THE DIVERGENT DISTRIBUTION PRODUCT $x_{+}^{\lambda}x_{-}^{\mu}$

B. FISHER

Department of Mathematics
University of Leicester
England

1. Introduction

In the following, the product of two distributions f and g is defined, as in [1], as the limit of the sequence $\{f_ng_n\}$, provided this sequence is regular, where

$$f_n = f^* \delta_n, \qquad g_n = g^* \delta_n, \qquad \delta_n(x) = n \varrho(nx)$$

for n = 1, 2, ... and ϱ is a fixed infinitely differentiable function having the following properties:

(1)
$$\varrho(x) = 0 \quad \text{for} \quad |x| \ge 1,$$

(2)
$$\varrho\left(x\right)\geq0,$$

(3)
$$\varrho(x) = \varrho(-x),$$

$$\int_{-1}^{1} \varrho(x) dx = 1.$$

It is obvious that $\{\delta_n\}$ is a regular sequence converging to the Dirac delta-function $\delta(x)$.

If the sequence $\{f_n g_n\}$ is regular the product fg is said to be convergent, otherwise it is said to be divergent.

We will now suppose that f, g, F and G are distributions for which the products fg and FG are both divergent. We will suppose further that the sequence $\{f_ng_n + F_nG_n\}$ is regular and converges to the distribution h. Then, as in [2], we will say that the sum of the products fg and FG exists and is equal to h and write

$$fg + FG = h$$
,

even though the individual products fg and FG are divergent.

2. We will now consider the product $x_{+}^{\lambda}x_{-}^{\mu}$, where $\lambda + \mu > -2$ and $\lambda, \mu \neq 0, \pm 1, \pm 2, \dots$. It is obvious that if $\lambda + \mu > -1$ then

$$x^{\lambda}_{-} x^{\mu}_{-} = 0$$

and it was proved in [1] that

$$x_{\pm}^{\lambda} x_{-}^{-1-\lambda} = -\frac{1}{2} \pi \operatorname{cosec} (\pi \lambda) \delta(x)$$

for $\lambda \neq 0, \pm 1, \pm 2, \dots$. We will therefore consider the product $x_+^{\lambda} \pi_-^{\mu}$ with $-2 < \lambda + \mu < -1$ and $\lambda, \mu \neq 0, \pm 1, \pm 2, \dots$.

We will first of all suppose that λ , $\mu > -1$. Then x_+^{λ} and x_-^{μ} are ordinary summable functions and

$$(x_{+}^{2})_{n} = x_{+}^{2} * \delta_{n}(x)$$

$$= \begin{cases} \int_{-1/n}^{x} (x - t)^{2} \delta_{n}(t) dt, & \text{for } x \ge -1/n \\ 0, & \text{for } x \le -1/n \end{cases}$$

$$(x_{-}^{n})_{n} = x_{-}^{n} * \delta_{n}(x)$$

$$(x^{\mu})_{n} = x^{\mu} * \delta_{n}(x)$$

$$= \begin{cases} \int_{x}^{1/n} (s - x)^{\mu} \delta_{n}(s) ds, & \text{for } x \leq 1/n \\ 0, & \text{for } x \geq 1/n. \end{cases}$$

It follows that the support of $(x_{+}^{\lambda})_{n}(x_{-}^{n})_{n}$ is contained in the interval (-1/n, 1/n) and

$$\int_{-1,n}^{1} (x_{+}^{\lambda})_{n} (x_{-}^{\mu})_{n} dx = \int_{-1/n}^{-1/n} \int_{x}^{x} (x - t)^{\lambda} (s - x)^{\mu} \delta_{n}(t) \delta_{n}(s) ds dt dx$$

$$= \int_{-1/n}^{1/n} \delta_{n}(t) \int_{t}^{1/n} \delta_{n}(s) \int_{t}^{s} (x - t)^{\lambda} (s - x)^{\mu} dx ds dt$$

on changing the order of integration, which is permissible. Making the substitution

$$x = t + (s - t) v$$

we have

$$\int_{t}^{s} (x-t)^{\lambda} (s-x)^{\mu} dx = \int_{0}^{1} (s-t)^{\lambda+\mu+1} v^{\lambda} (1-v)^{\mu} dv$$
$$= (s-t)^{\lambda+\mu+1} B(\lambda+1, \mu+1),$$

where B denotes the beta function. Thus

$$\int_{-1/n}^{1/n} (x_{+}^{2})_{n} (x_{-}^{\mu})_{n} dx$$

$$= B (\lambda + 1, \mu + 1) \int_{-1/n}^{1/n} \delta_{n} (t) \int_{t}^{1/n} (s - t)^{\lambda + \mu + 1} \delta_{n} (s) ds dt$$

$$= B (\lambda + 1, \mu + 1) \int_{-1/n}^{1/n} \delta_{n} (x) \int_{x}^{1/n} (s - x)^{\lambda + \mu + 1} \delta_{n} (s) ds dx$$

$$= B (\lambda + 1, \mu + 1) \int_{-1/n}^{1/n} (x_{-}^{\lambda + \mu + 1})_{n} \delta_{n} (x) dx$$

$$= B (\lambda + 1, \mu + 1) \int_{-1/n}^{1/n} \delta_{n} (x) \int_{-1/n}^{x} (x - t)^{\lambda + \mu + 1} \delta_{n} (t) dt dx$$

$$= B (\lambda + 1, \mu + 1) \int_{-1/n}^{1/n} (x_{+}^{\lambda + \mu + 1})_{n} \delta_{n} (x) dx.$$

Since $\lambda + \mu + 1 < 0$ it follows that

$$\lim_{n \to \infty} \int_{-1/n}^{1/n} (x_{-}^{2+\mu+1})_n \, \delta_n(x) \, dx = \lim_{n \to \infty} \int_{-1/n}^{1/n} (x_{+}^{2+\mu+1})_n \, \delta_n(x) \, dx = \infty$$

which implies that

$$\lim_{n\to\infty} \int_{-1/n}^{1/n} (x_+^{\lambda})_n (x_-^{\mu})_n dx = \infty.$$

It follows that the products, $x_{+}^{\lambda} x_{-}^{\mu}$, $x_{+}^{\lambda+\mu+1} \delta(x)$ and $x_{-}^{\lambda+\mu+1} \delta(x)$ are all divergent but we notice that

$$\int_{-1/n}^{1/n} (x_{+}^{2})_{n} (x_{-}^{\mu})_{n} dx - B (\lambda + 1, \mu + 1) \int_{-1/n}^{1/n} (x_{-}^{2+\mu+1})_{n} \delta_{n}(x) dx$$

$$= \int_{-1/n}^{1/n} (x_{+}^{2})_{n} (x_{-}^{\mu})_{n} dx - B (\lambda + 1, \mu + 1) \int_{-1/n}^{1/n} (x_{+}^{2+\mu+1})_{n} \delta_{n}(x) dx = 0.$$

6

Next, since $(x_+^{\lambda})_n$, $(x_-^{\mu})_n$, $\delta_x(x) \geq 0$, we have

$$\begin{split} \int_{-1/n}^{1/n} \left| (x_{+}^{\lambda})_{n} (x_{-}^{\mu})_{n} x \right| dx &\leq n^{-1} \int_{-1/n}^{1/n} (x_{+}^{\lambda})_{n} (x_{-}^{\mu})_{n} dx \\ &= B \left(\lambda + 1, \ \mu + 1 \right) n^{-1} \int_{-1/n}^{1/n} \delta_{n}(x) \int_{-1/n}^{x} (x - t)^{\lambda + \mu + 1} \delta^{\mu}(t) dt dx \\ &\leq B \left(\lambda + 1, \ \mu + 1 \right) n^{-\lambda - \mu - 2} \int_{-1}^{1} \varrho \left(v \right) \int_{-1}^{1} (v - u)^{\lambda + \mu + 1} \varrho \left(u \right) du dv \\ &\leq B \left(\lambda + 1, \ \mu + 1 \right) n^{-\lambda - \mu - 2} k \int_{-1}^{1} \int_{-1}^{1} (v - u)^{\lambda + \mu + 1} du dv, \end{split}$$

where nx = v, nt = u and $k = \sup \varrho(x)$. Since $\lambda + \mu + 2 > 0$ it follows that

$$\lim_{n\to\infty}\int_{-1/n}^{1/n} \left| (x_+^{\lambda})_n (x_-^{\mu})_n x \right| dx = 0.$$

Similarly we have

$$\lim_{n\to\infty} \int_{-1/n}^{1/n} \left| (x_{-}^{\lambda+\mu+1})_n \, \delta_n(x) \, x \right| \, dx = \lim_{n\to\infty} \int_{-1/n}^{1/n} \left| (x_{+}^{\lambda+\mu+1})_n \, \delta_n(x) \, x \right| \, dx = 0.$$

Now let ϕ be an arbitrary test function in the space K of infinitely differentiable functions with compact support. We have

$$\phi(x) = \phi(0) + x \phi'(\xi x)$$

where $0 \le \xi \le 1$. Then by what we have proved above

$$\begin{aligned} & \left| \left((x_{+}^{\lambda})_{n} (x_{-}^{\mu})_{n} - B (\lambda + 1, \mu + 1) (x_{+}^{\lambda + \mu + 1})_{n} \delta_{n}(x), \phi \right) \right| \\ &= \left| \int_{-1/n}^{1/n} (x_{+}^{\lambda})_{n} (x_{-}^{\mu})_{n} x \phi' (\xi x) dx \right| \\ &- B (\lambda + 1, \mu + 1) \int_{-1/n}^{1/n} (x_{+}^{\lambda + \mu + 1})_{n} \delta_{n}(x) x \phi' (\xi x) dx \right| \\ &\leq \sup \left| \phi'(x) \right| \left\{ \int_{-1/n}^{1/n} \left| (x_{+}^{\lambda})_{n} (x_{-}^{\mu})_{n} x \right| dx \right. \\ &+ B (\lambda + 1, \mu + 1) \int_{-1/n}^{1/n} \left| (x_{+}^{\lambda + \mu + 1})_{n} \delta_{n}(x) x \right| dx \right\} \end{aligned}$$

and so

$$\lim_{n\to\infty} ((x_{+}^{\lambda})_{n}(x_{-}^{\mu})_{n} - B(\lambda + 1, \mu + 1)(x_{+}^{\lambda+\mu+1})_{n} \delta_{n}(x), \phi) = 0$$

or

$$x_{+}^{2} x_{-}^{\mu} - B(\lambda + 1, \mu + 1) x_{+}^{2+\mu+1} \delta(x) = 0$$
 (1)

for λ , $\mu > -1$ and $-2 < \lambda + \mu < -1$, even though the products x_{+}^{λ} and $x_{+}^{\lambda+\mu+1}$ $\delta(x)$ are both divergent.

Similarly we have

$$x_{+}^{\lambda} x_{-}^{\mu} - B(\lambda + 1, \mu + 1) x_{-}^{\lambda + \mu + 1} \delta(x) = 0$$
 (2)

 $\text{for } \lambda,\,\mu>-1 \ \text{ and } \ -2<\lambda+\mu<-1.$

It follows from equations (1) and (2) that

$$(x_{+}^{\lambda} - x_{-}^{\lambda}) \delta(x) = (sgnx |x^{\lambda}|) \delta(x) = 0$$

for $\lambda > -1$, a result which was in fact given in [2].

We will now suppose that equation (1) holds for $-r < \lambda < -r+1$, $r-2 < \mu < r-1$, and $-2 < \lambda + \mu < -1$. For such λ , μ we then have

$$\lim_{n \to \infty} (x_+^{\lambda})_n (x_-^{\mu+1})_n = x_+^{\lambda} x_-^{\mu+1} = 0$$

since $\lambda + \mu + 1 > -1$. Differentiating this equation we see that

$$\lambda x_{+}^{\lambda-1} x_{-}^{\mu+1} - (\mu+1) x_{+}^{\lambda} x_{-}^{\mu} = 0.$$

It follows from equation (1) that

$$x_{+}^{\lambda-1}x_{-}^{\mu+1} - (\mu+1)\lambda^{-1}B(\lambda+1, \mu+1)x^{\lambda+\mu+1}\delta(x) = 0$$
$$= x_{+}^{\lambda-1}x_{-}^{\mu+1} - B(\lambda, \mu+2)x_{+}^{\lambda+\mu+1}\delta(x)$$

and so equation (1) holds by our assumption for $-r-1 < \lambda < -r$, $r-1 < \mu < r$ and $-2 < \lambda + \mu < -1$. It now follows by induction that equation (1) holds for $\lambda < 0$, $\lambda \neq -1$, -2, ..., $\mu > -1$, $\mu \neq 0$, 1, 2, ... and $-2 < \lambda + \mu < -1$.

By a similar induction argument it follows that equation (1) holds for $\lambda > -1$, $\lambda \neq 0$, 1, 2, ..., $\mu < 0$, $\mu \neq -1$, -2, ... and $-2 < \lambda + \mu < -1$. It follows that we have proved that equation (1) holds for λ , $\mu \neq 0$, ± 1 , ± 2 , ... and $-2 < \lambda + \mu < -1$. Similarly, equation (2) holds for λ , $\mu \neq 0$, ± 1 , ± 2 , ... and $-2 < \lambda + \mu < -1$.

By the symmetry it also follows that

$$x_{+}^{\lambda} x_{-}^{\mu} - x_{+}^{\mu} x_{-}^{\lambda} = 0$$

for λ , $\mu \neq 0$, ± 1 , ± 2 , ... and $-2 < \lambda + \mu < -1$.

3. We can now prove that

$$x_{+}^{\lambda} x_{-}^{\mu} - (-1)^{r} \frac{\Gamma(\lambda+1) \Gamma(\mu+1)}{\Gamma(\lambda+\mu+r+2)} x_{+}^{\lambda+\mu+r+1} \delta^{(r)}(x) = 0$$
 (3)

for λ , $\mu \neq 0$, ± 1 , ± 2 , ..., $-2 < \lambda + \mu < -1$ and r = 0, 1, 2, The particular case r = 0 is of course equation (1).

We will assume that equation (3) holds for some r. Then differentiating the equation

$$\lim_{n\to\infty} (x_+^{\lambda+\mu+r+2})_n \, \delta_n^{(r)}(x) = x_+^{\lambda+\mu+r+2} \, \delta^{(r)}(x) = 0$$

we get

8

$$(\lambda + \mu + r + 2) x_{+}^{\lambda + \mu + r + 1} \delta^{(r)}(x) + x_{+}^{\lambda + \mu + r + 2} \delta^{(r+1)}(x) = 0.$$

It follows from our assumption that

$$x_{+}^{\lambda} x_{-}^{\mu} + (-1)^{r} \frac{\Gamma(\lambda+1) \Gamma(\mu+1)}{(\lambda+\mu+r+2) \Gamma(\lambda+\mu+r+2)} x_{+}^{\lambda+\mu+r+2} \delta^{(r+1)}(x) = 0$$

$$= x_{+}^{\lambda} x_{-}^{\mu} - (-1)^{r+1} \frac{\Gamma(\lambda+1) \Gamma(\mu+1)}{\Gamma(\lambda+\mu+r+3)} x_{+}^{\lambda+\mu+r+2} \delta^{(r+1)}(x)$$

and so equation (3) holds for r + 1. Our result now follows by induction.

Replacing x by -x and interchanging λ and μ in equation (3), it follows that

$$x_{+}^{\lambda} x_{-}^{\mu} - \frac{\Gamma(\lambda+1) \Gamma(\mu+1)}{\Gamma(\lambda+\mu+r+2)} x_{+}^{\lambda+\mu+r+2} \delta^{(r)}(x) = 0$$
 (4)

for λ , $\mu \neq 0$, ± 1 , ± 2 , ..., $-2 < \lambda + \mu < -1$ and r = 0, 1, 2, ...

It also follows immediately from equation (3) that

$$(-1)^{r} \Gamma(\lambda + \mu + s + 2) x_{+}^{\lambda + \mu + r + 1} \delta^{(r)}(x)$$

$$- (-1)^{s} \Gamma(\lambda + \mu + r + 2) x_{+}^{\lambda + \mu + s + 1} \delta^{(s)}(x) = 0$$

and from equation (4) that

$$\Gamma(\lambda + \mu + s + 2) x_{-}^{\lambda + \mu + + 1} \delta^{(r)}(x)$$

$$- \Gamma(\lambda + \mu + r + 2) x_{-}^{\lambda + \mu + s + 1} \delta^{(s)}(x) = 0$$

for λ , $\mu \neq 0$, ± 1 , ± 2 , ..., $-2 < \lambda + \mu < -1$ and r, s = 0, 1, 2,

4. We next note that

$$\lim_{n \to \infty} (x_+^{\lambda + \mu + 1})_n H_n(x) = x_+^{\lambda + \mu + 1} H(x) = x_+^{\lambda + \mu + 1}$$

for $-2 < \lambda + \mu < -1$, where H(x) denotes Heaviside's function. Differentiating this equation we get

$$(\lambda + \mu + 1) x_{+}^{\lambda + \mu} H(x) + x_{+}^{\lambda + \mu + 1} \delta(x) = (\lambda + \mu + 1) x_{-}^{\lambda + \mu}$$

It follows from equation (3) that

$$x_{+}^{\lambda} x_{-}^{\mu} + B(\lambda + 1, \mu + 1)(\lambda + \mu + 1)x_{+}^{\lambda + \mu} H(x)$$

$$= B(\lambda + 1, \mu + 1)(\lambda + \mu + 1)x_{+}^{\lambda + \mu}$$

or

$$x_{+}^{\lambda} x_{-}^{\mu} + \frac{\Gamma(\lambda+1) \Gamma(\mu+1)}{\Gamma(\lambda+\mu+1)} x_{+}^{\lambda+\mu} H(x) = \frac{\Gamma(\lambda+1) \Gamma(\mu+1)}{\Gamma(\lambda+\mu+1)} x_{+}^{\lambda+\mu}$$
 (5)

for λ , $\mu \neq 0$, ± 1 , ± 2 , ... and $-2 < \lambda + \mu < -1$. We can now prove by induction that

$$x_{+}^{\lambda} x_{-}^{\mu} + (-1)^{r} \frac{\Gamma(\lambda+1) \Gamma(\mu+1)}{r! \Gamma(\lambda+\mu-r+1)} x_{r}^{\lambda+\mu-r} x_{+}^{r}$$

$$= (-1)^{r} \frac{\Gamma(\lambda+1) \Gamma(\mu+1)}{r! \Gamma(\lambda+\mu-r+1)} x_{+}^{\lambda+\mu}$$
(6)

for λ , $\mu \neq 0, \pm 1, \pm 2, ..., -2 < \lambda + \mu < -1$ and r = 0, 1, 2, ...

10 B. Fisher

We note first of all that the particular case r=0 is equation (5) and so equation (6) certainly holds when r=0. Now suppose equation (6) holds for some r. Then differentiating the equation

$$\lim_{n \to \infty} (x_+^{\lambda + \mu - r})_n (x_+^{r+1})_n = x_+^{\lambda + \mu - r} x_+^{r+1} = x_+^{\lambda + \mu + 1}$$

we get

$$(\lambda + \mu - r) x_{+}^{\lambda + \mu - r - 1} x_{+}^{r + 1} + (r + 1) x_{+}^{\lambda + \mu - r} x_{+}^{r} = (\lambda + \mu + 1) x_{+}^{\lambda + \mu}.$$

It follows from our assumption that

$$x_{+}^{\lambda} x_{-}^{\mu} - (-1)^{r} \frac{(\lambda + \mu - r) \Gamma(\lambda + 1) \Gamma(\mu + 1)}{(r+1)! \Gamma(\lambda + \mu - r + 1)} x_{+}^{\lambda + \mu - r - 1} x_{+}^{r+1}$$

$$= (-1)^{r} \frac{\Gamma(\lambda + 1) \Gamma(\mu + 1)}{r! \Gamma(\lambda + \mu - r + 1)} x_{+}^{\lambda + \mu} - (-1)^{r} \frac{(\lambda + \mu + 1) \Gamma(\lambda + 1) \Gamma(\mu + 1)}{(r+1)! \Gamma(\lambda + \mu - r + 1)} x_{+}^{\lambda + \mu}$$

$$x_{+}^{\lambda} x_{-}^{\mu} + (-1)^{r+1} \frac{\Gamma(\lambda+1) \Gamma(\mu+1)}{(r+1)! \Gamma(\lambda+\mu-r)} x_{+}^{\lambda+\mu-r-1} x_{+}^{r-1}$$

$$= (-1)^{1r+1} \frac{\Gamma(\lambda+1) \Gamma(\mu+1)}{(r+1)! \Gamma(\lambda+\mu-r)} x_{+}^{\lambda+\mu}$$

and so equation (6) holds for r+1. Our result now follows by induction. Replacing x by -x and interchanging λ and μ in equation (6) we get

$$x_{+}^{\lambda} x_{-}^{\mu} + (-1)^{r} \frac{\Gamma(\lambda+1) \Gamma(\mu+1)}{r! \Gamma(\lambda+\mu-r+1)} x_{-}^{\lambda+\mu-r} x_{-}^{r} = (-1)^{r} \frac{\Gamma(\lambda+1) \Gamma(\mu+1)}{r! \Gamma(\lambda+\mu-r+1)} x_{+}^{\lambda+\mu}$$
for λ , $\mu \neq 0, \pm 1, \pm 2, ..., -2 < \lambda + \mu < -1$ and $r = 0, 1, 2, ...$

REFERENCES

- [1] FISHER B, The product of distributions, Quart J. Math. Oxford (2), 22 (1971), 291-8.
- [2] FISHER B, Some results on the product of distributions, Proc Cambridge Philos. Soc. 73 (1973), 317-25.