80, (O dl, for x> —1/n
—lin
0

)
l , for x < —1/n

(d), = 2% 0, (x)

( 1/n
~ ( (s —a)ro,(s)ds, for x < 1/n

) Gx

0 , for x> 1/n.

It follows that the support of (x-), (v), is contained in the inter-
val (— 1/n, 1/n) and

Ln . [—-tn rx ln
{ (x%5), (W), dx == l | (v — 0% (s —x)0, (L) 0, (s) ds dt dx
J—1n o bjiw —1ljn s x
r1jn Sljn s
= l d, (2) J 0, (8) ( (x —H*(s —a)rdxdsdt
J—l1/n J it ot

on changing the order of integration, which is permissible.
Making the substitution

x=t4+ (s —fv
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we have

S r1

( (v =" (s — x)rdx = l (s — &) 1o2 (1 — v)rdy
: o

gt .
=(s =ty 1B(A4+1, g+ 1),
where B denotes the beta function. Thus
‘1/n
| ), dx

Je=1/n

r1/n rijn
=B+ 1, u-t 1)J 8, (1) | (s — tyrrur1 s, (s) ds dt

—1/n it
1/n i"ljin
=B 41, u+1) 8, (s— x) 14, (s) ds dx
S —1/n oz
1/n )
= B() —!‘ l, Y24 '!— I) ( (J\fi:"l'_l )”(3_,,(.’\5) dx
J—1/n
rln ix
=B +1, u+t1) 8, ()| (v —prtrr1s, (f) dtdx
S —1/n JS—1/n
1/n .
=BO+1, u+ 1) [ (N 8, () da.
J—1n

Since 2 -- u -+ 1 < 0 it follows that

I/n o 1/n .
lim J (), 8, (x) dx = lim (Y, 8, (x) dy = oo

4
n—>o0o0 ) —1/n n—>o00 ; —1/n

which implies that
l'n

lim (+3), (), dv = .
n—>oco / —-1[n

It follows that the products, ©* % ¥ §(v) and & 7' 8 (x) are all
divergent but we notice that

“1n . ’ rifn o
[ (x/')w (xf—)n dx — B ()' + 1 H -+ ]) I (x/.—'r‘“—rl)n. 6% (x) dx

J—1n J—1(n

o

n 1n o
= (), (), dy — B4+ 1, u l)j (T 6, (%) dx = 0.
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1/n . 1n .
[ e < [7 ), e

—1/n —1/n

1/n X
=B@MA+1, g+ 1)a- [ 6n(x)J (x — tynt1 ou (¢) dt dw

1 1
<B@A+1, pu+1) n"""*‘“ZJ‘ 0 (v)f (v — w)* #+1g (1) due do

—1 —1

1
<BA+4+1, u+1 n““"—ZkJ j (v — w)**re1dydy,
—1)—1

where nx =v, nt =« and k = sup o (x). Since A+ u+2> 0 it
follows that
1/n

lim (@) (¢, %] dx = 0.
n—>o00 ) —1/n
Similarly we have
1/n ’ i/n oL
lim |, 8, (x) | dx = lim |25, 8, (%) 2| dx = 0.
n—>co ) —1/n n—>00 ) —1/n

Now let ¢ be an arbitrary test function in the space K of infinitely
differentiable functions with compact support. We have

¢ (x) = ¢(0) + x4 (&%)
where 0 < & < 1. Then by what we have proved above

[((3) (), = B(A+ 1, p+ 1) (A7), 6, (x), )]
' 1/n

(W), (), % ¢ (£ ) dx
\J—1/n
1/n

—B@A+1, u+1) j (N, 6, (8) x ' (£ ) dx‘

—1/n
1/n

<swp 11 [ [0 )l as

—1/n

1/n

+B@A+ 1, p+ l)f | (71,8, (x) £ dx}

—1/n
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and so

lim ((¢}), (#), — B(A+ 1, g+ 1) (5,6, (%), ¢) =0
or
y)

ix — B+, u4+ DA e(x) =0 (1)

for 2, u> — 1 and — 2 <14 u < — 1, even though the products

® . and x7#T' 6 (x) are both divergent.

Similarly we have
Axt —B@A+1, u+ DA s (x) =0 ()

for L u>—1and —2<24+pu<<—1.
It follows from equations (1) and (2) that
(¢ — o' )8 (x) = (sgnx |xH) 8 (x) =0

for 2> — 1, a result which was in fact given in [2].

We will now suppose that equation (1) holds for —7 < i<
—7r+1,r—2<u<r—1 and —2<A+ pu< — 1 For such
A, p we then have

lim (#}), (), = 7' =0

H—>00

since A+ u 4+ 1> — 1. Differentiating this equation we see that
AT — (w4 1) Ah A =0
It follows from equation (1) that
I — (A DATIB QL g D)1 (x) =0
=T B, p 424 8 (x)

and so equation (1) holds by our assumption for —7 — 1 <A < — 1,
r—l<pu<rand —2< 1+ u < — 1. It now follows by induc-
tion that equation (1) holds for A << 0, A% —1, —2,..., 4> — 1,
p#0,1,2,.., and —2<A+pu< — 1.
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By a similar induction argument it follows that equation (1)
holds for A > — 1, 4 # 0, L2 .,p<0, u#—1, —2,.. and
—2< 2+ p< — 1. It follows that we have proved that equa-
tion (1) holds for 4, p#0, 4+ 1, +2,...and —2 <A+ pu< — 1.

Similarly, equation (2) holds for 4, 4 # 0, + 1, 4 2, ... and
—2<itpu<—1

By the symmetry it also follows that

o — =0
for 4, pw#0, + 1, 4+ 2, ... and —2<itpu< —1.
3. We can now prove that

. ra+unyr 1) - atpts ’ —
AJL—pqu&ig+%iﬁxﬂ+“NW@—0 3)

for , w#0, +1, +£2,..., —2<i4+u<—land r=0,1,2, ...
The particular case 7 = 0 is of course equation (1).

We will assume that equation (3) holds for some 7. Then differen-
tiating the equation

lim (fi744752) 80 (x) = #2600 () = 0
we get T
(24 p+ 7+ 2) A 60 (x) 4 A2 5041 (1) = 0.
It follows from our assumption that

F'A+1)I'(p+1 Atptr+2

Ao -1y , r+1) () =
S N oy rat ety o @ =0
— A — (= 1) A+ 1)I'(p+1) A2 et ()

'+ p+7r+3)

and so equation (3) holds for » + 1. Our result now follows by in-
duction.

Replacing ¥ by — x and interchanging 4 and x in equation (3),
it follows that

_ LA+ NI (p+1) s
rA+p+r+2 7

for Au#0,41,4+£2,..,-2<24+pu<—1landr=0,1,2,...

TR0 () = 0 (4

A u
+ X
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It also follows immediately from equation (3) that
(— )T (A+ pu+ s+ 2) 204600 (%)
— (=1 T A+ p+r+2)d T 50 () =0
and from equation (4) that
T'(A+ p+ s+ 2) 274 T an (x)

—T(A+pu+r+ 2wttt o0 (x) =0

for 2, u#0, &1, +2,..., —2<i+pu<—1land r,5=0,1,2,....

4. We next note that

lim (xi+ll+l)”H” (x) — xi++/4+l H(x) - xi+ﬂ+l
n—>00

for —2 < A+ u < — 1, where H (x) denotes Heaviside’s function.
Differentiating this equation we get

A+ p+)AH @) + A5 0 (x) = (A+ p + 1) 24
It follows from equation (3) that

A+ BA+ 1L+ 1) A+ p+ 1) H (%)

=B@A+1,p+1) (A4 u+ 1)
or

xoxt 4

F(1+1)F(/‘+1> “”H(x) =I‘(A+1)P(/‘+l) Ap

Tt ptl) ratatn O

for 4, w#0, +£1,42,...and —2<i+pu< —1.
We can now prove by induction that

LA+ DI (p+ 1) avur
N"TA+pu—7rF+1)7" *

VA TOFa—7510 % (6)

KAl 4 (= 1)

= (—

for 4, u#0, £1, £2,..., —-2<i4+u<—landr=0,1,2,...



10 B. Fisher

We note first of all that the particular case » = 0 is equation (5)
and so equation (6) certainly holds when » = 0. Now suppose equation
(6) holds for some 7. Then differentiating the equation

fim (A7), (), = A7 = e
H—>00

we get

(2 o =TT b )T = (2w 1) A

It follows from our assumption that

A+p—nTA+1)T(u+1) 3+u——-r—lxrj-1
CF TGt p—7 1) :

—(=1y roa+nru+1i) A (1) (A +p+) I+ (l‘+])xi-l-i—u
NT(A+u—rF1) " CFNITAfpu—r+1) F

who — (= 1)

or

I‘(). + 1) F(,u -+ 1) xl*l—;l—r—l‘xr-—'l
C+ DT Fpu—r"" *

= (— 111 LA+ NI (p+1) Pl
= CrOITGAta—n

K (— 1)

and so equation (6) holds for # 4 1. Our result now follows by induction.
Replacing ¥ by — x and interchanging 1 and p in equation (6)
we get

TOA DI+ s s , POANT(p+ 1) 4y,

Ty N e R Rl Gy sy | R

for , pw#0,+1,+2, .., —2<itu<—land »=0,1,2, ...
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