A NOTE ON THE INTEGRAL REPRESENTATION
FOR THE PRODUCT OF TWO GENERALIZED
RICE POLYNOMIALS

By

H. M. SrivasTAvVA

SuMMARY: A recent formula of Manocha [4] involving the product of
two generalized Rice polynomials is shown to follow immediately from
more general results in the theory of generalized hypergeometric
polynomials derived earlier in a joint paper of the present author [6].

1. INTRODUCTION.

In a recent paper reviewed by us for the Zentralblatt fiir Mathe-
matik [189 (1970), pp. 342-343], Manocha [4, p. 268] has proved the
following result (in corrected form):
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where H,f) [, p, v] denotes the generalized Rice polynomial de-
fined by (see [3], p. 157)
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with, as usual,
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Note that the conditions of validity of formula {1.1), which are
not stated in Manocha’s paper, are £ > 0,7 > 0, « + f>—1y+
+6>—1lLa+y>—1and p + ¢> 1. Also the polynomials
{H,*P [, p,v]|n=0,1,2,..}, whose study was initiated by Khan-
dekar [3], would reduce to the ordinary Rice polynomials (see
[5], p. 108) '
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when o« = f = 0.

The object of the present note is to show that the formula (1.1)
is indeed a very special case of our earlier multiple integral (see [6],
formula (1.3)) representing the product of two different members of
the class of polynomials {@, [2]} introduced by means of the genera-
ting relation (see, e.g., [1], p. 43)
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where, for convenience, (a,) is taken to abbreviate the sequence of
p parameters ay, ay, ..., @5, and similarly for (b,).

From (1.4) it follows at once that
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provided that the parameters are independent of #.
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We remark in passing that several specialized or limiting forms
of the polynomial set (1.5) occur throughout the literature. To the
references given in our earlier paper [6] it would seem appropriate
to add the late Professor Chaundy’s paper [2] where several genera-
ting relations including (1.4) are discussed.

2. DERIVATION OF (1.1).

We recall that the main formula (1.3) in our earlier paper [6]
provides for the product
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and 1>0, >0,a4,>0,4,>0,v=1,2,..,p, 0, +0b,>—1,
c=12,..4

Its special case p = ¢ — 1 = 1, which would serve our purpose
here, was indeed stated in our paper (see [6], formula (2.1)) in the
form:
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provided >0, 1'>0,4>0,4'>0, b;+¥";>— 1, and b, +b',> — 1.

Now compare (1.2) with the special case p =g — 1 = 1 of (1.5)
to obtain the relationship

Gat+p+1;
(2.2)  H,=P [, p,v] =M¢”[ v] ]
@+ 8+ 1), “t 1,5

In view of the relationship (2.2), formula (1.1) under the aforemen-
tioned conditions would follow at once from our earlier result (2.1)
when the parameters are appropriately specialized, that is, when
in (2.1) we replace

(i) a & by &

(i LA bya+pB+1y+6+1;
(iii) b4, 8"y by a, y;

(iv) b3, 02 by p — 1, ¢ — 1;

and multiply both sides by the constant

@+Duly+1,
@+B84+Duly+6+1),
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