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1 — INTRODUCTION

The aim of this work is that of outline a theory of gravitation
in the framework of the De Sitter space-time; therefore in the second
paragraph there will be a discussion of the principal points of view
on the problem of the gravitational field in the framework of a given
space-time structure; because this question is strictly connected, as
it will be seen, with the unitary theories of gravitation and electro-
magnetism, in the paragraphs 3 and 4 there will be a short outline
of the unitary theories of Kaluza-Klein, Thiry-Jordan and others;
in the paragraph 5 there will be a review of the Fantappié-Arcidiacono
theories on the De Sitter space-time; in the paragraph 6 will be de-
duced a formula leading from a 5-dimensional to a 4-dimensional
formulation of the gravitational laws; in the paragraph 7, finally,
there will be exposed the mathematical techniques necessary for a
complete description of the gravitational phenomena in the De
Sitter space-time.

2 — THE GENERAL RELATIVITY AND THE MODELS OF UNIVERSE.

The problem of the role of General Relativity in constructing
models of Universe arose in the study of the De Sitter space; this
latter has always been of great interest since DE SirTER [1] showed
that, in the case of a static and isotropic universe, with spatial sec-
tions of constant curvature, the Einstein field equations in the empty
space admit only three solutions, that is the Minkowski metric, the
Einstein static metric and the De Sitter metric. This result clearly
is in contradiction with the Mach principle, at least in the version
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known as Mach-Einstein’s principle, according to which there can-
not be inertial properties in a space-time in absence of matter. Whereas
the FEinstein static universe can escape this unpleasant situation,
because the presence of the cosmological constant gives rise in it
to a non-null matter density, this is no longer true for the Minkowski
and De Sitter metrics which correspond, also in presence of the cos-
mological constant, to a density of matter everywhere null.

The contradiction with the Mach principle is here particularly
troublesome because Einstein based himself fundamentally over it
in constructing his General Relativity theory. A way for escape this
situation has been showed for the first time, we think, by D Sr11Er
[2] himself which said that there were gravitational effects only if
the coefficients of the metric changed from the values typical of the
De Sitter universe. So De Sitter implicitly put forward the idea of
a gravitation conceived as a «differentialy effect on a space-time with
metric not satisfying the Mach-Einstein principle; this involved that
not always the space-time curvature were of gravitational origin,
but De Sitter do not showed the mathematical means able to ex-
prime this point of view. It is a matter of course, however, that a
particular theory of the «differentialy gravity in one of the foregoing
space-times has been yet developed in the case of the Minkowski
space-time and it coincides with the ordinary General Relativity
theory; but a similar work has never been tried for the De Sitter
metric. Moreover, with the methods then used in General Relativity,
when every model of Universe was described by its ds?, it was im-
possible to treat these questions; namely in the same period many
theorists searched vainly for a unitary theory of gravitation and
electromagnetism, acting only on the metric coefficients.

In 1952 Fanrappie’ [3] throwed new light on these questions,
dealing with them exclusively from the group-theoretical point of
view and conceiving a «model of Universey as entirely defined by
a 7-parameters transformations group G, which determines both the
geometry of the model under consideration and its physical laws,
defined uniquely by the property of maintaining the same form un-
der transformations of G,. Particularly Fantappié showed that the
connection between the group of motions into itself of the De Sitter
space and of the Minkowski space was very close; on the basis of
these results it looked, starting only from purely group-theoretical
considerations, for a physics in the De Sitter space, as well as it is
possible to construct a physics in the Minkowski space, i.e. the or-
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dinary Restricted Relativity, starting only from its group of motions
into itself, the I.orentz group.

This program has been completed by G. Arcidiacono which, owing
to interesting mathematical techniques, constructed a «Restricted
Relativityy in the De Sitter space, named «Projective Relativityy;
Arcidiacono himself proposed to construct, for every model of Uni-
verse endowed with a group of motions into itself, a «Restricted
Relativityy on a purely group-theoretical basis, in a fashion similar
to that of «Projective Relativityy. One of the most interesting results
of the «Projective Relativityy is the circumstance that in it the elec-
tromagnetic field and the hydrodynamical field are fused in a unique
field; this involves that a theory of the «differentialy gravitation in
the De Sitter space would be automatically a unified field theory.

It is suitable to remember, afterwards, that in 1951 A. H. Taus
[4] has find solutions of the Einstein field equations in absence of
matter with non-null curvature, in absence of the cosmological cons-
tant. Following the foregoing ideas, the next step would be, then
to study such metrics from the group-theoretical point of view for
constructing the «Restricted Relativitiesy over them, so that omne
could obtain various kinds of possible physics.

Now it is necessary to point out how the two conceptions of the
«models of Universey, the one based exclusively on the ds?, and the
one based exclusively on group-theoretical considerations, are both
defective because each of them takes into account only one side of
the problem; there is the need, then, for a third point of view which
unifies the two precedings. This point of view is based on the ideas
of Carrax [5] which, generalizing the concept of space, inserted the
Riemannian geometry into a group-theoretical conception. Follo-
wing Cartan, a Riemannian (and not) variety 7, can be imagined
as constituted by infinite tangential spaces, each of which has a geo-
metry based on a group G, by Cartan called «holonomousy geometry;
these infinite tangential spaces are joined together according to a
certain connection law which allows to deduce both the curvature
and the torsion (local properties) of V,, through the use of infinite-
simal closed cycles on the variety under consideration, and, through
the use of finite closed cycles, the «holonomy groups (global property)
of V,, i.e. the group of displacements associated with such cycles;
vice versa once known the holonomy group, the connection law is
uniquely determined. So, starting from an holonomous geometry
based over a group G and choosing a particular holonomy group, it



154 Eliano Pessa

is always possible to construct an anholonomous geometry corres-
ponding to it.

This point of view agrees perfectly with the foregoing conception
of the gravitation, so providing the mathematical means to formula-
te it correctly; the direct construction, however, of an anholonomous
geometry is, generally speaking, rather difficult and therefore we will
use the Fantappié-Arcidiacono methods which allow to translate the
4-dimensional geometry of the De Sitter space in a 5-dimensional
FEuclidean space on which one can, through the use of the ordinary
methods of the tensorial calculus, construct an anholonomous geo-
metry having as holonomy group the restricted 5-dimensional rota-
tions group (5-dimensional analogue of the General Relativity);
through the formula showed in sixth paragraph, then, we will be
in condition of translate the 5-dimensional results in a 4-dimensional
space.

As these techniques have a remarkable resemblance with the ones
used in 5-dimensional unitary theories, also for the reason that in
the 5-dimensional version of the De Sitter space the electromagnetic
and the hydrodynamical field are unified, it will be useful to premise
some informations on the 5-dimensional unitary theories, so that
we will be in condition of comparing their results with the ones which
will be presented here.

3 — THE KALUZA-KLEIN 5-DIMENSIONAI, UNITARY THEORY

Following the aim of construct a unitary general relativistic
theory of gravitation and electromagnetism, in 1921 Karuvza [6]
built up a 5-dimensional theory, improved by KiemN [7] in 1926.
In this theory we have a 5-dimensional Riemannian space in which
%, ¥, and x, are spatial coordinates, x, = ct is the temporal coordi-
nate, whereas the fifth coordinate x5, is unobservable. For this
reason we can consider psysically meaningful only those transfor-
mations which do not vary xs, i.e. those of the type

(1) Xs=xs+f(%), %=g ) G E=1,..4)

So we satisfy the principle of general relativity. Now, on the basis
of the (1) we can represent in a particular fashion the vectors and
the tensors of S-dimensional space: e.g. a vector v, (e« = 1, ..., 5) can
be represented by a space-time vector v,( = 1, ..., 4) plus a scalar
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invariant s for the fifth component; a symmetrical double tensor
Tos(x,p=1,...,5 by a space-time symmetrical tensor T} (z, k =
=1,..,4) plus a vector v;( =1, ..., 4), given by the components
of T,; with only an index equal to 5, and an invariant scalar corres-
ponding to T'ss. Thus the metric of this 5-dimensional Riemannian
space can written as

(2)  do? = ypdxrdxf = V? (dx%)? 4 2 ys; dx® dx* + p,, da dx*
‘o, f=1,..,5
P
At this point we can hope to construct a unified theory by re-
quiring that the coefficients of the metric (2) are such that the equa-
tions of the geodesics

dx* dxf

3 - —_ ==
®) do Ve do

where v, denotes covariant derivation respect to x, in 5-dimensional
space, be coincident with the equations of motion of a body with
mass m and electric charge e

dx* _ dxt e . dxt
4 — Vi—+—5—F/—=0
) ds kds+czm P s

with
ds? = gy, d’ dx*

where F,' is the electromagnetic tensor.
We obtain a solution to this problem putting

(5a) V=1
(Sb) vis = B D;
(5¢) Vit = &in + B> D; D,
do\? e?
d N =14+
(54) (ds) + ctm? p?

The condition ¥ = 1 means that the lines of equations x* = const
(z =1, ..., 4) are geodecics satisfying the (3); f is a universal constant
and @, the electromagnetic potential,
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The field equations in absence of matter and electric charge are

where the first term of (6) is the contracted Riemann tensor of the
metric (2). By use of the relations (5a), (5b), (5¢), (5d), we deduce
from (6)

(7a) Ry — 12 Rgy= —B22E,
(7b) v, F*=0

where R;, and R are the contracted Riemann tensor and the curva-
ture scalar, respectively, of the metric g;, and E;, is the electromag-
netic energy tensor given by

(8) E,=F;F/+1/4F,F'g,

The equations (7a) coincide with the Einstein field equations in pre-
sence of an electromagnetic field if we put

9) 27 =p*

where y is the Einstein constant.
When there are matter and electric charge, the field equations
can be written as

(10) RaB —1/2 Yo R/lv il ol 4 Txﬁ =0
where T, is a generalization of the space-time energy tensor

8
(11) Taﬂszd_x_adi
do do

From the vanishing of the divergence of the purely geometrical terms
in (10) we can deduce

(12) Vﬁ T“ﬂ:vﬂ(;{T}'ﬂ) ;ua _['_T)\vﬁvlgla:o
and
. dx®
(13) Ve(x TH¥) =0, , lo=—""
do

which is the expression of the conservation of the energy; putting
(13) in (12) we obtain the equations of geodesics (3), as in usual Ge-
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neral Relativity. By use of the conditions (5a), (5b), (5¢) and (5d)
the field equations (10) become

2 dx; dx
142 Ry — 12 Rgy = — 2= By — 5 7% 5%
(14a) k |2 Rgy , ik X s ds
o 1 5
(14b) v, Fit = 22 p 3% ax
B ds ds
If we put
(15) T=c¢K

where K is the density of mass-energy and ¢ the velocity of the light
in the vacuum, the (14a) become the Einstein field equations in pre-
sence of matter and electromagnetic field, whereas the (14b) become
the usual Maxwell equations

(16) vk Fqk =]'i

where j* is the current-density four-vector.

So the Kaluza-Klein theory shows a unitary and coherent geo-
metrical scheme in which we can treat gravitational and electro-
magnetic field and their mutual interactions; but we have also se-
veral difficulties that we can list as in the following:

1) it is difficult to accept the existence of the fifth dimension, firts
of all because we do not have any experimental evidence of it;

2) the introduction of this fifth dimension appears very artificial:
indeed it is treated differently from the other coordinates, as we
can see in the formulae (1);

3) the generalized energy tensor (11) is introduced in a rather arbi-
trary fashion and its validity is proved a posteriori only from the
field equations (14a) and (14b): so the theory falls in a vicious circle
and lacks physical meaning;

4) the theory is not a really unified theory, because the electromagne-
tic and gravitational fields act separately, do not being entirely
transformable one in another.

Let us see how the Kaluza-Klein theory has been modified to
give more consistent descriptions of the physical phenomena,
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4 — OTHER 5-DIMENSIONAI, UNITARY THEORIES.

In 1951 THIrY [8], in connection with the ideas of Jorpan [9],
gave a generalization of the Kaluza-Klein theory, discarding the (5a),
ie the V-constancy hypothesis His equations, in the exterior case,
are

(1) GaB:Raﬂ—l/zyuﬁR':O

which become, with the help of the (1,5b), (1,5¢), (1,5d) and with
space-time metric given by

(2) &ii = Vij — Vsi Vsi
Vss
become
' A 2yeri N I | N A
Gi=G;— d 5 [Zgii FyFR—F} 1‘fk] 7 [V;0,;V —g; aV=0]

| Gs—-L 5,07y =0

G ﬁ+§ﬁzV2F2=0

where F?=1)2 F,, F¥, the operator A means A = %, (g9)), %j being
the covariant derivative respect to the metric g;; and the symbol A
referring to the geometrical quantities constructed from the metrical
tensor g,.

Unfortunately we do not have a unique physical interpretation
of V; that adopted by Thiry and Jordan is based on the correspondence

(4) V3= g

where ¢, is a variable dielectric constant of the vacuum; in this
theory we can represent the Einstein constant, in analogy with (1,9),
as

_ P
(5) =0

Obviously, being V variable, also y is variable: on this basis Jordan
and his group [10] have built a cosmological model whose applica-
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tions range from the formation of galaxies to an explanation of the
continental drift on the Earth [11].

Another interpretation, due to Marior and his coworkers [12],
assumes V' as a scalar meson field; so the third of the (3), written in
presence of matter, should become a sort of Klein-Gordon equation.

The Thiry-Jordan theory suffers of the same difficulties of the
Kaluza-Klein theory plus an additional difficulty of interpretation
for the V-field: however from the physical point of view there is a
substantial advancement in the point 4) of the previous Section, i.e.
this theory is more unified; namely a concentration of neutral matter
can give rise, in the Thiry-Jordan theory, to a non-null electromagne-
tic field.

In the early 1930 the difficulty connected with the fifth dimension
in the Kaluza-Klein theory was been avoided by VEBLEN and Horr-
MANN [13] who pointed out that the five coordinates could be inter-
preted as homogeneous projective coordinates of a 4-dimensional
space-time with projective connection. After some time, VEBLEN
(14}, ScaoureN and vAN DaNTzIG [15], following the ideas of CARTAN
16], gave a formal sistemation to the theory of projective connec-
tions. Substantially a 4-dimensional space with projective connec-
tion is a space which, in the infinitesimal neighbours of every of its
points, is a projective space and is also provided of a law of projective
representation between neighbours of two of its points infinitely close.
In this space we have a field of quadrics

(6) Q=gupdxtdx® =0 (4,B=1,..,5)

with g, = gup (W', ), * and 3 being curvilinear homogeneous coor-
dinates; for every point I’ the quadric (6) is the absolute of a local
non-euclidean metric. The conservation of the quadric field requires
that

(7) Vaig€pc=0

where the covariant derivative v, is built from the connection coef-
ficients

4 4 1 .
(8) e = = —g"™ (0c gk + 08 8kc — Ik Gcw)
BC 2
From these coefficients we can construct a projective curvature tensor
oA A A 4 R _4 _K
©) Ryps = 0, gy — Oy Ty + Tpp Tpay — Tgen 7y,
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If this tensor vanishes, we have a projectively-flat space, i.e. a space
with constant curvature; following the terminology of Cartan, we
can the tensor (9) «curvature-torsion tensors, because, as it demons-
trated, the 4-dimensional torsion is built from some components of
the projective curvature tensor

(10) 2T w = Risii

Naturally from the relation (10) we infer that in the projective con-
nection 7%, do not constitutes a tensor, at least in general.

ScHOUTEN [17] tried up to rewrite Kaluza-Klein’s theory in this
projective formalism, but unsuccessfully, because the theory is am-
biguous with respect to the choice of the connection, leaving, in ul-
timate analysis, the unitary problem determined only by arbitrary
conditions of the type of the (1,5). However others make use of this
theory, as Franr [18] who proposed the constant § of the (1,5) to
be given by

(1) p=—=

2
My ¢

where ¢ and mq are the charge and the mass of the electron, respec-
tively, and ¢ the velocity of the light in the vacuum. Also HOFFMANN
[19] built up a similar theory, making use of a projective connection,
giving results like those of Thiry-Jordan.

In 1963 pr Wrrr [20] pointed out that the Kaluza-Klein theory
is a particular case of a more general class of theories which attempt
to combine the general coordinate transformation group (which is
connected with the gravitational field) with a Yang-Mills group, i.e.
a continuous transformations group whose parameters are continuous
functions of the space-time points; the YVang-Mills groups are a ge-
neralization of the gauge group, connected with the electromagnetic
field.

5 — THE FANTAPPIE'-ARCIDIACONO THEORY.

In 1952 Faxraprpie’ [21], with his theory of «physical Universesy,
showed that, if we define as «physical Universe« a system governed
by the same laws for all the observers, this implies the existence of
a group, for which these laws are invariant. This group, conceived
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as group of motions into itself, defines in a unique fashion the geo-
metry of the space, whereas, conceived as invariance group, it fix
the admissible form of the physical laws. In 1954 FANTAPPIE [22]
applied these ideas to the study of the possible generalizations of
the Lorentz inhomogeneous group with 10 parameters and showed
that, for a 4-dimensional space-time and without changing the num-
ber of parameters, this is possible only with the group of motions
into itself of the De Sitter space-time with constant curvature and
metric given by

(1) ds? = ¢t dv* — exp (2 ct[r) (A% + d&?, + d&2)
Now, applying the transformations

Zy=r sinh (c T [r) + (&%[27) exp (cz[7)

(2) < Z,=&; exp (ct|r) ¢=1,..3)

Zy=r cosh (ct[r) — (£2/27) exp (ct/7)

where £2 = &2 4 &,2 + &2, it is easy to show [23] that the De Sitter
space-time can be represented as an hypersurface of equation

(3) _Zoz+212+222+232+242=0

imbedded in a flat 5-dimensional space; thus, from this point of view,
the De Sitter group becomes the group of transformations leaving
unchanged (3), i.e. the group of rotations in a flat 5-dimensional
space; this shows the nature of the generalization respect to the Lo-
rentz group: the homogeneous part of this latter, indeed, is isomor-
phous, from the complex point of view, to the group of rotations in
a flat 4-dimensional space.

A simple physical interpretation of the De Sitter group was given
by ArcipiacoNo [24] who introduced the distinction between «Abso-
lute Universey (De Sitter space-time) and «Relative Universesy of
every observer in which it places the physical evenements; now it
is clear that every observer can perceive the Universe only as if it
were flat, with geodesic lines appearing as straight lines: this means
that every «Relative Universey is a geodetic representation of the
De Sitter space-time on a tangent hyperplane, giving up the so-called
Beltrami metric

(7 + @45 = P[0 + &) S (@) — ()]
(@
&= )+ @+ @ (=19
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Now the transformations of the De Sitter group become projections
from the center of the quadric (3) and sections with the tangent
hyperplane: thus we can speak of «projective transformations« and
«Projective Relativity«. But these terms have also a more deep
signification: indeed we can represent the Beltrami metric in a pro-
jective fashion [25], making use of a 4-dimensional projective space,
in which the physical space-time is the region external to the abso-
lute of Cayley-Klein, of equation

(5) %2+ 2?2+ 2% 22472 =0

So the De Sitter group becomes the group of projectivities transfor-
ming into itself the quadric (5). Homogeneous coordinates can also
be introduced by the position

(6) xi=7?i

Thus the quadric (5) becomes
(7) ?512 + _2-722 + ;32 —I— 242 + }52 == 0

and the De Sitter transformations become the rotations in a flat
5-dimensional projective space; thus, from the projective point of
view, we can give a physical interpretation to the mathematical
property known from the requirement of invariance for the quadric
(3). The projective space defined as the region external to the quadric
(5) is known as Castelnuovo’s space-time and only in this space all
mathematical relationships receive a physical interpretation; natu-
rally it is convenient to use the 5-dimensional formulation with ho-
mogeneous coordinates defined by (6), because we can use the ten-
sorial calculus of the 5-dimensional Fuclidean space. The problem
of the elimination of the fifth coordinate can be solved by using the
Weierstrass normalization condition

(8) Xy Xy =172 A4=1,..,5)
from which, by use of (6), we can obtain

(9a) xs =7[A

(9b) A=l+°‘;°‘¢; o =
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The validity of (8) is proved by the fact that, making use of it and
of (6), we can go from the 5-dimensional flat Euclidean metric

(10) ds* = dx> + dx,* + dx? + dx?2 + dxs?

to the Beltrami metric (4). Namely, differentiating (9a) with the
help of (9b), we obtain

(11) d%s = — A7 3 o; dx;

From the (6) we can derive

(12) rAdx; = x,d%s + %s dx;

By substituting (9a), (11) and (12) into (10), we obtain

(13) A4 ds? = A? (dx; dx;) — («; dx;)?

which is precisely the Beltrami metric (4). From the (9a) and making
use of the Euler theorem for homogeneous functions, the derivatives
respect to the homogeneous coordinates %, can be expressed in terms
of derivatives respect to the inhomogeneous coordinates x;; the for-
mulae are

n%;

2 A

(14)
= n
}'35=—Axsas—|—z.

where # is the degree of homogeneity of the function to be derived.

With these mathematical methods ArcIpiacoNO [26] was able to
construct a «Projective Relativity« with a large number of physical
applications. Here we do not treat the problem of the mechanics
in Projective Relativity; we will note only some interesting features
as, e.g., the new formula of variation of the mass with the velocity
and the physical possibility of hyper-c velocities (perhaps connected
with tachyons?) [27]; besides, there is the interesting fact that the
linear and angular 4-momentum are synthetized, in Projective Re-
lativity, in a unique 5-dimensional tensor; as a consequence of this,
the linear and angular momentum cannot be conserved separately
and every material point of mass m, has an intrinsic energy and
an intrinsic polar moment of inertia given by

(15) Ey=myc? ; Iy = m,r?
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Much interesting, for our purposes, is the study of Maxwell’s
equations in Projective Relativity; these equations, when the indi-
ces equal to 5 are distinguished from the others, ans putting

(16) Jias = LQu 3 His=C;

can be written, in dual form, as
7
A rot Hy + A—rz (xi Hy 4 %, Hy, + 2 Hy) = Ju

Aot C; — 2 0, Hy) — 2 (,Cp — %, C; + Hyv) = Q,
7 A r?

(17) ¢
4 (div H;, + % 0, Cy) = - (x: Hy + Cp7)
7 A 7?
A ascs“_" ——'n_(xscs)
\ Ar?

For a physical interpretation of the (17), let us go to the ordinary
Restricted Relativity, with # — oo; then we obtain

(18) Rot Hy = Jiu Rot C; = 2y
DivH;,=0 DivC(C,=0

The first group of the (18) coincides with the usual Maxwell equa-
tions, whereas the second group is coincident with the equations of
relativistic hydrodynamics of incompressible fluids [28], C; and £,
being the hydrodynamical current and the vortex field, respectively.
Thus the equations (17) represent, in a unified fashion, a «magne-
tohydrodynamical« field. The De Sitter-Castelnuovo space-time offers
thus the possibility of constructing a totally unified theory of the
material (hydrodynamical) and electromagnetic fields. This is shown
clearly by the structure of the energy-momentum tensor derived from
the (17)

(19) TAB=HACHCB+ 1/4HCDHCD 545

which can be written in the form
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Ty= HsHy+ 1/4H, H, ,) — (C,Cy — 1/2C, C, 8;)
Tus=CyH,+ (E A\ C),
Ty =i (C x H)
Tss = 12[(E?* — HY) + (C;2 — C?)]

(20)

where E, and H, are the electric and magnetic field, respectively,
with E? = E,E, and H?> = H, H,. The components of the tensor
(20) with an index equal to 5 represent the interaction between elec-
tromagnetic and hydrodynamical fields, a circumstance not present
in any of the unified field theories.

The Arcidiacono theory, however, is not yet totally unified, do
not being present the gravitational field. The next step will be that
of constructing a theory in which the gravitation, as in Einstein’s
theory, is represented by an anholonomous geometry, in the sense
of Cartan, but the difference with ordinary General Relativity lies
in the fact that, whereas it uses an anholonomous geometry cons-
tructed from the holonomous geometry of the Minkowski space-
time, here the anholonomous geometry will be constructed from the
holonomous geometry of the De Sitter-Castelnuovo space-time. Thus
we can hope to arrive at a unified theory of matter (hydrodynamical),
electromagnetic and gravitational fields, because, contrarily to what
happens in usual General Relativity, the matter and electromagnetic
fields are already unified in the holonomous base geometry. This
theory will be named «Projective General Relativitys.

6 — THE INDUCED 4-DIMENSIONAI, METRIC.

Following what has been said to the end of the last Section, we
assume that the field equations in Projective General Relativity are

(1) Rip —112Rgyp=xT4s

where R,z and R are, respectively, the contrated curvature tensor
and the invariant scalar constructed from the curvature tensor (4,9),
whereas T 45 is the energy-momentum tensor (5,19). Namely, as we
have seen in the last Section, the De Sitter space-time can be re-
presented by a 5-dimensional projective space with Euclidean metric
(from the point of view of every relative observer): then an anholo-
nomous geometry constructed from the De Sitter space-time is equi-

11 — Collectanea Mathematica
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valent to an anholonomous geometry constructed from the 5-dimen-
sional Fuclidean space; but this latter method is much easy to treat
from a mathematical point of view, because we must only transfer
the Riemannian geometry of the usual General Relativity from 4
to 5 dimensions. It is to be noted, however, that, being the 5-dimen-
sional space a projective space, we must use projective connections
and whence the curvature tensor (4,9): so we arrive at the field equa-
tions (1). A word about the constant y in the right-hand side of (1):
we can put it equal to usual Einstein’s constant because, as in Gene-
ral Relativity, it connects the physical phenomena in holonomous
base geometry with the gravitation.

However, if one would make use of the equations (1), there would
be great difficulties, because in a curved-space theory we are not
immediately able to translate mathematical proceedings from the
5-dimensional to the 4-dimensional space. This problem can be sol-
ved completely in order of translating the 5-dimensional metric g4p
in an equivalent, induced 4-dimensional metric ;g:,,: indeed the nor-
malization condition (5,8) now becomes

(2) 84B ;A x—B =72

Resolving the (2) with respect to x5 and with the help of the (5,6),
we obtain

(3a) 57_5 =74
(3b) A% = gg o, 0 + 2 845 %, + gss

These formulae are very similar to the (5,9) to which they are re-
duced putting

(4) 8 = 0ap s Bas =0 ; gss =1

Differentiating (3a) and remembering that in a Riemannian space
dg,s = 0, we obtain

— 2
(5) ity = — 7 (Bap % + 8as) 4%,
A3

From the (5,12) and (5) we obtain the transformation of the 5-dimen-
sional line element
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(6) ds? = go A%, A%y + 2 o5 A%, A%s + gs5 A%

into the 4-dimensional one

(7 ds? =Zrab dx, dx,
where
(8) A* gup = Eap 855 — Las Ebs

This is the formula of the induced 4-dimensional metric; substituting
in it the values (4) we obtain exactly the Beltrami metric; therefore
(8) gives the displacements from this latter.

It is useful, at this point, to compare the formula (8) with the
(4,2) of Jordan-Thiry; the two formulae are coincident if we make
the following identifications

&i; A48 Vsi > 8is
) &s
Vii = 8ij Vss = &ss

Even if it is possible to connect, from a formal point of view, the (8)
with the (4,2), it is a matter of course that the field equations in the
two theories have a totally different meaning, both because the (1,5)
are no longer valid in Projective General Relativity, and for the dif-
ferent geometrical structure with which they are endowed.

As we cannot make use directly of the results of the previous
5-dimensional unitary theories, the more direst way to solve the
equations (1) would be that of rewriting them, by expriming the
derivatives respect to homogeneous coordinates through the deri-
vatives respect to nonhomogeneous coordinates, with the help of
(5,14) and (3b). So we could, on principle, find g,, g,s and gss in
function of nonhomogeneous coordinates and then, through the for-
mula (8), give a physical meaning to them. Also a crude calculation,
however, shows that in this fashion the equations (1) would become
rather complicated and we should not understand the function accom-
plished in them by the components of g ,; for these reasons it seemed
fruitful make use of an interesting mathematical technique deve-
loped by CarraNEO [29], known as «projections techniquey.
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7 — THE PROJECTIONS TECHNIQUE.

The projections technique takes into account the scomposition
of the space T,, tangential at the point x of a Riemannian variety,
in two supplementary subspaces, 0,, tangential to the coordinate
line x,, and Y, perpendicular to 6,, so that

(1) T,=3,+0,

Through complex mathematical methods every geometrical object of
the Riemannian variety is decomposed (i.e. it is «projected») in com-

ponents lying only on ¥,, only on 0, or mixed. All this machinery
is based on the relation

(2) 8ii = Vij — Vi ¥

where g;; is the metrical tensor of the Riemannian variety under
consideration, y;; the projection on ¥, of g;; (namely, also if only one

of the indexes is equal to 4, y;; = 0) and y, = _8i4__ The (2) is

q 7 = 0) L Vi (2)
very similar to the formula of Jordan-Thiry and, as we have seen for
this latter, we can connect it with the (6,8); for doing this, it is
enough let to vary the indexes in (2) from 1 to 5 and make the
following substitutions

~

o..
(3) gi,'"é’AB;7;,-—>A4°i=yAB;yi—>—g_”i=yA
8ss Vgss

Through the (3) it is possible to write systematically the geometrical
objects of the 5-dimensional Riemannian space in terms of Eu» &as
gss only; naturally the formulae, also being analogous to those of
Cattaneo, have a different physical meaning. We will develope the
calculations only for the Christoffel symbols of the first kind; the
formulae of Cattaneo, translated in our language are

(A4B,C) = (AB, C)* — 1/2 [y, (25c + I?Bc) + 75 (Qca + Kea) +
(4)
+ vc (Qas — EAB)]
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where

(52) (4B,C)*=1]2 (5‘4 Vg: +§B Yac — 79'c Ya4B)

(Sb) EAB =105 YaB

(5¢) Qup =05+ 82, ¥YB — Y4 53

(Sd) Qs = GAB + aA Ye + Va 63 +2y478 55 a

(59 Qus [aA ij)+a ( ]

‘)
) D = [a,, VB) 5 (”)

~ 1
(5g) Q4 = — s aA ( ) + as (Z‘)
Vs 14
(5h) §A = —7Ps 6A ( ) - (Z—)
V4
The symbols 9, and &5 mean
(62) 79’.4 = _A +ya ¥’ 55
(6b) 05 = y° 8s
(6¢) 7= 1

Vess

where 9, and 5 are the usual derivatives respect to homogeneous
coordinates defined in the (5,14); developing the calculations with
the help of the (3), we obtain (naturally all the symbols are 4-dimen-

sional, being null the components also with only one index equal
to 5)

3 ~ ~ ~
((l b, C)* =4 (db, C)P + % (xu Gbc + X Gac — X Gab) -
(7) - ;__17, [GuS Xs as (A4 abc) + Gbs Xs as (A4 Eac) - GDS Xs as (A4 aﬂb)} +

A3 ~ ~ ~
755 (GasGuc + Gus G = Gus G
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where

4

4
(ab, c), = 2 A*[ab, c] — -ZA— <ab,c>+ ia (ab, €);; Gop =

&ss 8ss
(8) -
:&;Gﬁ:gﬁ;a’ab=@'
8ss 8ss 8ss
with
(9a) [ab, c] = Gy 0, A + Gpo 0y A — Ggy 0, A
(9b) < ab,c> = Ebc 0, gss + Eac 0y gss — Eab 0 gss

and (ab, c), are the usual Christoffel symbols of the first kind cons-

tructed from the metric Eab. In a similar fashion we can obtain for
the others geometrical objects defined in the (5)

~ 3

(10a) K, = r_g—3—/2 (”Eab— 4A§abxs 0,4 — A*x, 8sgzb+A25ab %5 05 8ss)
55 R

~ A
(10b) Q,, = gss'*[4 O Gb) + Nx(a. Gb)s— 7 G(uS %, O; Gb)S + 2N G,5Gys);

~

A n
(10c) Qg = gss'?[A a[u Gb]s + N Xla Gb]s - 7 G[uS % O Gb]s] ;N =

72 A

12
Ry

~ _ Ap.32? Ag,
(10d) Q, = —g553[— gés 0,855 +N x,855°*+ _ﬁsz_i’s_xs 0s gss +

A
+ N g5 8s5°* + _553 X &ss Os 8as — N gus gss” ]
~ o~ A ,
(10e) 2, =0Q, — 2 P gss %s 855 05 8as — N 045 &5

Making use of the (4) we are now able to exprime the 5-dimensional
Christoffel symbols of the first kind only in terms of Eab, g.s and
8ss-

At this point we could make use of all the formulae of Cattaneo
to exprime in term of the same variables also all others 5-dimensional
geometrical objects, as the Christoffel symbols of the second kind,
the Riemann curvature tensor and the Ricci tensor; we prefer do
not make heavy this work with the introduction of exceedingly long
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and complicated formulae; we will note only that the formulae of
the Christoffel symbols of the second kind do not have a great inte-
rest in order of rewriting in 4-dimensional form the field equations,
because the Riemann curvature tensor (and whence the Ricei tensor)
can be written in a totally covariant form, making use only of the
Christoffel symbols of the first kind through the well-known formula

(1 Rascp = 1/2 (9c4 &sp — Opa &sc + 0p5 8ac — Ocs Lap) +
11
+¢® [(C4, R) (DB, S) — (D4, R) (CB, 9)]

For a better evaluation of the difference between the Cattaneo
formulae and the ours ones, it will be useful to premise a brief outline
on the physical meaning of the symbols present in the former. We
must, first of all, remember that in General Relativity the concept
of physical reference system is substituted by that of «reference
fluidy; to choose such a fluid implies to choose, in a Riemannian va-
riety V,, a congruence I' of timelike lines, constituted by the world-
lines of the particles which constitute the fluid. Mathematically this
means to fix a field of vectors tangential to these lines: the y, of Cat-
taneo (4-dimensional analogue of our y,) are precisely the compo-
nents of such a field and, maintaining the hydrodynamical analogy,
they can be viewed as proportionals to the components of the fluid
«elocityy. It follows, then, that 5,7 is coincident with the «spatial
vortex tensory of this fluid, whereas @, gives the «space-time vortex
tensory; finally I?ﬁ represents the «fluid deformation velocity tensory.
In the formulae (7)-(10), on the contrary, we do not have the con-
cept of «reference fluids, because the induced metric gr:,,, represents
only formally a 4-dimensional projection of g,5, being really only a
4-dimensional «formulationy of it. Besides, in the (7)-(10) there is
an explicit dependence from the space-time coordinates x,, whereas
in the Cattaneo formulae there is a dependence from the y,, i.e. from
the «velocitiesy; this circumstance, distinguishing the 5-dimensional
from the 4-dimensional case, is strictly connected with the fact that
the 4-dimensional formulation of the Restricted Relativity implies
the condition u,u, = — ¢* (velocity condition), whereas the 5-di-
mensional formulation of the Projective Relativity is possible only
with the condition %, %, = #? (coordinate condition). To conclude,
through the formula (6,8) of the induced metric and the «projections
techniquey of Cattaneo, we are able to rewrite the field equations
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(6,1) in a 4-dimensional form with a clear view of the role played in
them by g,s and gss and without make use of the complicated Cartan
methods. The next step will be that of finding solutions of the (6,1)
interesting from the physical point of view.

The Author wishes to thank Prof. G. Arcipiacono for suggesting
the problem and constant encouragement and advice.
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