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by
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In this pair of papers, the basic results of the theory of perfect
sequence spaces, as found in [8] and [9], are established for more
general classes of ordered vector spaces, in particular, for the perfect
Riesz spaces. This lattice-theoretic approach leads to many new
results and to strengthened forms of most of the known omnes, in
addition to providing a more general context for the theory. The
recent ancestors of this investigation are [2], [3], [7], [1] and [11].

Recently, several papers by Fremlin ([4], [5]) have appeared,
which complement this present pair very nicely.

Introduction. Let A be a vector space of real valued sequences,
where addition and scalar multiplication are defined as usual. In
the terminology of [8], the «-dual space 4* of 1 is the set of all real
valued sequences b, which have the following property: For every
a, € A, the sequence a,b, shall be absolutely summable. Each b, € 4*
defines a linear functional ¢ on A by means of

If L is a Riesz space (vector lattice), we define its a-dual space
to be the set of all linear functionals ¢ on L which are bounded on
the order intervals of L and which satisfy lim | ¢ («,) | = 0, whenever

t

u, is a downwardly directed set of elements in L with infinum O.
If L is a Riesz space of real valued sequences, in the natural order-
ing, which contains those sequences which vanish outside a finite
set, then L* can be identified with the «-dual space of L as we first
defined it.

We shall almost always assume that the Riesz space L in ques-
tion has the property that L* separates the points of L. In this case
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L can be imbedded (monomorphically) in L** in a natural way. L is
said to be perfect if L = L**.

Now follows a description of the contents of the various para-
graphs. After bringing definitions and fundamental facts in §0, we
prove in § | that direct sums, products, and certain projective limits
of perfect spaces are perfect. The next paragraph introduces the basic
topological apparatus. The proofs we furnish for most of the known
results are new. We obtain an interesting new result about the role
played by the topology T« of uniform convergence on the strongly
bounded sets of the dual space L’ of a locally convex Riesz space
L[T]. In §3, we discuss the completion of L with respect to the
topology of uniform convergence on the order intervals of L’. Con-
sequently, we obtain a variety of results, including several topological
characterizations of perfect Riesz Spaces, and a theorem (3.(2)) which
asserts that all semi-reflexive locally convex Riesz Spaces are perfect
and complete. We conclude §3 by showing that in many cases,
the topological completion of L will again have L* as its a-dual space.

In § 4, we define a generalization of the Stufenrdume and gestufte

Riaume of Kothe’s, and obtain a characterization of perfect spaces
as projective limits of function spaces of type Ll In § 5, the longest
paragraph, we begin by generalizing a result of Gelfand’s, which
describes the compact sets in a separable Banach space, to a larger
class of locally convex spaces. We then apply this to obtain a cha-
racterization of the sets which are compact (or, if the quasi-comple-
teness assumption is omitted, for the precompact sets) for the Mackey
topology, for a large class of locally convex Riesz spaces. Then se-
veral characterizations are given for the sets precompact with respect
to the topology of uniform convergence on the order intervals in L'.
(We assume that L’ is contained in L?¥). The last paragraph (§6) is
devoted to atomic Riesz Spaces, which we characterize algebraically
and topologically. The final theorem states that, for an important
class of topologies, L is atomic if and only if the same is true of its
completion.
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0. Definitions and Basic Results.

Unless otherwise given in this section, our terminology and no-
tation are that of [11]. If L is a Riesz space and f, g€ L, we write
f>g to mean f>g and f# g and define L, = {feL: f> 0}. If
fi 1s a generalized sequence in L such that f, < f, whenever ¢ > ¢,
we write f, | . In addition, if {f;) has an infimum f, we write f;, | f.
We define f,* and f, 1 f similarly. A subset S of L is called solid if
feS whenever | f| < |g| for some ge S. A Riesz subspace M of L is
called monotonely closed, if f, 1 f, f,e M implies fe M. A solid subspace
(an ideal) in L which is monotonely closed is called a band. An ideal
M in L is said. to be order dense if the smallest band containing M is L
itself. A family ¢,, xe A, of elements of L, satisfying inf (e, e5) = 0
if o £ B is called an order basis for L, if the band generated by the
e, 2€A, is L.

If L, and L, are two Riesz spaces, we order the set of linear map-
pings from L; to L, by defining A > 0 to mean Au >0 forallue(L;),.
We say that such a mapping A preserves ovder relations, if Ag = sup
A(S) in L, follows from g =sup S, S a subset of L;. A linear ¢so-
morphism A from L; to L, which preserves order relations is called
a Riesz space tsomorphism. A~1 will also have this property.

If S is a subset of the Riesz space L, then S? denotes, as usual,
the set {fe L: inf (|f|, |g|)=0 for all g€ S}. S? is a band, and according
to a famous result of F. Riesz, if L is a Dedekind complete Riesz
space (a DCR-space), then L = S? @ S??, so, in this case, S?? is the
band generated by S.

Let L be a Riesz space, and let P be a projection on L. We call
P a Riesz projection, if for some band M in L such that L = M @ M?,
P is the projection of L onto M along M?. If fe L has the form f=g +
+ h,geM, he M?, then g is called the Riesz component of fin M.
Riesz projections have the following properties (cf. [6] §2.):

(1) The Riesz projections of the Riesz space L are just those projections
P of L, which satisfy 0 < P <1.

Riesz projections preserve order relations.

We denote by L™, the set of all linear functionals on L, which
are bounded on the order intervals [f, Al={geL: f<g <h} of L
(order bounded linear functionals).
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(2) With respect to its natural ordering, L™ is a DCR-space, and the
following formulas hold (cf. [11] §§ 18, 19):

For feL and pe L™

a) ¢ (If]) =sup (p(v):0<v <|f])

b) l@l([fl) =sup (p(g): 1g!l <IfI) (= le () <lel(f]
o lp|(f7)=max (p(f):0<yp <|pl)

d) [e|(If]) =max (v (f): iyl =Zle¢l)

e) If ¢, 1 o, then @ (u) = sup ¢, (w) for all ue L.

We designate by L* the set of all g L™ which have the property
that lim | ¢ (u;) | = 0, whenever u, | O (order continuous linear func-
tionals). L* is a band in L™ ([11] Theorem 27.2). To show ge L* it
suffices to consider lim |¢| (#,), where u > u, | 0.

Examples of L*: If (E,M,m) is a measure space where every set of
infinite measure has a subset with finite non-zero measure, then for
1<p<oo,(LP(E, M, m))*=LI(E,M,m) (1/p+1]g=1). (L (E, M, m))*
is the Banach dual space of L1 (E, M, m), and is equal to L* (E, M, m)
if and only if L (E, M, m) is dedekind complete. (cf. § 4).

If L* separates the elements of L, i.e. if o(L*) (the polar in
L) = {0}, then L is called an admissable Riesz space.

One sees immediately that admissable Riesz spaces are archi-
medean.

The following result (a consequence of ([11] I,emma 27.9)) will be
used implicitly throughout this paper.

(3) Let L be an admissable Riesz space, and let L' be an ideal tn L*. L'
1s order dense in L* if and only if o(L’) = {0}.

Let L’ be an ideal in L™. Corresponding to each fe L we define
a linear functional f” on L’ by setting f" (¢) = ¢ (f) for each pe L’
It follows from (2e) that f” € (L')*, and from (2d) and (2b) that
[f"1=1f|". It is easy to check that the mapping f->f" (L into
(L")*) preserves order relations if and only if L'c L* If o(L') ={0},
this mapping is 1-1, and we can consider L to be a Riesz subspace of
(L')*. We have the following important theorem ([11] Theorems 32.11
and 32.7).
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(4) Let L be an admissable Riesz space, and let L' be an order dense
tdeal in L*. Considering L as a Riesz subspace of (L')*, we denote by
D the ideal genevated by L in (L')*. D has the following properties:

a) IfgeD then g =sup (feL: f <g)=inf (heL:g <h), Thus L=D
if and only if L is dedekind complete.

b) D* = L~

c) D s order dense in L'*.

The admissable Riesz space L is said to be perfect, if L = L*.
Perfect Riesz spaces are characterized by the Beppo-Levi property:

(5) ([11] Theorem 28.4) An adwmissable Riesz space L is perfect if and
only if follows from 0 < wu,t and sup ¢ (u;) < oo for every @e(L*)..
that sup w, exists in L.

With the aid of (5) one easily obtains

(6) For every Riesz space L, both L™ and L* are perfect.

1. Sums, Products and Projective Limits

Let L,,be B be a family of Riesz spaces. With respect to the
coordinatewise ordering the Cartesian product IIZ, is a Riesz
B
space. Let L be a Riesz subspace of [IL,. We define the a-dual
B

space L* of L as

L= (qo;,EH (Ly*) E|<p,, L(1f,]) < oo for all f=(f,)eL}

The direct sum, @ L, is the subspace of Il L, generated by the
B B
L,, beB.

(1) Let L be a Riesz subspace of 1L L,, which contains the direct sum
B

@D Ly. Then L* can be identified with L*.

B

L is admassable iff each L,, be B is.

Proof. The second statement follows immediately from the first, so
we discuss the latter. Since L contains @ L,, every g€ L* defines an
B

element (¢,) € 11 (L,*) by means of ¢, (f) = ¢ (f), feL,, beB.
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We claim that the correspondence ¢ — (p,) is a Riesz space
isomorphism from L* to L% It is clear that this is a positive linear

mapping from L* to II (L,%), and from 0.(2b) it follows that
B

lgs|=|@ |5 ie. |@|— (| @ |). We designate by F (B) the directed set of

finite subsets B’ of B. For each f= (f,) € L wehave (X |f,|) 1 sp | f1-
Consequently, for each ¢ € L* we have B

*) o] (If|)=Sup(§|(p\(|fbl)1 B'e F (B)) = % o1l (1fs 1)
and

(**) inf (@ (1 fI) — BE s (1 fo])] - B'e F(B)) =0

From (*) it follows that (g,) € L, and from (**) that p =0if ¢, =0
for all be B, i.e. the correspondence is 1-1.

Our proof is complete if we show that each 0<(g,)eL* is the
image of some 0 < @e L*. For a given non-negative (g,) € L*, we
define a positive linear functional on L by

?(f) =50 (f) = Za(f).

Let u = (u,) and u, = (uy) | 0 with #, <u be givenin L. Let {b;, b5, ...}
be a countable subset of B such that ¢ (#) = § @5, (#s;). Then we also
have ¢ (1) =§ @, () for all £. For a give;1=i'eal e > 0, we choose
N = N(e) so 11:11l‘ge, that E @b, (15,) < £]2. Since (,) € I (L), there is
a to such that for £ > t10=,.Nq7+,,: (upe) < €[2N for ¢ =1, 21,9..., N. Then

(%] N ]
@ () = _21% ) =-E1 ) ‘*‘__% Ps; (Un)

+1
N
< Y e/2N + g/2 = e.
=1
Thus inf ¢ (#,)=0, i.e. pe L*. Further, (¢,) is the element associated
t
with ¢ by the mapping. g.e.d.

From (1) it follows easily that (Il L,)* = @ (L,") and that
B B
(B Ly)* = II (Ly*). Consequently, we have
B B
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(2). Direct sums and products of perfect spaces are perfect.

With the help of the following two lemmas, we will establish a
similar result for a class of projective limits of perfect spaces.

(3) Let B be an wpwardly divected set and let L, be B be a family of
Riesz spaces indexed by B. Assume further, that for every pair a << b
wn B, there exists a linear mapping A,, from L, to L, which preserves
ovder relations, such that for a < b < ¢ we have A, A,, = A,,. Then
the projective limit L = hm A, (Ly) ts a monotonically closed Riesz

subspace of H L,

Proof. For f=(f,) €L, we have, by the definition of projec-
tive limit, f, = A,, f, for every pair a < b. Then we have also
|fol = 14w fol = Al fpl, so [fI =(If,]) € L. This shows that
L is a Riesz subspace of H L,. Assume, finally, that fe H L, is the

supremum of f, = (f,) € L Then for every a < b, f, = sup fa=
=sup A, fis = Ay (sup fo) = Au fy, so f also belongs to L. This
t i

shows that L is monotonically closed.

(4) A monotonically closed Riesz subspace M of a perfect space L is
perfect.

Proof. We begin by showing that u, | 0 in M implies %, | 0 in
L: It follows from 0 < u, | and the Dedekind completeness of L
that u, | v for some ve L. But since M is monotonically closed, we
have v eM , so0 v = 0 as we asserted.

Now it becomes obvious that the restriction of an element of
L* to M defines an element of M*. So if the family 0 < »,% in M
has the property, that sup ¢ (v,) <o for every 0 < g e M* then also
sup @(v;) <oo for all 0 < pe L*. From 0. (5) it follows that v = sup
v, exists in L, and since M is monotonically closed v € M, so with the
help of 0.(5) again, we see that M is perfect.

Applying (3), (2) and (4) we have
(5) Every projective limit of perfect spaces with respect to mappings
which preserve ovder relations s itself a perfect space.
2. Locally Convex Riesz Spaces.

A locally convex topological vector space (for notation, defini-
tions and basic results we refer to [10])L[7] such that L is a Riesz
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space is called a locally convex Riesz space, if T posesses a fundamen-
tal system of solid neighborhoods. For such a topology, the lattice
operations are continuous, so the set {feL:f~ =0 ={feL:f > 0}
is closed.

Let L be a Riesz space such that °(L™) = {0} and let L’ be an
ideal in L~ for which °(L') = {0} holds. We designate the topology
of uniform convergence on the order intervals of L' by T (L').
It follows from 0.(2d) that T (L) is generated by the seminorms
l@|(l-1), g L'. Thus L[T\,(L")] is a locally convex Riesz space.

It is not difficult to see that the following theorem holds (cf. [6]
Theorem 1.14).

(1) If L[T is a locally convex Riesz space, thew its dual space L' is
an ideal in L~.

Conversely, if L is a Riesz space and L' is an ideal in L™ such
that °(L") = {0}, then the order intervals of L' ave T,(L)-compact; so
L[T (L")] vs a locally convex Riesz space with dual space L'.

Since (cf. 0. (2b)) the polar of a solid set in L is a solid set in L',
we see from (1) that T, (L’) is weaker than every other topology T
for which L[T] is a locally convex Riesz space with dual space L.

(2) In a locally convex Riesz space L[T], the Riesz projections are con-
Linsous.

Proor: If P is a Riesz projection, it follows from 0. (1) that | Pf| =
= P|f| <|f| holds for all fe L. So if U is a solid T-neighborhood
of 0, P(U)c U.

1t follows from (2) that, in a locally convex DC R-space, bands
are closed. But this is also true in general.

(3) If L[T] 4s a locally convex Riesz space, then every band in L is
T~closed.

Proor: Since the dual space L’ of L [T] satisfies °(L’) {0}, L is
archimedean. So if M is a band in L, M = M??, by ([11] Theorem
29.10). Thus M is the intersection of the sets {fe L: inf (|f|, |g]) =
= 0, ge M?*}. Since each mapping f —inf (|f|, |g|) is T-continuous,
it follows that M is T-closed.

Given a Riesz space L and an ideal L’ in L™ such that °(L) = {0},
it is important to know whether or not T (L), the topology of
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uniform convergence on the order intervals of L, is admissable for
< L,L’'>. The following result is due to Kawai ([7] theorem 5.1).

(4) Let L be a Riesz space. For an ideal L' in L™ such that °(L’)= {0},
the conditions a) — c) are equivalent.

a) The order intervals of L are T (L')-compact.
b) L is dedekind complete and L' € L*.
c) L is an ideal in (L')*.
ProorF. Since L ¢ (L)%, ¢) «= a) by (1). By 0. (4) b) == ¢).

We deduce from (4) and the remark following (1) that the con-
ditions a) — ¢) are necessary and sufficient for the existence of a
topology T on L’, admissable for << L,L’ >, with respect to which
L’'[T] is a locally convex Riesz space.

As an application of (4), we have:

(5) Let L be an admissable DCR-space, and let L' be an ideal in L*
such that °(L') ={0y. Then L[T,(L')] is a locally convex Riesz space.

Proor. The polar of a solid set being solid (cf. 0. (2d)), it suffices to
show that the solid hull of a T (L)-bounded set is T (L)-bounded.
Since L' [Ty (L)] is a locally convex Riesz space, the solid hulls of
the bounded sets in L'[T,(L)] are bounded. Applying Mackey’s
Theorem and (4), we obtain that these sets are precisely the T (L)-
bounded sets.

In general, we can say the following:

(6) Let L be a Riesz space. If L' is an ideal in L™ such that °(L') =
= {0}, then Ty (L’), the topology of uniform convergence on the strongly
(i.e. Ty (L)-bounded subsets of L', is locally solid.

If, in addition, L' is a band in L™, then T, (L') is the stromgest
locally solid locally convex topology generated by T (L)-bounded sets of L'.

PRrOOF: To prove the first assertion, we have to show that the solid
hull of a strongly bounded subset B of L' is strongly bounded. Since
T\ (L) is locally solid, the solid hull of every T (L’)-bounded
subset of L is T  (L')-bounded. But by (1), T}, (L") is an admissable
topology for < L,L'>, so the same is true of the T, (L)-bounded
subsets of L. Let A be a solid 7 (L’)-bounded subset of L. Then
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sup sup [g¢| (| f]) = sup sup (sup |¢ (g)I)
jeA  eB fed

lgl=ifl ¢€B

=sup sup |¢ (f)| < .
f€eA Beg

It follws that the solid hull of B is strongly bounded.

Since the solid hull of a set which is equicontinuous for a locally
solid topology is again equicontinuous, the second statement of the
theorem is equivalent to the assertion that every solid 7 (L)-boun-
ded set B in L' is strongly bounded. If this were not the case,
we could find a solid T, (L)-bounded subset A in L such that
sup (@l (If]): feA, pe B) = oo, from which it follows that there
exist sequences |f,|€A and |g,|€ B such that |¢,| (| f,|) == 2"

As B is T (L)-bounded, X 27" |, | (|f]) <oo for all fe L. Thus
227" |g,| exists in L™. By assumption, L’ is a band in L™, so

227" ¢, | = sup (§ 2-*|g@,|)eLl’. But
m 1

sup (@27 @ ) (/o 1) < sup 277 @, | (I fp]) < sup p = oo,

which is absurd, because f, is a sequence in A4, a T, (L')-bounded set.

3. Completness Properties

Our principal goal in this section is to derive topological charac-
terizations of those Riesz spaces which are perfect.

(1) (cf. Peressini [12]) Let L be a Riesz space. Then L~ is T\, (L)-
complete.
Thus, every perfect space L is complete with respect to Ty (L7).

Proor: Let ¢, be a generalized Cauchy sequence in L™ [T (L)]
with limit ¢ in the algebraic dual space of L. Let 0 <wue L be given.
For every fe[— u, %] we have

le (/) =1lm | (f)| <Hm |g | (If]) SLm || (#) < oo.

Thus ¢ is bounded on order intervals, i.e. p € L™, This shows that
L™ is T\ (L)-complete. It follows from 2.(3) that L* is T\, (L)-
closed in L™ and thus is also complete. L** is a band in (L*)~, so,
if L = L*, L is complete for T (L).
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We show now, as a kind of converse to (1), that every Riesz space
which is quasi-complete with respect to some T, -topology is of
the form L* for some L, i.e., is perfect. If L is a DCR-space (2a)
below follows from 3.3 of [12] via 0. (4b).

(2) Let L be a Riesz space. If L' is an ideal in L™ such that °(L') = {0},
then:

a) The completion of L with respect to T\ (L") is (L')*;
b) The quasi-completion of L [T\ (L")] coincides with the completion,;

c) If L' has a countable order basis, then the sequential completion of
L with respect to T, (L') is (L')*;

d) If LT (L")] s complete, then L' € L*.

Proor: a). By (1), (L")* is T} (L')-complete. Clearly, I, considered
as a subspace of (L')*, is T, (L')-dense in (L')*. By 0. {4), L' is an
order dense ideal in (L’)*, so 2. (4) asserts that T (L’) is an admis-
sable topology for <(L')*,L'>. Thus L is also Ty (L’)-dense in
(L')*, and a) follows.

b). Let L denote the quasi-completion of L [T\, (L")]. By a), we can
consider L to be a T, -dense subspace of (L')* and we need only
show that L is T, (L')-closed in (L’)*. Since the lattice operations
in L are T, (L')-continuous, L is a Riesz subspace of (L')%, so, by
Theorem 13 of [5], it is closed if it is monotonely closed. Assume
fe(L')* is such that f; 1 f for some family f,e L. Then f, t f, where s
is a variable of the set {s:f; > f,}, f,, being a fixed member of f,.
The family f, is contained in [f;, f] and is thus T (L’)-bounded, and,
by (2e), lim || (|f—f ) =1lim @] (f—f) =0 for all peL’, ie f=
= Ty (L')-lim f,. Since L is quasi-complete for T\ (L"), it follows
that fe L, which shows that L is monotonely closed, and our proof
of b) is complete.

¢) If L' has a countable order basis, then whenever f;t fin (L)%,
we can find (cf. [11] Corollary 31.14) a sequence f;, € {f;} such that
fi. ~f. Making the appropriate changes in the proof of b), we obtain c).

d) If L = (L)* (cf.a), then L' c (L')* = L~
As a corollary to (2) we have:

(3) Let L[T] be a semi-reflexive locally comvex Riesz space with dual
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space L'. Then (L')* = L and also L' € L*, with equality holding
if L[T] is reflextve.

In any case, L is perfect and L [T] is complete.

Proor: If L[T] is semi-reflexive, then L is quasi-complete for T (L"),
and thus also quasi-complete for T, (L’). By (2), L [T, (L")] (and
therefore also L [T], cf. the remarks below) is complete, L = (L')*,
and L' c L~

If L[T] is reflexive, then L' [T (L)] is semi-reflexive, so by what
we have just proved, L' = L~

According to ([10] 18,4.(4)), the T, (L)-completeness of L* im-
plies the completeness of L*[77] for every locally convex vector space
topology T which is stronger than T, (L) and weaker than T, (L).
(Such topologies have fundamental neighborhood systems at 0 whose
members are polars of T (L)-bounded sets in L and are thus T (L)-
closed by ([10] 20,7.(6))). We make special note of two cases.

(4). L* [T, (L)] and L*[T, (L)] are complete.

For the next result (cf. [2], Theorem 5.2), we strengthen the
hypothesis on L.

(5) If L is admissable Dedekind complete Riesz space, then L* [T (L)]
is sequentially complete.

Proof: Let ¢, be a weak Cauchy sequence in L* and let T be a con-
tinuous linear map from L* [T, (L)] to Il. Since /! is weakly complete
{T$, is relatively weakly compact. It will follow from 6. (Ib) that
{¢,} must also be relatively compact and hence convergent in
L* [T, (L)].

Consequently, perfect spaces are T, (L?)-sequentially complete.
It follows from (2c) that the converse statement holds if L has a
countable order basis. A counterexample to the general converse is
provided by the space w, 0 of all real valued functions on the un-
countable set A4, which have countable support.

We close this section by showing that the dual space L* of an
admissable Riesz space L has the following stability property.

(6) Let L be an admissable Riesz space and let T be a locally solid lo-
cally convex topology on L which is finer than T (L*) and weaker than
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Tp(L) (cf. 2.(6)). If L denotes the completion of L with respect to
T, then (L)* can be identified with L*.

Proor: Let B be a solid T-equicontinuous subset of L* and let f be
an element of L**. It follows from 0. (4a, c) that there exists a family
0 <u,tin L such that u, 1 |f|. Since the set {u;} is T,(L*)-bounded,
and since, by assumption, B is strongly bounded, we have

sap (¢ | (1f]) :9eB) =sup (sup (jg|(w): peB) < .

Thus B is T,(L**)-bounded. It follows now from the remarks pre-
ceding (4) that L** is complete for the topology of uniform conver-
gence on the equicontinuous subsets of 7 in L# so L can be identi-
fied with the closure of L in L* with respect to this topology. Since
the lattice operations in L are T-continuous, L is a Riesz subspace
of L=

We complete the proof of (5) by showing that if L is a Riesz
subspace of L* satisfying L ¢ L € L*, then (L)* = L*. Let u, | 0
in L be given. We assert that u, J 0 in L#: Indeed, let 0 <wvel*,
be such that v < u, for all . For every element 0 <wve L**, there
exists a family 0 <wv,% in L such that vt v (This follows from O.
(4a,c)). But since v,eL € L and 0<wv, <v <u, for all ¢ implies
v, = 0, it follows that v = 0. So %, | 0in L**. Further, L is T, (L***) =
= T, (L*)-dense in L?, because this is true of L. Thus we can con-
clude that L* = L** c (L)*. On the other hand, if %, | 0 in L, than
an argument almost identical to the one just given shows that #; | 0
in L* Further, L is T, ((L)*)-dense in L : For if pe(L)* vanishes on
L, then for every 0 <we L, since there exists a family v, € L such that
v — v, [0 in L**, and thus also in L as we have shown, we have
lo ()| =1lim|g{® —v)]| =0, so ¢ = 0. It follows that (L)* c L%

and hence that (L)* = L*

4. Step spaces and g-spaces. Representation Theorems.

Let L be an admissable DCR-space and let {f,} % {0} be a coun-
table subset of L. We define L, (f,) as the ideal generated by {f,} in
L and L, (f,) as (L; (f,))* Ls (f,) is called the step space (Stufenraum)
of the steps f, and L,(f,) is called the g-space (gestufter Raum) asso-
ciated with L, (f,). Since L; (f,) is also generated by the set {|f],

sup (If1l, 1f21), sup (1fil, [fal, [f2), ..} we can {and will) always
assume that the steps f, form an increasing sequence of positive

7 — Collectanea Mathematica
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elements. L, (f,) is perfect, by 0.(6). Being an ideal in L, L (f,)
is Dedekind complete. But we can prove more.

(1) The spaces L, (f,) and L, (f,) are both perfect. With respect to the
topology Ty [(Ls (fu))), L(f,) is an (F)-space whose dual space
is Ly (f,)-

Proor. Let g be an element of L, (f,). Then for some »’, |g|< f,,
so |¢| (Ig]) < lo| (f,r). Hence, the topology T (L, (f,)) is generated. by
the countable family of seminorms |- |(f,) and so is metrizable. By
3.(1), L, (f,) is complete for this topology. Thus L, (f,) [Ty (L, (f.))]
is an (F)-space and by 2. (4a), its dual space is L, (f,).

It remains to show that L, (f,) = (L, (f,))*. According to 2.(4c),
L, (f,) is an order dense ideal in (L, (f,))*. Let 0 <wue (L, (f,))* be
given and let 0 < u, e L, (f,) be such that #, t #. As a weakly bounded
(fusy € [0, u]) set in the dual space of an (F)-space, {#;} is relatively
weakly compact ([10] 21,5.(4)). But u, is T (L, (f,))-convergent to
win (L, (f)), so uwe L(f,). Thus (L, (f,)* = L (f,)-

If {f} (5%4{0}) contains only a single element #, our proof of (1)
shows that L, (u) [T, (L, (»))] is a (B)-space with norm | - | (). We
denote this {B)-space by L!(#) and its dual space, which we have
shown to be L, (u), by L*° (u). This change of notation is justified
by the following theorem.

(2). There exists a locally compact space E and a Radon measure m
on E such that Ll (u) can be mapped linearly, isometrically and order
isomorphically onto L1 (E,m).

Proor. The norm ||-|| = |-|(u) satisfies |||@||| =1l ¢]|| for all
pe Ll (u)and ||g + || = [l@ll + [l || for ¢, p e (L1 ()),, so LI (u)
is an (4 L)-space, to which the representation theorem given in [13]
applies.

Let an admissable Riesz space L and an element 0 < @€ L” be
given. We denote by f, the restriction of the element fe L** to L* (g),
the ideal in L* generated by ¢. The correspondence J,: f —f, is
a linear mapping from L** to L1 (p) which preserves order relations.
(cf.0.(2b,e)). Thus, since L is admissable, the mapping J:f—(f,)e
II L1 (¢) is an imbedding of L** into the product Riesz space IT L1 ().

0<geL® 0<geL®

For 0 <@ < yeL* we denote by J,, the linear and order relation
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preserving mapping from L! () to L! (¢) which assigns to each element
its restriction to L°°(¢). For 0 < ¢ < v < 7 we have [ . = Jo, Jyn
as is obvious from the definitions, and for each fe L*, f, = J,, f,.

Conversely, let (£,) € IT L1 () have the property that fo = Jop fp holds
0<geLx

~

for every pair 0 << ¢ < we L*. Then we can define an element fe (L)
by setting f(0) = 0, f(p) = f, (p) for every 0 < pe L* and f(¢)
= f(p*) — f(¢~) for an arbitrary ¢ € L*. (Note that for ¢, y € (L*)
flo+y) = f¢+w (@ +v) = fq:-i—w (o) + fw+w (p) = fzp (o) + fw ()
= f(p) + f(v)). We assert that fe L**. Indeed, if ¢, and
®o => @ | 0 are given in L%, then

4+

inf | (g) | = inf | £, (p)] <inf |, (9] = O.

Thus fe L* and, further, Jf = (f,). This shows that J (L**) is the
projective limit lim ([, L! (p), 0 < ¢ < pe L. Let
@1, -, @, € (L*), and ¢y, ..., &, R, be given. Then
U= {fel*: ¢, (If]) <& i=1,..m, resp.

V={f)eJ (L): ¢;:(|f]) <&, 1=1,..m} is a representative 0-nei-
ghborhood in L#* [T (L#)], resp. in J (L) with the topology induced
by the product topology. But J(U) =V and J-1(V) = U. So we
conclude that:

(3) If L is an admissable Riesz space, then L* [T\ (L%)] can be identi-
fied with the topological projective limit

im (Jo L (), 0< @ <ypeL?).

From (3), (2) and 1.(5) we obtain the following characterization
of perfect spaces.

(4) A Riesz space L is perfect if and only if it is a projective limit,

with respect to mappings which preserve ovder relations, of spaces of
type LW(E,m), E a locally compact space and m a Radon measure on E.

7* — Collectanca Mathematica
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THE GENERALIZED THEORY OF PERFECT RIESZ SPACES 1I
by
Davip F. FINDLEY
This paper is a continuation of [14].

5. Compact Sets.

Let L be an admissable DCR-space. In a recent paper [4] Frem-
lin gave a list of properties characterizing the relatively T (L)-com-
pact subsets of L* (cf. also [1]). We mention a few:

(1). Let L be an admissable Dedekind complete Riesz space. A subset
S of L* is relatively T (L)-compact if and only if one of the following
holds,

a) The solid hull of S is relatively T (L)-compact,

b)*) If T is a weakly continuous positive linear mapping of L* into
the normed sequence space I, then T(S) is weakly compact,

c) If P, is a decreasing sequence of Riesz projections on L* with in-
fimun 0, then for every fe L

lim (sup (P, @ (f)l:peS) =0,
d) If u, [, 0 in L, then lim (sup (| @ | (u;) : 9 € S)) = 0.

In this section we shall derive some characterizaticns of the re-
latively compact sets of the topologies T, (L) and T (L). We start
with some general considerations.

Let E[T] be a locally convex space with dual space E’. A subset
S of E is called begrenzt if for every sequence ¢, in E’ which conver-
ges weakly to 0, lim (sup (|¢, (f)|:f€S)) =0.

It is asserted in ([2] Lemma 14.2) that every relatively T, (E')-
compact subset of E is begrenzt, but this is not always the case. (For
a counterexample, consider the relatively compact set (convergent

*) The condition b) appears in the proof of 8. in [4].
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sequence) {(1,0,0,...), (0, 1,0,..), (0,0,1,...),..3 of IL[T, (¢)] =
= N [T, (p)] (T, (p) is metrisable), where, as usual, ¢ denotes the
space of (real) sequences having only finitely many terms different
from 0. For a sequence in ¢ choose (1,0,0,...), (0, 1,0, ...), ... .)

We call a sequence ¢, in E’acceptable, if ¢, is T, (E)-convergent
to 0 and the absolutly convex hull of {g,} is relatively T (E)-compact.
A set S in E is called limited if lim (sup |, (f)|:f€S) = 0 holds for
every acceptable sequence ¢, E’. Every begrenzt set is limited. Con-
versely, if E[T] is barrelled, or if E’ [T} (E)] is quasi-complete, then
every limited set in E is begrenzt, because in these cases, the absolu-
tely convex hull of every weakly compact subset in E’ is again com-
pact. (cf. Krein's Theorem ([9] 24, 5(4))).

(2) If E[T] is a locally convex space with dual space E’, then every
subset of E which 1s totally bounded for T, (E') is limited.

Proor. Let S be a totally bounded subset in E [T} (E’)] and let ¢,
be an acceptable sequence in E’. For every ¢ > 0, the set V={feL:
sup |, (f) | < €/2} is a T, (E')-neighborhood of 0, so there exists a

finite family f;, ... f, in S such that S ¢ lj (f; + V). If we choose
1

ng such that for #» >ng, |, (fi)] < &/2 forall ¢ =1, ..., g, then we
have sup (| @, (f)|: feS) < e: Indeed, for an arbitrary fe S, there
exists an f;, 1 < ¢ <gq such that f—f, €V, so, in particular,
|9 (f — f) | < &[2. Thus

Lo, () <Il@u(f—F) |+ 1o (fi)| < el24 €/2=¢e We conclude
that lim (sup (| @, (f)|: f€S)) = 0, ie., that S is limited.

Under some additional hypotheses, the converse of (2) holds:
(3) Let E[T] be a quasi-complete locally convex space, whose dual space
E’ can be given a metrizable locally convex topology weaker than T,(E).
Then a subset S of E is velatively compact for TH(E') if and only if
it is limited.

Proor. If S is relatively T,(E’)-compact, it is limited by (2). Assume
that S is limited. We show first that S is relatively T (E’)-compact.
For this it suffices, according to a theorem of Grothendieck’s (cf.
[9] 24,6.(1)), to show that lim lim ¢, (f,) =lim lim ¢, (f,) whenever a

sequence f, in S and a sequence ¢,, in some absolutely convex and
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compact subset in E’ are given, such that all of these limits exist.
Assuming we have such sequences g¢,, and f,, we need only show that
lim lim ¢, (f,) = lim lim g, (f,) for some subsequence ¢, of ¢,
pon P

So, using the generalized Smulian theorem ([9] 24,1.(3)), we choo-
se a subsequence ¢, of ¢, which converges to an elemént ¢ € E’. What
we have to verify now becomes lim lim (¢, — ¢) (f,) = 0. But ¢, — ¢

P n

is an admissable sequence, so we can assert even more: lim sup (|(p, —
P n

— @) (f,)]) = 0. We conclude that S is relatively T (E’)-compact.

We prove next that S is relatively countably compact for T, (E’).
Let f,, be a sequence in S and let f be a T, (E’)-adherent point of f,
in E. Let us assume that fis not a T, (E’)-adherent point of f,,. Then,
by the definition of the Mackey topology, there exists an absolutely
convex and 7 (E)-compact subset B of E’ and a positive real number
¢ such that max (|¢ (f,,— f)|: o€ B)>¢ for all but a finite number of
indices m, which we can omit from consideration. For each m, we
chose ¢,, € B such that | g, (f,,— f)| > & Let F’' denote the T (E)-
closed subspace of E’ generated by the set {p,,: m=1,2, ...} and let
F designate the quotient space E/(F’)° **). If ge E, we denote the
corresponding element of F by g. The topology T (F) on F’ coinci-
des with the topology induced by T (E) so {f,: m=1,2,...} and thus
also {_7,,, —7: m=1,2,...} is limited for << F,F’ >. Further, the latter
set is relatively T,(F’)-compact and has 0 as a T,(F’)-adherent point.
Now, since F’ is T, (F)-separable, we can find a subsequence f, — f
of f,, — f which is T, (F’)-convergent to 0 (cf. [9] 24,1.(5)).

By hypothesis, there exists a metrizable locally convex topology
on F' which is weaker than the topology induced by T3 (E). But the
latter is weaker than T, (F), so we can apply the generalized Smulian
Theorem to conclude that some subsequence ¢, of ¢, (¢, denotes the
subsequence of ¢,, corresponding to the subsequence f, —f) is T (F)-
convergent to an element ¢ € Bn F’. Since ¢, — ¢ is an admissable
sequence, there exists a pg such that for p >pg, |(p,— @) (f.—fl<e[2
holds for all #. On the other hand, being a subsequence of f,— f,
the sequence f,—fis T (F')-convergent to 0, so there is a p > pq
such that |p (f, — f)| < &/2. Consequently, we have

Lo (fo =N =lop(f =) < 1(pp — @) (fp = /)1

+le(fh—fI<el2+e2=c¢

**) Th—roughout 5. the notation Be will denote the polar set to B in the
other space of the dual pair.
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which is impossible, so f is a T, (E’)-adherent point of f,. Now it
is apparent that S is relatively countably T, (E’)-compact.

We deduce from Eberlein’s Theorem ([9]24,2.(1)) that S is rela-
tively compact for T (E’).

The above theorem generalizes a result of Gelfand’s about sepa-
rable (B)-spaces. (cf. Phillip’s paper [11] pp. 524-525). Phillips [11]
has shown that the subset {1,0,0,...), (0,1,0,...),...} of the (B)-space
[0 is begremzt, although it is not compact in the norm topology. With
respect to this topology, [ is a complete locally convex perfect
Riesz space whose dual space properly contains (/°)* = /l. When
this isn’t so, no such example can exist.

(4) If L is an admissable DC R-space and L' is an order dense ideal in
L* with the property that L{T,(L')] is quasi-complete, then a subset
of L[T,(L")] ts relatively compact if and only if it is limited.

Proor. Every relatively compact subset is limited by (2). To prove
the converse, it suffices, according to Eberlein’s Theorem, to show
that a countable subset of L [T} (L’)] which is limited, is also relati-
vely compact. Let {f,} be such a set. We define E = {f,}?* and de-
signate by E’ the dual space of E with respect to the topology induced
by T, (L'). By 2.(2), the Riesz projection P of L onto E is continuous
for the < L,L’ >-admissable topology T\, (L), so the adjoint Riesz
projection P’ on L’ is T,(L)-continuous and E’ can be identified
with the range of P’, which is E°°. It follows easily that {f,} is limi-
ted in the dual system < E,E’ > and that the topology on E induced
by T, (L') coincides with T, (E"), so E [T, (E’)] is quasi-complete.
Further, since L’ is an order dense ideal in L* (by hypothesis), each
of the order intervals [— |f,|, |f,|] #=1,2,... is compact for T} (L’) by
2. (4a), and thus also for T((E’). The metrizable topology on E’ indu-
ced by the semi-norms P, (¢) =sup (p(g) : g€ — /.. | ful]) n=12,...
is therefore weaker than T (E), so the hypotheses of (3) are satisfied,
and we conclude that {f,} is relatively T, (E’)-compact, so {f,} is
relatively T, (L')-compact. This completes the proof.
As a corollary to (4) we have

(5) If L is a perfect Riesz space, then the relatively T, (L%)-compact
sets of L are precisely the begrenzt sets of L for < L,L* >.

Proor: By 3.(4), L* [T, (L)] is complete, so by the discussion prece-
ding (2), the begrenzt sets of L and the limited sets of L for < L,L* >
coincide. Again by 3.(4), L is complete for T, (L*), so (4) implies (5).
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Anticipating 6.(2), we can prove:
(6) Let L be a perfect space. The solid hull of every velatively T, (L*)-
compact subset of L is again relatively T, (L¥)-compact if and only if
L is atomic. ' ’

Proor. If the solid hulls of such sets are relatively T (L*)-compact,
then, in particular, the order intervals of L are T (L*)-compact.
It follows from 6.(2) that L is atomic.

On the other, hand, if L is atomic, the proof of ([9] 30,6.(6)) can
be repeated, practically without change. o

(7) Let L be an adwmissable Riesz space and let L' be an ovder demse
ideal in L*. For a subset S of L, the following conditions are equivalent:

a) S 1s totally bounded for T\y(L')

b) For every sequence ¢, in L' which is T (L)-convergent to O and boun-
ded by some pe L' (ie. |g,| < @), we have '

lim (sup |, (f)]:feS) = 0.

c) If A is a continuous positive mapping from L [T\, (L")] into the
(B)-space L1(0,1) of Lebesgue summable functions on the interval (0,1),
then the image A(S) of S under A is velatively compact.

PrOOF:

a) = b). Let ¢ and ¢, be given as in b). By 2.(1), the order interval
[— @,p] is compact for the topology T (L) and also for the stronger
topology T, (L! (¢)), so these two topologies coincide on this set,
which implies that ¢, is T (L! (p))-convergent to 0, i.e. ¢, is an ac-
ceptable sequence (cf. before (2)). The canonical mapping J, of L
into L! (¢) is Ty -continuous, so J, (S) is totally bounded in L! (p),
so by (2), ' : .

lim sup (I, (f)]:f€S) =1lim sup (lp, (J,f)[:/€S) = 0.

b) = a). Let pe (L"), and &> 0 be given. Let ¢, be an acceptable
sequence in L (¢) for < L(g), L>° (¢) >. Then ¢, is also convergent
to 0 for the weaker topology T, (L). By the theorem of Banach-Mackey
(9] 20,11.(3)), the set {p,: # = 1,2,...} is norm-bounded in L (g), i.e.
is contained in A[— ¢@,p] for some 4 > 0. It follows now from b),
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that J, (S) is limited in L' (¢). By (4), J, (S) is relatively compact,
so there exist elements fi, ... f,, in S such that

selifelip(, /=T f<a =UifeLin(f—f) <o

Since ¢ and e were arbitrarity chosen, we conclude that S is totally
bounded for T, (L').

a) = c¢): A continuous image of a totally bounded set is totally boun-
ded. Since L1(0,1) is complete, the totally bounded set A(S) is rela-
tively compact. (cf. [9] 5,6.(2a)).

c) = b) Assume that b) does not hold, i.e., that for some ge(L’).
there exists a sequence ¢,e[— @,p] converging weakly to 0 and a
real number ¢ > 0 such that for some sequence f, €S, | @, (f,)| > ¢
holds for all n. We designate by ¢ resp. ¢, the component of ¢ resp.
@, in {f,:n = 1,2,..1%, and by f; the component of f, in [— ¢,pJ%.
Let J denote the mapping which associates each fe L ¢ L* with
its restriction to L (p). In any measure space (E,m) representing
L1 (p) and L (), (cf. 4.(2)), E, the carrier of ¢, will be the union of
the carriers of the summable functions Jf,, and will thus be o-finite.
So, by Prop. 6 and § 4 of [13]1), there exists a continuous positiye
projection A, of L!(p) onto the closed Riesz subspace X of L1 ((p)
generated by {Jf,:#n = 1,2,...}. By Theorems 11 and 8 of [13], there
exists a linear isometric order isomorphism A, of X onto a closed
Riesz subspace Y of L1(0,1). Thus the mapping 4 = A4,4,] is a
continuous positive mapping of L [T (L")] into L1 (0,1).

The argument given in a) = b) shows that ¢, is T (L! (@))-conver-
gent to 0. We denote the respective dual spaces of the (B)-spaces X
and Y by X’ and Y'. If ¢’ resp. ¢', designates the element of X’
defined by ¢ resp. ¢,, then ¢', and thus also (4,71)’ ¢, are weakly
convergent to 0. ((4,71)" denotes the adjoint of A, 1). Since the se-
quence (4,71)" ¢’, is contained in the absolutely convex and weakly
compact (cf.2.(1)) set (4,71)[—¢,p], it is an acceptable sequence in
Y’. But for every =

[ (A4271)" ¢ (Afa) | = 1 (A27Y) @' (4241 ]f,) |
= 10w (AR =19, Uf) = le. Ul | = e (£) | > e> 0.

1) This result can be shown to be valid in arbitrary Ll-spaces, and the
proof can be carried out abstractly, i.e. in the framework of spaces of the
form L1(p). We will return to this and related questions in a later paper.
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Thus A(S) is not limited in < Y,Y’ >, so by (2), it is not relatively
compact in the norm topology, i.e. c¢) doesn’t hold. We conclude
that ¢) = b).

If L is perfect, then L is T\, (L*)-complete, by 3.(1), so a) — ¢)
describe the relatively T, (L*)-compact sets of L. In general, if S
is T, (L")-compact, then a) — c) are necessary and sufficient for the
T (L')-compactness of S. We can prove another result of this type,
where we can even avoid the assumption that L is dedekind complete.
For this, however, we need a representation of L and L’.

Let E be a locally compact Hausdorff space. We denote the set
of all compact subsets of E by C, and we define the o-algebra
M={ACE:AnC is a Borel set, for all CeG. A (positive,
o-additive) measure m, defined on M, is called a Radon measure, if

1) m (C) << o for all C €€, and
ii) For all FeM, m (F) =sup (m (C):Ce€€, C € F)

= inf (m (O) : O open, O 2 F)
are satisfied. ?)
Let L be a Riesz space, with respect to the natural ordering, of

(m-equivalence classes of) m-measurable real valued functions on
E, such that L and its « dual space L% defined by

L = {g: g yce L1 (E,m) for all C e € (locally summable) and
gfe Ll (Em) for all fe L} (yc denotes the indicator of C)

have the property
(*) For every C e G, there exists an element g in the space under
consideration, whose representatives are a.e. positive on C, ie.

Supp (g) 2 C.

It follows from 6. and 7. of [5], that every admissable Riesz space
is representable as such an L, in such a way that L* coincides with L*
(the members of L* defining linear functionals on L in the obvious
fashion). 3)

2) If, for a measure m on J¢ satisfying i), the condition ii) holds only for
sets of finite measure, then it follows easily from (iii) of ([7] 19. 25, cf. 19. 31),
that there exists a Radon measure m, which agrees with m on sets of o-finite
m-measure, and which thus yields the same integration theory. Measures
satisfying ii) have the convenience, that there is no distinction between null-
and locally null sets.

3) In general, for a Riesz space of m-measurable functions satisfying (*),
Lz can be identified with the set of all m-measurable functions g satisfying
gf e L1 (E, m) for all fe L, and it can happen that L* property contains Le,
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(8) Let L and L* be as above and let L' be an ideal tn L* satisfying(*).
A subset S of L is T\y(L')-compact if and only if

a) S is T, (L)-compact, and

b) Given C €€ and a sequence f, in S, one can find a subsequence
of f, which converges in measure on C to an element feS.

Proor: Necessity. For fe L, we define f/|f| to be 0 where f is 0.

Then for each 0 <ge L', (f/[fl)ge [—g, g], from which it follows
that the topology T, (L’) on L is induced by the seminorms f —

'—>f |fg|dm, ge L’. Thus, for every 0 <ge L', the mapping Je:
f —fg from L [T\ (L')] into the (B)-space L1 (E,m) is continuous.

If S is T\, (L')-compact, then clearly a) is satisfied. Let C €€ be
given, and let g be an element of (L), which is positive on C. Since
J is continuous, [, (S) = Sg is compact in L1 (E,m). So it f, is a se-
quence in S with adherent point fe S, then there exists a subsequence
fp of f, such that lim f | fp— f|gdm = 0. Hence, (cf. [3] II1.3.(6)), &f,

) P .

converges in mesure to gf. Let ¢ > 0 be given, and let ¢ > 0 be
chosen so that the measure of F; ={xeC :g(x) < &} is less than
€/2. We choose pg, so that for all p > p,, the measure of Fy, = {x:
|fr (®) —f (%) |g (x) < &€’y is less than g/2. Then

m(eC:1fy () —f ()| = 6) <m(F1) +m(F) <e
for all p > po. Since & was arbitrarily chosen, it follows that f,
m-converges to f on C, so b) holds. »
Conversely, suppose that a) and b) hold for S. Let F be a filter
in S. By a), F has a weak adherent point f in S. Let us assume that
fis not a T, (L')-adherent point of F. Then there exist a ge(L'),,
an g > 0, and an 4 €F such that :

I) | f. —f'| gdm > ¢y for all f'eA.
JE-C

Tha mapping J,:f — fg from L into L1(E,m) is weakly contin-
uous: Indeed, according to ([7] 20.20, cf. 19.31), Le° (E,m) is the
dual of L1 (E,m). Let ¢ > 0 and %, ..., hye L>° (E,m) be given, Then
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ghy, ..., gh, are contained in A[— g,¢] for some 4 > 0, and thus belong
L', because L’ is an ideal in L* Since

Je(feL:| [ fehdm| <ei=12.,¢)c

the L1 (Em) : ]j hhidm | < ei=12,.,q,

we conclude that ], is weakly continuous. Consequently, [, (4) = Ag
is relatively weakly compact in L1 (E,m), and fg is a weak adherent
point of Ag. Let f, g be a sequence in Ag, which is weakly convergent
to fg (cf. [9] 24.1.(7), for example). By [5] 9. or by ([3] IV . 8. (9-10)),

there exists a compact set C € Olj Supp (g f,), such that
n=1

11) |fa — flgdm < &2
E-C

By b), we can find a subsequence f, of f, which converges in
measure to some f'e€S on C. To contradict I), and thus obtain the
T\, (L')-compactness of S, it suffices to show that f, g x¢ is norm con-
vergent to f'g yc: For in this case, the weak convergence of f,g to
fg implies that f'g = fg on C, so that for sufficiently large p,

o J \f — flgdm < o2
C
Combining this with II), we obtain
[ \f — |, gdm =[ \fs — f] gdm +[ | f—fy L gdm < eo]2+ eg]2 = eo.
. JE-C JcC

which is contradictory, because f, e 4.
Let, therefore, ¢ < 0 be given. {(f, — f') : p = 1,2,...} is relatively

weakly compact, so, by {[5]9) or ([3] IV.8.(9-10)), there exists a
6 > 0 such that m(B) < d implies

{!fp—f’|gdm<a/2.
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Since g is locally summable, there exists an & > 0 such that
g J gdm < g/2.
c

Let now py be so chosen, that for all p > py, the measure of
B, = {xeC:|f, () — f' (x)] > &'} is less than 6. Then we have,
for all p > pg

( | fo—f" | gdm =J [ fo — f"| gdm +J e gdm < )2+ ¢[2 = «.
c By C—B,

So gf,, converges strongly to gf on C, which is what we wanted to show.

We remark that a diagonal argument can be used to show that
b) in (8) can be replaced by the stronger condition

b)' If f, is a sequence in S with weak adherent point f, then for every
o-finite set A C E, there is a subsequence of f, which converges in mea-
sure to [ on every subset of A having finite measure.

We close this section with an interesting application of (8).
(9) If L is an atomic (cf.§ 6.) Riesz space, and L' is an order dense
ideal in L%, then the Ty (L') and the T, (L')-compact subsets of L coin-
cide.

ProOF: L can be identified with a Riesz subspace of [I R, containing
A

@ R, for some A. Also, @ Rc L' (cf.1.(1)), so if we give 4 the

A A

discrete topology, and define m to be the counting measure, (*) is
satisfied by both L and L'. Since m-convergence is simply coordi-
natewise convergence, one sees immediately that a) of (8) implies
b) of (8). The result follows from (8).

6. Atomic Riesz Spaces.

An element f = 0 in a Riesz space L is called an afom, if for any
g € L satisfying | g| <|f|, g = Af holds for some real number A. Thus,
if fis an atom, either f or — f is positive. The Riesz space L is called
atomic, if L has an order basis consisting of atoms, or, what is equi-
valent (this follows from [11] Theorem 29.10), if L is archimedian,
and every ideal in L contains an atom.
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Let L be an atomic Riesz space, and let ¢,, «€ A be an order basis
for L consisting of positive atoms. For each 0 <#e L and each a€ 4,
we define A, () =sup (A: de, <wu). Since L is archimedian, 0 <2, (#) <
< oo and A, (#) ¢, < u. One verifies easily that » = ; Ay (u) e, and

that the mapping
f e (/la (f+) - ]‘a (f-))u.eA

is a 1-1 mapping of L into [I R which which preserves order relations.
A
Thus L may be identified with a Riesz subspace of I] R which contains
A
@ R. It follows from 1.(1), that L* = L* € @ R, so L is admissable
A A

and L? and every ideal in L* is atomic. Conversely, if L is admissable
and L* is atomic, then by the preceding remark, the ideal D gene-
rated by L in L**is atomic. By 0. (4a), there exists for every 0 <ue D,
a 0<vel such that v <u. So if % is an atom, # = Av, for some
A >1,s0ueL. It follows that L is atomic. Summarizing, we have:

(1) The Riesz space L is atomic, if and only if L is admissable and
L% 4s atomic.

We now present several topological characterizations of atomic
Riesz spaces.

(2) Let L be an admissable Riesz space, and let L' be an order dense
ideal in L*. The following conditions on L are equivalent:

a) L is atomic;

b) Every order bounded sequence g, wn L, which is T (T")-convergent to
0, converges for Ty (L'); or equivalently,

T, (L)-lim g, = O smplies T, (L)-lim |g,| = 0O;

c) The topologies T(L') and T\ (L') have the same compact sets;
d) The order intervals of L are Ty (L')-precompact.

PrOOF: a) = ¢) by 5.(9). ¢) = b) is clear. We show b) = a). Let ue L
be given, and let pe L', be such that ¢ (#) > 0. If D designates the
ideal in (L')* generated by L, then by 0.(4a), there exists a ve L,
which is less than the Riesz component (in D) of win {fe D : ¢(| f|) =
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'=0}?, and thus also less than #. We denote by Lo, = L (v) the
ideal generated by v in L, and we denote the ideal generated by v
in L* by L = L°° (v). By 0.(4b), L*= (L°°)* = L1 (v). The elements
of L' define members of L1 = L!(v), and, by our choice of v, the
element ¢ of -L1 defined by ¢ has the property

(*) @ (If]) = O implies f= 0

for any fe L. Taking into account 0.(4a), we see that (*) also holds
for the elements of Le°.

We shall show that L0 is atomic. It then follows as in the proof
of (1), that L., is atomic. This demonstrates that the ideal genera-
ted by # in L contains atoms. Since # was an arbitrary element in
L, it follows that L is atomic. :

1> being dedekind complete (ideal in L'*), we can make use of
the Theorem of [6], according to which L is atomic, if for any se-
quence g,€ Lo, T (L1)-lim g, = 0 implies T (L!)-lim|g,| = 0. But,
by 4.(1), L* is the dual of the (B)-space L!, so such a sequence g,
is strongly bounded (cf. [9] 21,5.(4)), i.e. g, is contained in A[— v,v]
for some 1 > 0. By 0.(4a), we can find sequences f, and 4, in [— v,
Av] in L, satisfying f, <g, <4, and ¢ (b, — f,) < 1/n. We assert
that %, — g, is T (L!)-convergent to 0. Indeed, by 2.(4), the order
interval [ — 24v,24v] in L*° is T (L1)-compact. If g is a weak adherent
point of %, — g,, then g >0, and, since &, —g, <h, — f,, 0 (g) <
< 1/n for all u, i.e. ¢ (g) = 0. By (*), g = 0, so our assertion follows.
From h, = (h, — g,) + &, we have that T (L1)-lim A, = 0 and,
since the topology induced on L., by T, (L’) is weaker than T (L!),
also T (L")-lim A, = 0. Now, by b), T (L')-lim |k,| = 0 so in particu-
lar, lim ¢ (|4, =lim ¢ (|%,]) = 0. Similarly, lim ¢ (|f,)) =0, so we
obtain from |g,| <|f,| + |k, that lim @(g,|) = 0. Applying the
argument used above, we obtain, finally, T (L1)-lim |g,| = 0, which
is what we had to show. Thus a) - ¢) are equivalent.

d) = b) is clear. We prove a) = d). If L is atomic, then so is L'*
(cf.(1) and the argument preceding it). By 2.(1), the order intervals
of L'* are T, (L')-compact, so, by c¢) and 2.(4), they are Ty (L’)-
compact. According to 3.(2), L'* is the T (L’)-completion of L.
It follows that the order intervals of L are T, -precompact.

In addition to Halperin and Nakano [6], Kawai [8] and (indepen-
dently) Walsh [11] have given topological characterizations of atomic
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admissable DCR-spaces. Our condition b) can be found in [8], and
our d) is intimitely related to condition (7) of Theorem 5.4 of [8]
and to the condition of [11].

Let L[T] be a locally convex Riesz space. It can, in general, hap-
pen, that L[T] is atomic, but its completion with respect to T is
not; or, conversly, that the completion is atomic although L is not.
For an important class of topologies on an admissable Riesz space,
neither of these situations can occur.

(3) Let L be an admissable Riesz space, let L' be an ovder dense ideal
wm L* and let T be a locally solid locally comvex topology on L which
is finer than Ty (L') but coarser than Ty (L') (cf. 2. (6)). Then L is

atomic if and only if the same is true of L, its completion with respect
to T.

Proor: The arguments used in the proof of 3.(6) are easily adapted to
show that L ¢ L ¢ L'*, and that #, ; 0 in L implies , | 0 in L'~
To assert that therefore L'** c I*, we show that L, and hence also
L, is T,(L'**)-dense in L'*. But this follows immediately from the
fact (cf. 0. (4)) that for each v & (L'#) ., there exists a family 0 < v, e L
such that v,1 v. Since L' ¢ L'**, we conclude from L'* c [* that
L’ is an order dense ideal in (L)*. (2.(1), 0.(3)). So L* and L are atomic
if and only if L’ is. Our assertion now follows from (1).

Fina1, REMARK: We point out, that, on the basis of the theory pre-
sented here, it is easy to generalize the remaining results of § 30. of

[9].
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