EULERIAN NUMBERS AND OPERATORS
by

I,. CarLITZ

1. InTRODUCTION. The Eulerian numbers 4, , are usually intro-
duced by means of [1], [6, Ch. 8]

1 —2 2 X & 5
(10 T zenm = LT Gy B

It follows from ({1.1) that

(1'2) An—%-l,k = ('ﬂ —k + 2) An,k—l + kAn,k
and
(13) An,k = An,n—k-}-l (1 S k S n)

It is evident from (1.2) and 4,, = 1 that the 4,, are positive in-
tegers for n >k > 1.

The symmetry relation (1.3) is by no means obvious from the
generating function (1.1). This has motivated the introduction of the
symmetric notation [3]

(1-4) A (7'» s) = Ar+s+1,r+1 = Ar-:—s+1,s+1 =A(s,7),

where now » > 0, s > 0. It then follows from (1.1) that

00 X x’yS "‘
(1.5) héo Ar, s) m = F (x, v),
where
(1.6) Fr, y) =22

X —ye*
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The recurrence (1.2) becomes
(1.7) A(r,s)=(7—|-l)A(1',s—1)—|—(s—i—1)A(7—1,s).

Moreover in addition to (1.5) there is a second generating function

(18) ¥ At 2Y (14 xF (x5 9) (1 +yF (@ y)

7,s=0 (7 —% S)!
with F (x, y) defined by (1.6).
If we put
(1.9) Ay =A4,(65) =X A, s)vy,

r+s=n

it follows from (1.7) that

(1.10) A, 5) ={x+y+ 2y (D, + D) 4,_, (% ),
where D, = 8/dx, D, = 8/0y. Iteration of (1.10) gives
(1.11) 4, y) = (x +y + xy (D, + D))" 1.

It is accordingly of interest to comsider the expansion of the
operator

(1.12) O = (x+y+xy (D, + D))"

We shall show that

(1.13) o =k¥0Cu,k W, ») (x3)* (D, 4 D,)*,
where
_ 1 k ' -
(114) Cos (5 9) = grorgy e+ D' A, (9) O <k <n)

The generating function (1.8) suggests the generalization [3]

A slo, B) 222 = (1 4+ 2F (5, )*(1 + yF (x, y))?

(1.15) 2 =]
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where again I (x, y) is defined by (1.6). Thus
Ar,s)= A1, s|1,1).

It follows from (1.15) that
(1.16) A(r.sla, )=+ A(r,s— 1w, f)+(s+a) A (r—1,5]|ap).
which evidently reduces to (1.7) when « = f = 1; also
(1.17) A, sla, B) = A(s, 7|8, ).
By (1.16), 4 (7, s|a, B) is a polynomial in «, B with positive integral
coefficients. Combinatorial properties of A4 {, s|«, f) are discussed

in [3].
Put

(1.18) A4, (x vl f) =X A(r, s|a, B) 2y

r4s=n
Then by (1.16)
(1.19) A, (x, yla, B) = (ax + By + %y (D, 4 D)) 4, _; (x, ¥la, B),
so that

(1.20) 4, (% yla, B) = (@x + By + xy (D, + D,))*- 1.

It is therefore of interest to consider the expansion of the operator

(1.21) Qap = (2% + By + xy (D, + D))"
We shall show that

(1.22) "5 =k2_10€£°f’;5) (%, ) (xy)* (D, + D,)*,
where

(@8 _ 1 5
(123) €& (53) = progr O+ D Ayl ) O <E <),
where

@t+f=@+he+B+1).let+p+ki—1).
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The case o 4 f equal to zero or a negative integer requires special

treatment.
We consider also the inverse of (1.22), that is,

(1.24) (x3)" (D, + D,)* = %, B @ .
We show that

(1.25) (D, 4 D,) BS (x,9) = n(x + B +n — 1) BER 4 (x, 3)

and

(1.26)

® yh a, 1 —xu\~" _ _
R L e I R (T

Additional properties of B)% (v, y) are given in §§ 8-10.

In recent years the Eulerian numbers and certain generalizations
have been encountered in a number of combinatorial problems [2],
(3], [4], [5], [6], [7]. The study of Eulerian operators is of intrinsic
interest and may be useful for applications.

2. It is convenient to first discuss (1.13), that is,

21) (5 + 5y (D, + D))" = £ Cpi (5, 3) (59)" (D, + D).

0

We shall require the following operational formulas:

(22) (D, + D)t (x+y) =2k(D, + D))" + (x + ) (D, + D)%,
(2.3) (D; + D) xy = k(k — 1) (D, + D,)*~* +
+ k(& + ) (D, + D,)*~' + 2y (D, + D))"

The proof is by induction on %. For (2.2) we have

(Dz + Dy)k (x +y) =2k (Dx + Dy)k + (Dx + Dy) (x +y) (Dx + Dy)k
=2k([D,+ D)+ 2+ \x+y) (D, + D)1 (D, + D,
=2(k+ 1) (D, + D)* + (v +y) (D, + D,)**+1.
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As for (2.3), we have

(D + D)+ xy = k(k — 1) (D, + D,)** +
+ 4D, + Dy) (v + ) (D, + D,)*"* + (D, + D,) xy (D, + D,)*
=k —1) (D, + D))"+ k(2 + (x + y) (D, + D,)] (D, + D)1
+ [ +y +2y(D,+ D)] (D, + D)
=k(k+1) (D, + D)*' + (k+ 1) xy (D, + D,)* + xy (D, + D,)#+1,

Incidentally, the special case £ = 1 of (2.3) may be noted:

(2.4) (D, +D)xy=2x2+4+y+xy(D,+D,) = Q
Thus
(2.5) @ = [(D, + D,) xy]".

We now apply 2 to both sides of (2.1). Then

Qi = kgoﬂ {Cop (% 9) (x)% (D, + D)™
Since
(D; + D,) {C,.1 (%, 3) (x3)%
=k@xy)* 1 (x + ) C,i (% )
+ (#9)* (D, + D,) C,4 (%, y) + (x3)*C,+ (%, ») (D, + D,),

it follows that

e

Q= (x + ) ’go(,‘”’k (*, ¥) (x)* (D, + Dy)k

+ 19 5 () (5 +3) Coa(5,9) + (€9) D+ D,) Cpa s )
+ (@9)*C,x (%, ) (D, + Dy)} (D, + D,)*
= 5+ 1)+ 9) + 23 (D, + D] Cy (1.5)
+ Coacs (5,9 (D, + D,

We therefore have the recurrence

(2.6)
Covra(® ) =[(R+1) (x+y) + xy (Dy+D,)1C,; (%, y) + Cpi—1 (%, ¥).
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This establishes the existence of the expansion (2.1) and indeed
shows that C,, (x, y) is a homogeneous polynomial in x, y of degree
n — k.

In the next place we apply £2 to both sides of (6.1) but now on the
right. Then

@+ = 3., (5,9) (1) (D, + D) 15 + 3 + 23 (D, + D)}

Applying (2.2) and (2.3), we get

@1 = 3 Cop (5, 9) (29)* R (D + D)*~" + (x +5) (D, + D)4

n

+ X Cop (%, 3) (x3)* (& (R — 1) (D, + D,)*~* + k(2 + ) (D, + D)+
+ %y (D, + D)%} (D, + D,).

It follows that
(2'7) Cn+1,k (.x' y) = (k + 1) (x + y) Cn,k (x, y)
+ (k4 1) (B +2) 2yCopy1 (%, ) + Cppy [, 9).
Comparing (2.7) with (2.6), we get
(2.8) (D +D)Cu(x ) =R+ 1)(k+2)C,ppi (5, 9).
It is clear from (2.8) that

@9 Canle) = g @+ D Cuo )

Since, by (1.1),
Coo (%, 9) = 4, (%, 9),

(2.9) becomes
1
(2.10) Coals9) = grorqyr O+ D)4, (5y) O <k <n).
so that we have proved (1.14).
3. Put

6.y Jol 3, ) = 3 (b + 1)1 Cop (5, ) 2



Eulerian numbers and operators 181

Then f, (x, v, z) is homogeneous in ¥, y, z of degree n. We also define

(32 & (09) = B ot Con (5 9).

it follows that

(3:3) &) = i (D + D)*F (%, ).

k' (R + 1)!
It is easily verified that

(D,+ D,) F = F2
and therefore

(3.4) (D, + D)t F = k! F**1,
Thus (3.3) becomes

(3:5) g% y) = (k+ 1 P4 )
Therefore
(3.6) G(x, v 2 = g (B4 1) g (x,9)2 F(x, )

~—1—2zF (%, 9)°
Also, since

00

6o,y 9 = B oy ol 3,2,

n=0
we get
Fx, y)
(3.7) 2 (n—i—l |fn(x ¥ )_——U7W'
By (1.6),
Fxy e* — e
1 —2F(x,y) (@& —ye) —z(ef —¢)
. e — e
“ErAF (T
3x+s _ 8"""

=(x+2)ey+‘—-(y+z)gx+x=F(x"l’z,y—}-z).

12 — Collectanea Mathematica
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Thus (3.7) becomes

68 Eogmlherd=Fetayta,

Since

Fx+z y+2= EOA”(x—I—z,y—l—z),'

fn=

it follows that

(3.9) falt,y,2) =4, +2 5+ 2).

This formula can also be proved without the use of generating
functions.

4. We now consider the general case:

@1 L= X G (5, 9) (w9)* (D + D),
where
(4.2) Qu,p=0ax+py+ xy(D,+ D,).

We apply £, 5 on the left of each side of (4.1). Since

2, {CP (%, y) (xy)* (D, + D})|
= (ax + By) CSP (%, y) (x9)* + k (x + 9) C&P (%, v) (xy)*
+ (xy)*+1(D, + D,) C&P (%, y) + (xy)*+1C¥P (x,v) (D, + D,),

we get the recurrence
(4.3) Cola(® 9) = (ax + By) CEP (5, )
+ k(& +5) + 2y (D, + D)IC0 (x, 3) + Colli (v, ).

Next, apply 2, ; on the right. Since

k

D+ D, ez + B3) = % (1) DD (ux + )

k ) ) ) _ _ .
=4 (f ) l« (#D5 + 7DL)D; ™ + B DL (yD ™ + (k — ) Dy~)]
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. . k
=ocx'2(_l;>D;D:f"‘7+kocE( )D? IDP—J+ﬁyZ<>D7DkJ

+ kﬁE) ( )D’ folont
— (% + BY) (D, + D,)* + k(x + f) (D, + D)~
and, by (2.3),
(D, + D)t xy + k(k — 1) (D, + D)~
+ k(% +3) (D, + D) + xy (D, + D),

we get
O = 3 Co0 (5, ) (59)* (=% + ) (D + D)

+ k(a4 B) + (D, + D)
+k(k—1)(D,+ D)+ k(x +y) (D, + D)) + xy (D, + D,)*"1.

It follows that
@4 CHAa(y) = (k+a)x+ (k+ B)y) CEP (x, )
+ B+ 1) (k+ o+ B xyCoLi (v, 9) + Cfy (%, y).
Comparison of (4.4) with (4.3) gives
(4.5) (D, + D) Cl (5, 5) = (B + 1) (k + & = B) CiL1 (x, 9).
It follows that

(46) G x o) = k.(Hﬂ (D, + D) C (%, y),

provided « + B is not equal to zero or a negative integer. Moreover,
by (1.20),

Cod (1, 9) = 4, (%, y |, f),

so that (4.6) becomes

47  Ci(x9) = (D, + Dy)+4, (x5 | B).

1
!(“ + Bl
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It follows from (1.19) and (4.7) that

(4.8) | Ay (5, 3] 0, B)

min (m,n) 1

= kgo m (xy)k (Dx_'_D:v)kAm (x:y]“: /3) (Dx+Dy)kAn (x,y]zx, ﬂ)

5. Put
B Lerzlaf)= X @ HCE )
(5.2) & (5 9lo f) = B 0P (1, 3),
(53) Dop (0, 9) = (1 + 2F (v, y)* (1 + y F (v, 3))?
Since

u b8

nl w8 Y1 B) = Dy p(x, ),

it follows from (4.7) and (5.2) that

(5.4) &) = T +ﬂ) (D: + Dy)* Py 5 (%, 3).
But
(5:3)  (Dat D)@y (%, 5) = (x + B)s F* (5, ) Boyp (5, 9),
so that (5.4) becomes
(5.6) &%l ﬂ)—mF (%, 9) P (%, 3)-
Now put

Gy 2la f)= B @+ Phelnyle f)
Then, by (5.6),

(5.7) G(xy zla p) = 1 — gzpigﬁ(gf’yy.)y))“”'

Since
(x —_ y)a+ﬁgz+y

Pus (5 Y) = (o= s
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and

Do.r (%, ) _ & — )t grxtyp
(I —2F (x,9))  [(xe@ —ye) —z(e* — &)]

(x — y)a+B gus+By
[(x +2) & — (v + 2) 7]
(x — y)a+ﬁ pa(x+2)+B(x+32)
[(x + Z) ey+E (y + Z) ex+z:|a+ﬁ’

(5.7) becomes

(5.8) G5, 20 f) =By (v + 2,5 + 7).

On the other hand, by (5.1) and (5.2),

Gleyzlaf) = 5 @+ puet 35 CoP )
=gﬂlg OC+[3 C(aﬁ)( )zk

> 1
= 5 Sifwzlap),
so that, by (5.8),

(5.9)

|| s

S T3zl ) = Byt 2,y + 1)

Therefore, by (1.15) and (1.18), we get
(5.10) oty zla, f) =4, &+ 2y + 2] p)

This identity implies

k
(511) A, +2 5 +2la f) =57 (D + D)4, (5 y |« f),

which can also be obtained by applying Taulor’s theorem to
Aﬂ(x’yla"ﬂ)'

6. As noted above, (4.7) is not valid when o + 8 is zero or a
negative integer We shall now consider the excluded values It is
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convenient to begin with the special case « = = 0 In place of
(4.1) we now have

61 D+ D)= CH ) @I D, +D) =1

The recurrence (4.3) reduces to

(6.2) Cflu(x, y)=T[k(x+y) +xy(D,+D),]CY (%, 3) + COL, (%, ),

while (4.4) becomes

(6.3) COA iz y) = k(x + ) COP (v, v)
+ k(R + 1) xy C1 (%, ) + Coili (x, ¥)
Hence
(6.4) (D, + D,) Ci (%, 9) = k (k + 1) CRihe (v, ¥),
so that
1
(6.5) Ca¥ (x,3) = e =11 (D, + D)1 CYY (%, ) (k>1)

For k =1, (6.2) reduces to
Cafha (4, 9) =[x + ¥ + 2y (D, + D)1 CP (=, y),
which yields
Cot’ (%, 9) = (% + 5 + xy (D, + D) 1+ C (v, 9)
It is clear from (6.1) that C{%” (x, y) = 1 and therefore
(6.6) Cot” (%, 9) = Aoy (%,9) = Ay (5, ¥ | 11)

Thus (6.5) becomes

6.7  CQ(x, ) (D, + D)1 4, (% 3)

_ 1
TRE=1)
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Before discussing the general case « + § equal to zero or a nega-
tive integer, we consider the expansion

(6:) ne= 3 0% (1 3) (3 (s + D),
where the QP (x, y) are to be determined Clearly

Q' = (x + 89) 3 0% (5 3) Gy (D, + D)

+xy B (D + D,) 0" (%, 5)  (wy (D, + Dy))*
+ B 040 (1, 3) (3 (D, + D),

so that

(6.9) QS 5, ) = 2, 5050 (%, y) + QL (%, )

For k=0, (6.9) reduces to

0riflo (%, 9) = 2,008 (%, )

Since, by (6.8),

Q% (v, 9) =ax+ By =A1(x, ¥ 1% ),

it is clear that

(6.10) 0’ y) = A4, (% y]a p)

We shall now show that
(6.11) 0% (.9) =3 dua 310 B) O <k <n)

Clearly (6.11) holds for # = 0 Assuming that it holds up to and
including the value #, we have by (6.9),
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0% (5,9) = (3) Gup w1 B+ (1) s (71 )

~ () vy 158+ (" ) Ak 912 )

- (:) A, 4% y]a, p)

We have therefore proved

612 @a= 3 (1) Aty 1 B 6y (0. + D)
k=0

This suggests the following more general result:

n

(6.13) vinprs = B (7) Apos & ¥ |0 B) 24
k

To prove (6.13), consider

k

Qarypro = kgo R, 2y,
where the R, , are functions of x, y, «, 8, 7, 6. Then

Ditvprs = a4+ 9)x + (B + 0)y + 5y (D, + D)] X R, s

=[e+7)2+ B+ LR, . %

2

+ xyk O(Dx + Dy) Rn,k'Qf’,a +kgoRn,k.x.y (Dx + Dy) 'Q'}If,é

‘Qo:,ﬁ Ieu,k : 'Q“fﬂ’ + kgoRn,k -Qﬁ,.s

SR

This evidently implies
(614) Rn+l,k = Q;',ﬁ Rn,k + Ien,k—l'
Then, exactly as above, we show first that

Rn,O = An (x, y l &, ﬂ)
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and generally

Rov=(3) Austryla ) ©<k<n)

This completes the proof of (6.13)
As a special case of (6.13), we note
(6.15)  (xy (D, + Dy))* = >

k

(3 Ava oyl = — ) 2

7 We now treat the general excluded case in (4.7), « + 8 equal
to zero or a negative integer. We shall require the following formulas:

(1) B,y =52 4,0ylap

I
OMS

Il

(1 +2F(x, 9)*(1 +yF (%, 9),
(7.2) (D. + D,)* F (%, y) = k| F**1(x, y),
(7.3) Dy + Dy)*®, (%, y) = (& + )i F* (x, ¥) Py 5 (%, ¥).

If « 4 B is not equal to zero or a negative integer, we have seen
that

”k (x y) ( _I" ﬂ) (Dx _I_ Dy)kAn(x!y]“’ ﬂ)‘

It follows that

© ] a
X G ) (D; + Dy)*®, 4 (x, )

1
k! (o + B)s
and therefore, by (7.3),

1z

(7.4) i

nMs

o, 1
Cn,lf) (x: y) = F F* (x’ y) (pa,ﬁ (x: _')’)-

Put

(1.5)  Ft(x,y) = !ﬂWJ) k=1,2,3..),
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where 4% (%, y) is homogeneous of degree # in x, y. For k=1
we have

(7.6) A3 (%, 9) = 4, (% 5) = 4, (x, y]1, 1).

It follows from (7.5) and (7.6) that

(k+1) _w(rtE41 *)
07 A e =3 (" T T 4 4, w)

and therefore the coefficients in AP (%, y) are positive integers
By (7.4) and (7.5) we get, since Cf (x, y) is of degree n — £,

18 CuP oy =3 2 (1) AN ) 4,551, B).

Since both C&P (v, y) and A, (x, y|«, B) are polynomials in «,
(as well as in %, ), it follows that (7.8) is valid for all «, 8. The nu-

merical coefficients in Cfff’,f ) (x, y) are integers; however that is not
obvious from (7.8)
Since

A,(x,y]10,0)=0 (n > 0),
it is evident that (7.8) implies

(7.9) Cow) (%, 9) = ;Ai’”k(x ).

By (7.2) and (7.5) we have

¢ =0 E g A ) = O+ D) 8 4, ()

so that

(7.10) 49 (x, 9) = Dy + D))=t 4, oy (8, y) 1<k <mn).

(k —1)!
Thus (7.8) becomes

(.11) €82 03) = =i Z [7) @2+ DI 4,1 (e 9)

A, wyla ) (L<k<n).
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For « = =0, (7.11) reduces to

(.12 CE (59) = g —y @s + D Aua (5.9

in agreement with (6.7)
Both (7.8) and (7.11) are valid for all «, f.

8. We now consider the inverse of (4.1), that is,

(8.1) (xy)* (D, + D,)’ 5”3( 1)»=* B& (%, y) Qi g,

k=0

where, as will appear presently, B>? (x, y) is a homogeneous poly-
nomial in x, y of degree n — k. The existense of a formula of this
kind is evidently implied by (4.1). For example

xy (Dx + Dy) = — (“x + ﬂy) + 'Qa,ﬁ’
(x3)2(D, + D)2 = (ax + B)2 + ax2 + B2
—[Qa+ )z + 28+ 1)y] Q,5 + 5.

To get a recurrence for the coefficients B®f) we apply the opera-
tor xy \D, 4 D,) to both sides of (8.1) — on the left. This gives

n(x + ) ()" (D, + D) + (x)*** (D, + D,)"*!

— 5y % (= 1 {(D, + D) B (5,9) + Bef (5, 9) (0, + D,)}

=

(— 1)*{xy (D, + D,) B&P (%, y) — (ax + By) BEP (x y),
+ BSP (%, 9) Q, 5} .

k=0

It follows that

()t (Do + Dyt = —m (x4 3) 3 (— 1)k B&P (x, y)

n

+ X (= 1"+ {xy (D. + Dy) By ()
— (ax + By) B&P (x,9)} Qs
n-1
+E (— 1 n k-|lB(°‘ﬁ) (x y)g
k=1

||M=
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Therefore

(82) BXi(x9) =[x+ nx+ (B+n)y —xy (D, + D,)]
‘B (v, ) + By (x, ).

On the other hand, if we multiply both sides of (8.1) on the right
by 2,5 we get

2 (— 1) BEP (x, y) Q5"
£=0

= (2y)" (D, + D,)*[a% + By + xy (D, + D,)]
= (9)" tn (« + B) (D, + D,)*~' + («x + By) (D, + D,)"
+ @) n(n — 1) (D, + D)*=' + nx + ) (D, + D)
+ %y (D, + D,)**Yy
=n(x+f+n—1)(xy)* (D, + D,)*?
+ o+ #) % + (B + n) y] (x9)* (D, + D,)* + (xy)*+ (D, + D,)*+1.
This implies
(83)  BEa(x3) =[x+ n) %+ (B4 n)y] B (x, y)
—n(e+pB+n—1)xyB>Y, + B&P (%, y)..
Comparing (8.3) with (8.2), we get

(8:4) (D, + D,) B (x,5) = n(a+ B +n — 1) BEA 4 (v, 9).

In the next place, it follows at once from (4.1) and (8.1) that

(8.5) (= )ICED (v, 9) BE (v, 9) = 9,
=7

and

(8.6) k}:. (— 1)t B,(:‘;f) (x, ») C}{‘;ﬁ) (%, ) = 6,
=7

A formula of a different kind can be obtained by applying each
side of (8.1) to 4, (x,y|«, ). Since

Do+ DA, 5y 10 ) =0 (0 <7 <)
'Qg,ﬁ 4, (x» yla, b) = Ar+k (x: yla, ),
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we get

b=

(8.7) (=) * B2 (6, ) A,s (5,7 |0, ) =0 (0 <7 < ).

k=0

I

In either (8.5) or (8.6) take j = #. Since C%P) (%, y) = 1, we have
(8.8) BSH (3, 9) = 1.
Also it is easily verified that

Qd.ﬂ (x—ﬁy—o‘) = 0:
so that

Qs Py ) =0 (k=123 ..).
Thus (8.1) implies

(— 1" B2 (%, 9) = (x3)" (D, + D,y P y~=.

A little manipulation leads to

(89 BED (n3) = 3 (1) 6 Boa sty

k=0

This is equivalent to

©10 B B )5 = (1 — 21— y0)s

We remark that B%P (x, y) satisfies the following recurrence:
(8:11) Bi.(%,9) = (2 + By + 22D, + 2D,) B&P (x, 5),
Indeed, by (8.9),

(2% + By + 22D, + y2D,) B2 (, )

= @+ 69) 3 3] @ @y

k=o

+ ké k(;:) (@)i (B)p—p 21 ym—k éo (n —E) (Z) (0)z (B)—p #* ym—+1,

=0
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The coefficient of x* y*~**+! on the right is equal to

(" 1) @rs Bacses + 8 () @) B

n

+ =1, " ) @it Burar + 0 =B (}) @ B

(" ) @ Blss + () @ Bas = (" 1) @ B
It follows from (8.11) that

(8.12) B (%,9) = (@x + By + 42D, + 52D,y 1.

9. When o« = =0, (8.1) reduces to

O.0) D+ D= 3 B (5, 9) (3 (D + D),

while (8.3) becomes

(9.2) BY2), (%, 9) = n(x +5) B (x, ) — n(n — 1) xy B 4 (%, )
+ B (%, ).

It is evident from (9.1) that
(9.3) Bl (x,y) =0  (n>0).
For brevity, put

! (0,0)
bpp = w =) B,y (x,) (n>1).

Then (9.2) becomes
1
(9.4) by — &+ ) bpn + 2¥b, 1= 7 by k1 (k>1).
For k = 1, (9.4) reduces to

(9.5) bpi1,1 — (* + )b, + xyb,_1, =0 (n > 1).
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The recurrence (9.5) implies

bn,l = C1 %" "I‘ CZy”r

where ¢y, ¢, are constant. Since

b1’1= l, bz'l=x+y,

we get
(9.6) b1 = x; :in = o,
Next, for & = 2, we have
(©.7) burr2 — (£ + )b, .+ xyb,_; , = Z;—O'”.
Since
bio=10b,0=1,

(9.7) holds for » > 1. It follows that

(I —(+y)z+ xy22) 21] bp1,22" = ; j o, 2"
Since

1
1 —(x+y)z+xy22

Il
olvis
RQ
g
I

we get
”

bn+1,2 = '21 }‘ 0;O0p—jt1-
7=.

Generally (9.4) implies

W S
X . (bn+1,k —(x+) bn,k + xybn—l,k) =Y bn,k—12”,

n=ke n=k—1 T
that is,
00 1 T
9.8 b M = ) "
( ) n=f—1 n+1,k 1 — (x +y) 2 + xyzz ,,3}..1 i 5, k—1 2

Therefore, as above, we get

n
1
(9.9) bn+1,k = i=§—lj—.' b;',k—-l 0'”__"_‘_1.
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We may rewrite (9.9) in the form

”
1
(9.10) byprr = fgo}'—-l-_k_—-—l bith—1,k-10n_ji1
Using this formula we get
1

b = T . AN 7 o A U 4 )
n+3,3 0Sf'§i$"(”’+ 1) (]+2) |+1 j— 1+10 —-j+1

1
et = g Ferz GF DG 2 3) 7 i it Ot

and so on
We may also mention an operational formula for 5, ,. Define

the operator D, ! by means of

D'f@) = [fat

Thus

i-l—az”=D_1§]a 2" = D;! 1

n=1 " " i n=0 nt : (l —xz) (1 —‘Zy)
By (9.7)

1 1 1

2 et = o= X T
so that

2 1

Y g bayr2 2 = D7 (1 — x2)71 (1 — y2)~1)2- 1.

n—l'n’"—

At the next stage we get
S bas = [(1 — 2271 (1 = y)~1 D72 (1 = %2)71 (1 — y2)-1
n=2

The general formula is

(9.11) DI R o

ek —

=[(1 —22)~1(1 —yz"1 D' P-1 (1 —x2)"1 (1 —y2)~1(k > 1).
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10. A generating function for B/ (¥, y) in the general case can

be found in the following way. It follows from (8.5) that

2"

b4
vy 71

(10.1) .

n s
uM:

(— 1)#7Cf (x, y) BEP (%, ) =

7

<.

By (7.4) we have

- 1
2 Co(z kB)( ) = ‘kj Fk(x: y) cpu,ﬁ (x: y)

n=k MW

Since C%f (x, y) is homogeneous of degree » — k&, this implies

k

CP (%, y) = % F*(xz, y2) D, 4 (xz, y2).

e
<Y

%

n=~k

Thus (10.1) becomes

27 b ; o, o,
G=3 (1B ) B 2 " Cef r, )

z F¥(xz, y2)

=@, ,(rz, y2) §=] (— 1)+ B&P (x, y 3

Multiplying by v/ and summing over 7, we get

s

10.2 W — @ s
( ) € a,ﬁ(xz yZ) =0 <0 Bl

Consider the equation

(10.3) 2F (xz,y2) = u,
that is,
¥ — eyt .
xev® _ygxz -
This reduces to
o 1 — xu’
so that
. 1 1+ xu R w1 "
(10.4) z_x~—y log1+ _g( 1)1 - o, u",

13 — Collectanea Mathematica

i k Rk
% (= 11 B (v, ) TR
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where as above
o, = (" — ") [(x —y).
Since
D,5(xz, y2) = (1 + x2F (x2, y2))* (1 + yzF (x2, y2))f
= (1 4+ xu)* (1 + yu)s,
(10.2) becomes

k
oo,uk

(10.5) e = (1 + zu)* (1 + yu)p )

k=0 k! =0

(— 1)#=1 B&P (%, y) ol.
But, by (10.4),

3

v/(x—3y)
g — (1 + xu)
I+ yu

so that (10.5) may be replaced by

o k
(10.6) s> B‘“"’ (x, ¥) (x —y)fvfz(

¥ ) N

1 —yu

In particular, for » = 0, (10.6) reduces to
2 Rl v
(10.7) X GBI (5y) = (1~ wu) e (L —yu) s

which is evidently in agreement with (8.10).
For « = B =0, (10.6) becomes

o yk F N A
(108) X 7 X BY (x,3) (v —y) v = (—_ xu)
k=0 k! j=0 1—yu
Since
1 —xu v_w(v)ry,(»‘(—v)svs
(1 —y%) —Eorxu séo st Y
we get

X

(108) 3 BEY (6,9) (e =3 = 8 ) (=), @

The general result is only slightly more complicated, namely

k k

(10.10) % BEP (5, 3) (=30 = 3 (7)o + 00 6 = vl

i=0 r=0



Eulerian numbers and operators 199

It follows from (10.6), (10.7) and (10.8) that

k k 14
- . R\ @ .
z B (x, y) i = DY (r) B&A, (%, v) % B (x,9) v
= 7= j=
and therefore

k

(10.11) B (v, 3) = X B% (v, 3) BE (5, ).

r=0

Comparing coefficients of v/ on both sides of (10.8), we get

* uk (0,0) _ (— l)’( 1 — xu)i
ka—! Bk_? (x: y) - ]| IOg 1 —yu .

Differentiation with respect to u gives

) ,uk
k=§_r7ﬂ Bl(e_()%?’,i (x, y)
(= 1y

G (x —y)—i+1(log i — xuy L

—yu) (1 — xu) (1 — yu)

which is equivalent to (9.8).

13* — Collectanea Mathematica
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