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[0] This paper is, in part, an attempt to provide an updated version
of Chapter VI of «Theory of the integraly (Saks 1937) and, in part,
an introduction to some problems posed by A. Zygmund [9].

In Chapter I we define the concept of area of a non-parametric
surface and we introduce adequate machinery to prove Tonelli’s
theorem, that is: the characterization of the surfaces with finite area.
Chapter II is devoted to the study of the existence of tangent planes
to a surface of finite area. We present two observations:

(1°) R. CaccropoLl. There exists a surface of finite area that fails to
have a tangent plane on a set of positive measure.

(29) CALDERON-ZYGMUND. The condition of finite area is sufficient
to imply the existence of a tangent plane, in the sense of L2(R?2), for
almost every point.

Finally we present some remarks of J. P. Kahane and A. Cordoba
about Cacciopoli’s example.

[1] JORDAN LENGTH.

Suppose that x = f(f) is a continuous curve (0 <¢ < 1) and for
any partition 0 =14y <?; < .. <<t, =1 we denote by P the poly-
gonal line inscribed in the curve and whose vertices are the points
{(t;, f(t))y . Let o(P) = max{|f; — ¢}, then we can define the length
of the curve f as

L(f)i= Hm L(P)
o(P) -0 ‘

where L(P) = X (|t;,; — 12+ | flt..1) — f(t)12)V2
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Therefore we are tempted to adopt the following definition for area of
a continuous surface: «Area is the limit of the elementary areas of
the inscribed polyhedral surfaces P».

This definition was proved to be wrong by Schwarz and Peano
(1881). They observed that, even for elementary surfaces S, it is
possible to define sequences {P,} of inscribed polyhedral surfaces,
whose elementary areas approach any given number bigger than
or equal to the «usual area» of S.

EXAMPLE OF SCHWARZ AND PEANO.

Let the surface S be given by x =7 cos u,y =7 sin u, 2 = v,
0<u<2x 0 <v <h. Therefore S is a right cylinder of height %
and radius », whose area is 27z 7h.

Let P, , be the inscribed polyhedral surfaces of 4m# triangular
faces T, whose vertices are the points (¥, y, z) images of the points
w == (u',v") or (u',v"), where

w =2xm ly wu=0,..,m—1
v = hn 1y, v=20,..,n

| # = 2n(2m)"1(2u+1), u=0,..,m—1
| v = h(2n)"1(2v+ 1), y=20,..,%n—1

Then the 4mn faces of P, , are isosceles and congruent triangles
T of base b = 27 sin (m~1x) and height
h = [r2(1-cos(m™ 1m))2 + (2~ 1hm—1)2]1/2,

Thus, the area of P,, is 4mn 7 sin(m~1x) [(271hn~1)2 + 4r2
sin*(2- 1z m~1)]1/2, In particular if # = m* we have that S(P,,) >
> 872mSsin3(2- lwm~1) - 0 as m — oo.

The geometric interpretation is given by the fact that, if the
ratio % /m is big, then the triangles of the partition P, , are «almost
perpendicular» to the surface.

It was Lebesgue who first modified the wrong definition, in a form
that may be roughly described as follows: «The area of a surface is
the lower limit of the areas of polyhedra tending uniformly to the
surfacer. (In the following we shall restrict ourselves to the non-
parametric case i.e. continuous surfaces of the form z = F(x,v)
where F is a continuous function on the unit square Q).
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I

DEFINITION 1 (SAKS). A continuous surface z = P(x, v) on the unit
square Q is called polyhedron if there exists a decomposition of Q
into a finite number of non-overlapping triangles 7'y, ..., T, such
that the function P is linear on each of these triangles 7.e such that
Px,v) =ax + by +¢ for (x,9) T,

The sum of the areas of the faces i.e. the number

s i@ oy = [\/1 HG) +(5) v

7

will be called elementary area of the polyhedron P and denote by A(P).

DerINITION 2. Let z = I(x,y) be a continuous surface on Q, then
S(F) = Lebesgue area of F is the following number

S(F) = inf {liminf (P,
P, > F

”
uniformly

Now we have for curves the theorem of Jordan: «in order that the
length of x = f(f) be finite it is necessary and sufficient that f be of
bounded variation». For surfaces we have an analogous result:

Theorem (Tonelli, 1926). In order that a surface z = F(x,y) have a
finite avea it is mecessary and sufficient that the function F be of boun-
ded variation in Tomelli’s sense.

Given the function F(x,v) on Q: 0 <wx,y <1, consider

V(&) = total variation of F(&, —)
V,(n) = total variation of F(—, %).

DrrINtTION 3. The function F is said to be of bounded variation in
Tonelli’s sense if both functions V| and V, are integrable.
In order to prove Tonelli's theorem we are going to need two
facts. The first one is an easy exercise of Calculus, that is: if the sur-
. . o oF
face z = F(x,y) has continuous partial derivatives %1; , %: and
these functions are integrable, then
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o=V (G () e

The second fact is due to K. Krickeberg [10]. Suppose that F is a
locally integrable function, then F is of bounded variation in Tonel-
oF  oF
ox - Moy T
sense), are measures of finite total variation.

To see this, assume first that F is of bounded variation in Tonelli’s
sense. Let @ be a smooth function,

li's sense if and only if » (in the distribution

oF oD
<—)¢>:_<F:a

( oD
Fy > = — ﬂ F(x,y) 5 (%, ) dx dy

and

oF oD
| <55 > Sfdylj F(x, ) e (%, ) dx| <

< [ @ 710) 19~ Do 1L | V1090

Therefore g—f is a measure of finite variation. Similarly for%: .

To prove the result in the other direction we observe first that the
conclusion is immediate if %1—;, %ifj are integrable functions. Next
we can show that if u is a mesure of finite total variation, and @, is
a good approximation of the identity, then ||u * @,||; < total vari-
ation of u. With these two observations the second implication is

easy to deduce.

PrROOF OF TONELLI'S THEOREM.

(a) Suppose first that S(F) < o. Let {P,} be a sequence of Poly-
hedrons such that P, converges unlformly to Fand A(P,) <M < o
for every k.

Given a smooth function @ on Q we have

oF oD

oD
<a—x,¢>— —<F,5§>= —jJF(x,y)%(x,y)dxdy=>
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= —lim ” Py(x,v) %g; (%, v) dx dy

k—>o0 )

Thus |<§ D> | <sup1U (x,y)%?(x,y)dxdylﬁ
Q

=< Sup A(Py) ||®llec < M [|P]lo

Therefore ng = u is a measure of finite total variations. Similarly

or
fOI‘ —6—5} == V.

(b) Suppose now that F is of bounded variation in Tonelli’s sense.

It is clear that, if we consider the extension F of F defined by F/Q =

= F and F =0 on R2 — (, then F is also of bounded variation
in Tonelli’s sense with respect to the whole plane. In the following we
will identify I and F.

Consider an approximation of the identity @,(x) = 6-20(6~ lx),
where @ is a smooth, positive function such that

| D(x) dx = 1

Then Fy; = F * @, in a smooth function with partial derivatives

9F, oF , .
T o 2T HT D
6F, _9F , o _
W ay @a v ¢6

Therefore S(F,) = U\/l +(6F") -{-(61:’") ax dy <
K9

oF oF,
”{H—l s "|{dxdy§_
Q
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< 1+Ul {@m — ) du (1) du+U| J Oy — 8) dv(t)|du <
o 7 (O
< 1 + total wvariation of u -+ total variation of v << oo

(independently of o).

Let Q' be a square contained in Q and such that dist(dQ’, Q) > 0.
Given &> 0 we can find 6 > 0 such that |[F\x,y) — Fs(x,9) | <
< ¢/2for every (x, y) in Q’. With this F; we can now find a polyhedron
P such that |Fs(x,v) — P(x,v)| < ¢/2 if (x,v) eQ’ and

A(P) < 2(1 4 tot. variation u 4 tot. variation ).
Since this is true for every ¢ > 0 and Q' c Q, we have that S(F) < co.

Remark. It is possible to repeat the proof of Tonelli's theorem more
carefully to obtain an analytical expression for the surface area. That
expression is

S(F) = U\/ A2 + du} +

where u; = %1?_:, Uy = %g A = Lebesgue measure on R2 and the in-

tegral means the total variation of the set function \/ dA? + du? + du2.

II

The analogy between curves and surfaces breaks down when we
look at the following result of Lebesgue: if x = f(¢) is a function of

bounded variation then it has a tangent almost everywhere. The
corresponding result for a surface is false. R. Cacciopoli [1] showed

the existence of a surface of finite variation in Tonelli’s sense without
having a tangent plane on a set of positive measure. Therefore in order
to continue the analogy we only have two choices: either we genera-
lize what we mean by a tangent plane or we introduce some addi-
tional conditions in the definition of bounded variation. The first
approach was carried out by Calderon-Zygmund [2], [3].

DEFINITION 4 (CALDERON-ZYGMUND). Let f: 2 — R, 2 open subset
of R2, be a locally integrable function, We say that f has a derivative
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of order k& in the L%sense at x, if there exists a polynomial P, (y) of
degree < &, such that:

1/q
(11“2 J ifxo+y) — P (v)? ciy) = o(h*), as B — 0.

r<h
* If this polynomial P, (y) exists it is uniquely determined and if
P (=2 &l—l a4(%g)y°, the coefficient a,(x) is called the L7-derivative of
loel R %

order « at xy. This is a generalization of the ordinary and Peano deri-
vatives (see [2], [3]). Furthermore if f has a derivative of order p
at xg, then it has a derivative of order pg for every 1 < py < p < c0.

THEOREM (CALDERON-ZYGMUND). If f is of bounded variation on R2
in the sense of Tomelli, then for almost every point, f has a derivative
in the L2-semse.

In the following we will be interested in the second approach and
we will show some negative results.

(A) Suppose that z = I(x, y) is a surface defined on the unit square
Q and such that

V() = total variation of F(&, —)
V,(n) = total variation of F(—, #)

are bounded functions. Question: does the surface have an ordinary
tangent plane at almost every point?

The following example due to J. P. Kahane shows that the answer
to this question is no.

Consider a sequence ¢, ™ 0. Start with a cross of width ¢; con-
tained on the unit square (I77g. 1). That cross contains a square Q; of
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side &; in the intersection of its two branches. Over Q; we consi-
der a pyramid of height &l2; let @; be the function defined by
@, =0 on Q —Q; and let @;/Q;, be given by the pyramid.

Now the complement of the cross consists of four rectangles; we pick
the rectangle with biggest diameter and we consider a cross of width
g, with square Q, inside that rectangle (Fig. 2)

Over Q, we consider a pyramid of height &} and a function @,
defined by:

O, =9, 0nQ —Q

®,/Q, given by the pyramid.

Fig. 2

We can repeat the process to get a sequence of squares {Q,} and a
sequence of functions {@,} such that:

i) F(x,9) =k1_i>m D,(x,y) is continuous

ii) U Q, is dense in Q.

Furthermore V(§) = total variation F(&, —) < &}/? V,(5) = total
variation F(—, n) < e}>. And F = 0 on the complement of u Q.
We can now use the fact that v Q, is dense in Q to see that, for
each, point in the complement of v Q,, the function F does not have
a tangent plane. Finally it is easy to check that if the sequence ¢,
converges very quickly to zero, then Q — v @, has a positive measure.

(B) Suppose now that F has bounded variations not ouly with res-
pect to vertical and horizontal lines, but with respect to any straight
line and we ask the same question as in part (A). The answer is still
negative.
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Proor. Divide the square Q into four dyadic squares Qi, 0%, 03, Q}
of side 27 1. Pick one of these squares, for exemple @}, and construct
a pyramid of height 2-12, Now we can take three points p; £ Q},
1 =2, 3, 4, in such a way that no straight line contains more than
two of them. Next, we can find a positive number ¢ > 0 such that
no straight line intersects more than two of the balls {B(p;, &)}i— 55,
Divide every one of the three squares Q} Q3, Q} into a grid of dyadic
squares such that:

i) The dyadic squares Q? that contains the point p; is contained
in B(p, €)

i) 10} < 5273

Now we construct over each Q? 7 = 2, 3, 4, a pyramid of height 27 1.
Observe that every point in Q is at a distance less than 1/3 of F, =
= U, Q;z v Q}

By induction we can get for every £ a family of dyadic squares
{0% such that:

i) 2|Qf] < 27¢+2)
i k

k .
ii) d(x, v v Q) < 27* for every point x in Q.
=11

iii) No straight line intersects more than two squares of the family

Q%

Furthermore we construct a pyramid of height 2%2 on each square
of the family {Q% . Then we get a continuous function I in the square
0, because it is a uniform limit of continuous functions and such that:

1. 2 2|Q¥ < 1/2. Therefore F = (@ — v v QF has positive measure.
k=1 ki

2. Yy Qf is dense in Q by construction.
1

3. IF does not have a tangent plane at any point of density of F.

4. F has total variation uniformly bounded on each straight line.

Q.E.D.

(C) The same basic example (Cacciopoli’s pyramid), can be modified
to show that the Calderon-Zygmund result [3] is the best possible.
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Take numbers p >3 and ¢ > 0 and consider the sequences
{e,} {h,) given by:

gh_ =200 AP=1 g where A, = ¢, | ... g

3 -7

]/Z?L = A n 2

8__1
15_2

Divide the square  into a grid of squares of area ¢;. Pick one
of the squares of the grid, Q}, and construct a pyramid of height
k. Subdivide each one of the remainder squares into a grid of squares
of area &,; select one square of area &, on each one of the squares
of the first grid (except for Qf) and construct a pyramid of height
hy and so on (Fig. 3). Call F the surface obtained by this process.

Then:

RN

|
11 [ B
Fig. 3

a) Z|QH < e +(eft —=1) eat o + (et — 1) o (67! — g, +... <

< SA e, <2e < 1if o <)

Thus the bad set F = @ — v Q% has positive measure.
b) F has finite area, because

ellPh+ . 4 (ert — 1) (gt — D el h, 4 ... <
1

< €232 < 0.

We want to show that given ¢ =2 + 6, d > 0 we can choose p
such that the corresponding surface has no tangent plane, in the
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Li-sense, at any density point of the bad set F. In order to do that
we can observe, first of all, that if F has a differential in such a point,
then it must be zero. Therefore the function F must satisfy

(2] |F (s +)1'd) 17 = o(h), as h — 0.
< h

With 4 = &}/ we have:

(e ' [IF (o +V)11dy)1? = (7" &0 1M 1) 10 =
V< e o

p—1
- hn+1(8n;—l)l/q - 2_1/11 hn-l—l 6” q =
sy PB=P) -1

— (=12 8125 _ lgn 2(? - 1) q

With ¢ == 2 + 4, d > 0 we have:

3 —
P__

if p is big enough. Thus

>

p—1_ p 0 p 1 P
TIFe T T23aF0) =g?

(ST S

(651 1 F(xg + y)%dy)'? > C ¢,
[y < eli?

which is a contradiction with the fact that F has derivative zero in
the Lf-sense at x.

Q.E.D.

REMARK. It is possible to modify our basic example to show that
there exists a function F of bounded variation in Tonelli’s sense and
such that V(§), Va(n) are in L?(0, 1), but fails to have a derivative
in the Li-sense for ¢ > 2p.

16 — Collectanea Mathematica
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