DEFICIENT VALUES OF MEROMORPHIC FUNCTIONS AND
THEIR DERIVATIVES

by

P. K. KAMTHAN (¥)

1. IntrRODUCTION: This paper isdevoted to studying one aspect
of Nevanlinna’s theory of meromorphic functions, namely the deficient
values of the derivatives of meromorphic functions. A part of this
study has already been made in [7]. It is throughout assumed, unless
the contrary is mentioned, that f(z) is in general a transcendental
meromorphic function. We assume the familiary of the symbols

n(r, a), n(r, f), N(r, a), m(r, f), T(r, f), ... etc.

occurring frequently in the Nevanlinna theory of meromorphic func-
tions, for instance see [2]. Let / be an integer > 1 and f® denote
the /-th derivative of the meromorphic function f. We then also
assume the familiarity of the symbols 6 (o, /¥), 6 (2, f¥) etc., where

) . N (7, I/(f(‘) — a))
M) = | — . - /
0 (oc,f ) 1 lim rstfp 0, J0) , >,

and so is defined 0 («, /") provided Ni s replaced by N in the defini-
tion of & («, f®). Also, let 2 (x, f®) denote the Valiron deficient value
which is defined as 6 (x, f¥) where lim sup is replaced by lim inf.
An important role is played by the following result in our work.

LemMMa A: Let f(z) be a meromorphic funtion of finite order
and let ay, ..., a, be a finite set of distinct complex numbers. Then
for all » > 7y = 7o (f)

(*) Most of the work of the author in this paper was completed during the
years 1965-66 and 1967-68 when he held the financial grants from University
Grants Commission, India and the National Resecarch Council, Canada res-
pectively at Delhi University and University of Waterloo.
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q

g m(r,a,) + N (#, 1/f®) + 0(log 7) < T (r, f)
<O0(log 7) +m(r, f) + (¢ + 1)N (7, f).

For proof see Iemma 1, p. 6 [7].

2. Cowmparison oF T (7, f®) witH T (7, f): This section is basi-
cally concerned with comparing the growth of T (r, f¥) with respect
to T (7, f) and certain other auxiliary functions under various suffi-
cient conditions. First of all we begin with.

THEOREM 1: Let f(z) be a meromorphic function in the plane
and be of finite order. Assume

(2.1) 0 (co, f) = 1; (22) S0(f)=1

Then
T(r, f9) ~T(r, f), as 7 — .

Proor: We have

T(r, f%) = N(r, f) + m(r, /)
SN SO +m(r, f) +m(r, fOLf).
But

N =N )+ BN (1)
Nof=Nep.
Therefore
T, fO) <IN@ f)+ N f)+m@ f)+m@, fOf).
But f(2) is of finite order, therefore (see [7], Theorem 2.1)
T(r,f% <IN (r,f) + T (r, /) + 0 (log 7).

Making use of (2.1) of the hypothesis and the fact that f(z) is not
rational (i.e., log » = o (T (7, f)) for # — o), one gets

(2.3) Trf)<U+o()T@f), 7> e
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To prove the reverse inequality, we use lemma A4 to get

4T f) = BN (@) + N, 11f) +0(log ) < T, /).

If N*(r, 1/f¥) corresponds to those zeros of f» which occur at
points other than the zeros of f(z) = a, (v =1, ..., ¢), then

4T (.)) +0(0g 1) ST () + N a) — N* (1 1(/%)
<T(rfo+ }_q. N, a)

Using (2.2) we get for all sufficiently large » and an arbitrary
&€ > 0 the following

aT (r, f) + 0 (log 7) < T (r, /) + E 0 —0@.f)+aTwf)
Hence

b
fim inf L% S0)

rsoo L f) — 7
which when combined with (2.3) yields the required result.

REMARK: If /=1, then the above theorem gives rise to a result
of Shah and Singh [9] which they stated without proof.

By weakening the hypothesis in one way more information could
be sought in the preceding result and therefore in this direction we
may now state and prove:

THEOREM 2: Let f(2) a meromorphic function of finite order,
such that 6 (0, f) = 1; 0 (oo, f) = 1. Tehn

T(r, /% ~T (7, f) ~N(7’ ! )

’f(’) —x

for all x, except possibly 0 and oo.

18 — Collectanea Mathematica
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Proor: Let y = f® in Theorem 3.2 of Hayman [2] and writing
x for 1 there, we have

Twf)<SN@H+NELUN)+N@ O =), 2 #0,
24) <OT )+ N 1/(fox), r =

Since 6 (0, f) = 0 (e, f) = 1; also using the first fundamental
theorem of Nevannlinna, we have:

T @, f) >N <1', f(,);_x)

Hence

X ®) N o __ .
@9 tim it L 2 e Mg

from (2.4). Further

N, 1Y — )
(. )

<0(l) + Yi‘r(z;,f;)’-) <1-to(l), > 7

from (2.3) where due care is to be taken that we have made use of
the fact that @ («, f) = 1. Consequently
T, 1)

) N (r, 1/(fY — x)) :
2.6 lim su _ < lim sup ——21 <1
(2:6)  lim sup —p " Shim sup oA <

The inequalities (2.5) and (2.6) when combined together lead to
Theorem 2.

3. ESrIMATION OF ¥, d(a, f): In this section we estimate )

a # oo a # oo
0 (a, f) in terms of 6 (0, f) and 6 (e, f*¥) and certain other deficient
values which arise in a natural course of our discussion that follows.
It may be mentioned that Theorem 3 of this section answers par-
tially a problem raised by Hayman in his book ([2], p. 105, last
paragraph). To begin with, let us therefore start from

TaroreM 3: With the notations mentioned above, we have

(3.1) 10,19 = 0 8 s,
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if f(2) is meromorphic and of finite order ; and
(3.2) 2(0, /) > E é(a, )

if f(z) is entire and of finite order.
Also we have

|
— —ffoo, )y >__ ¥}
(3.3 2—K(0) =01, ) = = B s(a]),

if f(2) is meromorphic and of non-integral order p; and

(3.4) I — K (o) = X d(af)

a # oo

if f(z) is entire and of non-integral order o, where K (p) is the quan-
tity defined below :

K()=1—p, if 0<o<1;

K() =@+ 1—0(—9/2e(@+ 1)2-+1og (¢ + 1)}, if 0 <1
and g = [p].

Proor or THEOREM 3: Let f(z) be meromorphic. Then Lem-
ma A yields

" (7, 4, NG, 1/f%)
ETe = T T

< A(0, f9) + ¢,

for sufficiently large 7. Hence

N ey, ay) "
@) AT =0T

But from a result of Milloux, See [2], Theorem 3.1,
T fMo<(¢+1)Twf)

provided f(z) is meromorphic. Hence from (3.5)

1
I+ 1
and from which (3.1) follows.

q
(3.6) 200, /%) > —— ¥ lim inf 7 %)
1

rooo L f)°
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Let f(z) be entire, then
T, fO) =m(r, fO) <m(r, f) +m(r, fOf)

— T, f) + 0(log 7)
— (1 +o()T (/)

since f(z) is not a polynomial and that f(z) is of finite order. There-
fore from (3.5)

. . om(r, a,)
(3.7) 20, f0) = X lim inf e,

and from (3.7) we get (3.2).
To prove the other part of the theorem, let now f(2) be mero-
morphic and of non-integral order. By a well-known fact, f® (z) is

also of order g. Therefore using a result of Hayman ([2], p. 101; see
also [5] Theorem A)

. N(r, f%) + N ,‘1 U]
hlflillpl (r f}(w:’f(l)()r [1%)

= K (o),

and so for arbitrarily large 7

(3.8) N 1O gy - NS

T fO = T

But forally >ryand e > 0

I
]JY_E:%’;; <= 0(e, fO) + &

Thus for arbitrarily large 7, from (3.8)

NEE) > Ko — 1+ 8(=, 10 — 25

or,

i sup D > K (g) — 1+ 5, 0
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Therefore

(39 20,70 =1 ~tim sup SO <5 k() — b(n, )

If f(z) is entire, then d (co, f®) = 1, and so (3.9) redeces to
(3.10 5(0, /%) <1 —K (o)

Therefore (3.9) and (3.1) give (3.3), and (3.10) and (3.2) give (3.4).
The proof of Theorem 3 is now complete.
The next two results are also devoted to finding certain other

types of estimations of (0, f®), ¥ 8(a, f) and (0, f®) where
a # oo
A (0, /M) is defined below. First I state and prove
LemmA 1: Let f(2) be meromorphic in the plane and let its
order be finite. Let 4;, |[4;| <oi=1,2,...,p beasetof p(p < 2)
distinct complex numbers. Let also B;, 0 < |B;| <o, 72=1,2,...,9

be another set of g (¢ > 2) distinct numbers in the complex plane.
Then

4 q
PaT () <gEN@ A)+ B N[r, f(,)‘ 5)+ Ne o)

i=1

— g = DN 1% + N, 1/f*)] + 0(log 7)

Proor: Rewriting lemma A4, we have

?
(B.11) paT(nf) SqT(rfO)+g X N(r, 4) —qN (7, 1/f*) 40 (log 7)
i=1
But from the second fundamental theorem, when applied to
f® (2), one gets
g+1

a7 1) < B N(r )+ N, f9) = N 1Uf0) + 0 og 1),

where B;'S are distinct ¢ + 1 complex numbers confined to finite
values. We can write

qiN(’ﬁl—> é} (f“)l— )
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where we can choose By = 0. Thus

(312) 4T (/9 < é ( f(t) )+N(r fO) = N (7, 1/f¢+D)
N (r, 1/f%) + 0 (log 7),

where B; 5 0 for i =1, 2, ..., ¢ and they are distinct. Substituting
the value of ¢T (7, f¥) from (3.12) in (3.11) and arranging the various
terms, we get the proof of the lemma.

We can now pass on to prove

THEOREM 4: Let f(2) be meromorphic in the plane and of finite

order. Suppose {a;} (¢t =1,...,p), la;| <o and {3} (=1, ..., 9)
0 << |b;] << = be two sets of complex numbers. Let

. sup T'(r, fO) A
Hm e T B

: .. o N(r, 1/f®)
D) — 1 — s T
A0, f9) =1 hgot’nf T 70
Then we have:

(13 g8 )+ 0(=)) — 1< Blg— 15019
— A0, 1) + Ag— Bl 1);
(.14) g2 (e, /) +0(, )~ 1 < BU+lg— 120, /)~ K6,
CoroLLARIES From (3.13) and (3.14) we derive respectively
(3.1 S5 (e, f) < B8O, /%) + A — B

(3.16) 5 (@, f) < BA(0, fU).

-~ -

As far as (3.15) and (3.16) are considered, we use (3.13) and (3.14)
and there we let g tend to infinity and we get (3.15) and (3.16) where

it is to be noted that i 6 (b;, f®) is equal to a finite number.
1
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PROOF OF THEOREM 4: We note that N (v, f%) = N (7, f); also

T fOT @ fl<A+e T[T f)>B—eforall r >ry=ry(e)
where & > 0. Therefore from the preceding lemma, one has for all
r > 7y and ¢ > 0, the following inequality:

. 1
: o N )
pg<1—=0(=.f)tetqgu(l =0 f)+e)+(d+eX —pi—mm—

T, /%)
— - 0@ - 5 o,

or we have:

» g
0<1—06(,])) _q}l]é(a,-,f)—[—Aq—AEl](s(b,»,f(”)

—(¢g—1B 112 sup N———zf?;,ljf{;()));

and the rearrangement of various terms of this inequality leads to
(3.13). Similarly, we have for arbitrarily large 7, the following
inequality :

4 g9
0< 1 —=0(>/) *q};ﬁ(ai,f)—f—Bq—BElJ@(bi,f"’)

—g-nBNED o,

and this results in (3.14).
Towards the close of this article, I state and prove the following

result which is concerned with the estimation of ¥ 6 (a, f) in terms

a # oo
of A and B defined above.
THEOREM 5: Let f(2) be meromorphic and of non-integral order
0(0 < o < 1) and further let 6 (o, f) = 1, then

gA—B,<o<g<1)

2
X 0(a f)

a # oo

< A4 — B sin ng,(—é§9<l>
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REMARK: This result generalises a result of Edrei and Fuchs
([1], Corollary 1.3), since, when f(2) is entire, then 4 = B = 1.

ProOOF OF THE THEOREM: It is a well-known fact that if f(z) has
order g, then f¥ (z) has also the order g. Also as 6 (e, f) = 1 and
hence 6 (eo, f®) = 1, (See lemma 3, (vii) [7], where we put » = 0).
Now let

w=1-—206(0,f9); v=1—20(co, fO).
Then applying Theorem 1 of Edrei and Fuchs [1], we get

% >sin mwo
or,
6 (0, /M) <1 — sin mo

and this together with (3.15) yields the result for ! <o< 1 Tet

0<o< %, then » < cos mp and so (Theorem 1, [1]) » =1, that

is 6 (0, f%) = 0, and once again we get the result from (3.15). The
theorem is, therefore, proved completely.

4. Next I verify under what conditions the derivative of a
meromorphic function does not assume a particular value. In this
direction I prove two results. First I have

THEOREM 6: Let f(2) be a meromorphic function in the plane
and let its order be finite. Further, let 6 (0, f) = 1; 6 (1, f) = 1. Then
3 (x, f®) = 1 possibly for x = 0 only and for no other value of x,
finite or infinite.

REMARK: In the above result, we may replace 0 and 1 in the
function 6 by any other distinct numbers x; and x,;, |x| < oo,
[%5] < oo.

Proor oF THEOREM 6: We have (lemma 4, [7])

T f) ~N@f); Nef) ~T ),
T, /%) ~ @+ )T, ).
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Therefore

N(r.f% _N@f)+IN(@f)
T C+0T (/)

-1, (7’—>c>o)

and so § (e, f) = 0. Now
1
N@ 1O <T@ [0 —Xm, a,),
1

and as

tim inf 28 50,15 om0 a) > Gl )= AT

for all ¥ > #y = 7y (&), ¢ < 0, one finds that

NMIM%<TMﬂ%~TVfE®ww — 4,

N (v, 1) T, f)
To /% ~ ' T, f9)

or,

q
0@, /) +0(e),
for all » > 7y, &€ > 0. Therefore

hr’n_)cs”up T(r( lf/‘i/l‘)(;)) <1

_MQ

0 (4

2

Now (4.1) shows that there is a possibility of é (0, /) being equal
to 1. Next, we shall show that 6 (x, f®) # 1 for any other x # 0. Now

T (r, f%) = T (r, 1/f®) + 0(1)
= N (7, 1/f®) +m(r, 1/f®) + 0(1)

But from a result of Milloux ([2], p. 57, equation (3.8))

(4.2) m(r, 1/f%) <N(r,f) -|-2\7'(r,f(f)ltx) — Ny (r, 1/f¢+0) 4+ S (7, f)



286 P. K. Kamthan

and hence

T (r, f% < N (r, 1]f%) + N (r, f) + N(n f(,)ml_x) + 0 (log 7),

since f(z) is of finite order. Iet & (x, f®) = 1, (v, % 0). Then for
all » > 7g

T /%) < (1= g+ )T/ + (0 + T () +
and so
2 1
t<l=r= T

and this gives a contradiction. Hence 6 (x, /%) 5 1 except possibly
for x = 0.

REMARKS (i) Let /= 1. Then from (4.1),

N (r, 1//™)

LI T e

Therefore (0, /M) = 1. Following as above we find that
d (%, fM) = 1 for x = 0 only. Thus in the above theorem if / = 1, we
rule out the statement «possibly».

(if) The result (4.1) is also a comnsrquence of corollary (3.15),
for here A = B =1+ 1 and therefore }; d(a, f) < (¢ + 1) 6 (0, /)

and so
2 . N (r, 1/f%)
ER R AN

and which is (4.1).

(lii) We may also have an alternative proof of remark (i) above
without a recourse to Milloux’s result (4.2). For, let / =1, then
(3.15) we find since T (7, fV) ~ 2T (r, f), that

2 6(a f) <26(0, /),

a#oQ
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that is, in this case we have 1 < 6 (0, /) and as 6 (0, /) < 1 always,
one gets d (0, /!') = 1 and hence from (3.13) of Theorem 4 of this
paper we get (A = B = 2 in this case)

q
2¢ —1<2(g—1) —2X00, M) +2
1

B

or 6 (b;, fV) <

N —

and if 6 (b;, fV) == 1, for some ¢ (b; # 0), the preceding inequality
will give

q
X 8, /) < — o,
i=1

jAi

and this is certainly a contradiction and our assertion follows.

Next, we wish to know if we could get a sharper form of the result
of Theorem 6 by weaking the hypothesis of this Theorem. To formu-
late problem, let us recall ([5], p. 13).

DrrFiNITION : Let S be the family of all increasing functions
¢ (x), such that log x = 0 (¢ (x)) and that x*/¢ (x) (¢ > 0) is non-
decreasing — co with x. We will call a complex number o as e.v.S.
of a meromorphic function f, if for ¢ ¢ S

(¥))

lim inf —2=2__ < 0.
rsoo N (7, @) B (7)

We are then concerned with

THEOREM 7: Let f(z) be meromorphic in the plane and let its
order be finite. Let 0 and A(2 # 0, 7 o) be e.v.S. of f(2). Then
f® (z) has possibly 0 as its only e.v.S.

REMARK: It has not been possible for me to prove the above
assertion for / > 2 and I prove this result for / = 1, and in this par-
ticular case 0 is necessarily an e.v.S. for f(! (z).

PROOF OF THE THEOREM FOR /= 1: Now as noted earlier we
see that 8 (co, f®) = 0 and this implies that oo is not an e.v.S. for
f® (z), for if it were then

T f*) > Adn( fO)¢ ()
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for all » > 7y, where A is some positive constant and ¢ () is suitably
chosen an increasing function such that log » = 0 (¢ (#)). Therefore

N, fO<mn(, f9 logr<T(r, f9 log #|Ad(r), r > 7

and
6 (o0, fU) =1

and we arrive at a contradiction. Hence is not an e.v.S. for f (z)
(put /=1 in the above discussion). Let

__f@
g(z)—f_(y—_l’ (A #0, # oo).
Then
T(rg=T(/f)+0(1);

n(r, 1/g) =n(r, 1/f), n(r, g = %<7'}7—i—5>

Therefore from the hypothesis, it follows that 0 and « are two
e.v.S. for g (2). Hence from Theorem 2 ([7]) 0 and o are two e.v. S.
for g¥ (z) and therefore for g™ (z)

Now we have

1 g(l) (z)
eGSR E

and so

n(r, 1fO) <n(r, 1/gW) + 2n(r, g)
T(r, g")

< W + 2n (7’» g)» (7 < "'0))

or, we have, on choosing ¢ () to be arbitrary which we can do here

T@fM o AT g (1 +o(1)
n(r, 1f) ) = T (1, g") +24¢()n(r. g

AT (r, g") (14 0(1))
T T(rg")+24B4(r)

where A and B are positive constants; and as T (r,g) ~ T (v, &),
since 8 (0, g) = d (oo, g) = 1, one finds that 0 is an e. v.S. for f@ (z).
Now if x # 0, then x is not an e, v.S. for fM (2), for if it were then
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0 (%, fV) = 1 and following the last part of the proof of the preceding
theorem, we arrive at a contradiction and so the result is proved.

5. This article is supplementary. First we have the following

Lemma 2: Let f(z) be meromorphic in |z| < R, f(0) = 0. Then
for 0<7 <R

m @, f) < (1 +vy@/R) T (R, fO + 1 log+ 7,
where

(1 —13 log(l +2lyz__\/?f)

74/t log (1/t)

Proor: Substantially this is theorem 2 of Hayman [4] (see also
[3]) and we need merely note that

p() =

, 0<i < 1.

sup |fO () | = 7| f2)], [zl =7 < L.
o<t<r

We are now ready to prove the following

THEOREM 8: Let f(2) be meromorphic in the plane, f(0) = 0,
and have finite non-zero order p, then

T (7, fO) 1
Rl o M (Y ) N ()

where £ > 1 and » — o through a set E:

E ={x:T(x, f) = xeW).
Proor: Since f(z) is of order ¢ and therefore

1 @
lim sup log I'(r. /%)

=9
r—>00 log »

Then there exists a proximate order g (r), suchthat ([8], p. 35
see also [6])

e(r) >0, 7 = oo

re' (r) log v >0, 7 - o ;

T (r, fO) < e all » > 7y
T(y, f(l)) = ye(),
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for a sequence of 7, » = 7, — o with #. Then for R > 7
T (7, f%) < Ret®—el) (R]y)etn yeln,
or,  T(R.f% <exp ((¢(R) — o (r)) log R) (R[r)et 0.

But
R

o(R) —o() = [ ¢ (x) dx = fog 7

&

log (R]7).

r

Hence

¢ log (R/7) log R
log 7

T (R, fV) < exp { } (R]7)e") T (v, f0)

where ¢ E. ILet R = kv, &k > 1. Then
T (k, f9) < (1 4 o (1) O T (7, /)
Therefore from lemma 2
m(r, f) < (L+yp(1/k) (1+ o0 (1) kT (7, f¥)

and as N (r, f) < T (v, /"), we get the result.

To proceed further in this direction I give one more result. For
this purpose I follow Hayman [4] and define the following the term

DrriNirioNn: Let C; and C, be constants, C; > 1; C, > 1.
We shall say that a positive number 7 is l-normal (Cy, C,) for f(z) if

T(Cyr, f9) < CoT (7, fU),

where f(z) is meromorphic in the plane.

LemmA 3: Let f(2) be transcendental in the plane, f(0) =0

and 7 is l-normal (Cy, C,), then
m(r, f) < C3T (r, f¥) 4 I log™ 7
where C3 = C, (1 4  (1/Cy)). Further

T(f) < (1 +C) T (r, ) + 1 log* 7;
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und

T'(nf)< (P_% + C3>T (r, fO) 4 log™ 7,

if f(z) has no poles of multiplicity greater than p.

Proor: This is in fact lemma 2 of Hayman [4] where we
note that

N@HSNE O <TE f9),

and if ¢ the of order of multiplicity of a pole of f(z) then f* (z) has a
pole of order ¢ + /, thus

!
9+l=(175)q
?

iy

= —_]5— q
and so

nr f) < pi (., f0),

and therefore

N < 5 Eg N 6 f),

6. The following result is of independent interest

THEOREM 9: Iet f(2) be meromorphic in the plane and of finite
order o, such that T (r, I (2)) = o (T (r, f(2))) where F (z) is another

<

meromorphic function. Then

.. T, f) 3
(6.1) h?_’)glfﬁ—(’;’—f_—l;) < .

except possibly two meromorphic functions Iy, I (T (v, f) =
=o(T(r, F1); T(r,f)=o(T(r, I2))).

Proor: Let I (¢ =1, 2, 3,) be three meromorphic functions
where (6.1) does not hold good. T.et 0 < ¢ << oo. Then for all 7 > 7,

T f)>An@ f—T);1=1,2,3,
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where A; > 3/p. Then

Therefore
. 1 T f) 1 a1
(6.2) h,ri:onfT(r,f)j p dx25+§>§_
Let

# () = log [ (T (v /)/x)dx; pr) = log 7

Then
$0) <0+ (1 +0(1)) log 7, (r = 7o)

and therefore

lim sup {¢ ()/v (")} < e

Hence
lim sup 6 ()/v ()} = o,
that is
(6.3) lim sup — T f) > .

T [@eniax

7o

But (6.3) is inconsistant with (6.2) and therefore the result is
proved.
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