UN TEOREMA DE INMERSION EN ESPACIOS TONELADOS QUE NO SON BORNOLOGICOS (*)

por

MANUEL VALDIVIA

N. Bourbaki y J. Dieudonne se preguntan en [1] y [2], respectivamente, si existe algún espacio tonelado que no es bornológico. L. Nachbin, [4], y T. Shirota, [5], responden a esta cuestión dando un ejemplo de un espacio tonelado que no es bornológico. En [6] hemos demostrado que si E es el producto topológico de una familia no numerable de espacios tonelados no nulos, existe en E una infinidad de subespacios densos, tonelados y no bornológicos.

En este artículo vamos a utilizar en parte el método seguido en [6], y demostraremos un teorema de inmersión en espacios tonelados que no son bornológicos.

Los espacios vectoriales que utilizamos aquí están definidos sobre el cuerpo K de los números reales o de los números complejos. Si $\langle E,F\rangle$ es un par dual de espacios vectoriales representamos, como es habitual, por $\sigma(E,F)$ la topología en E de la convergencia uniforme sobre cada conjunto finito de F. Si E es un espacio vectorial topológico escribimos E' para su dual topológico. Para la dimensión algebraica de E ponemos dim E. Si A es un conjunto, card A significa el número cardinal de A y $\mathcal{P}_n(A)$ es el conjunto de todas las partes numerables, finitas o infinitas, de A. El número cardinal del conjunto de los números enteros lo representamos por ω .

TEOREMA 1. Sea E un espacio de Banach de dimensión infinita. Si E es separable, entonces $E[\sigma(E, E')]$ es un subespacio denso de un espacio tonelado F, de manera que F no es bornológico.

Demostración: Si B es la bola unidad cerrada en E, y B^0 es el conjunto polar de B en E', entonces, para cada entero positivo n,

^(*) Subvencionado en parte por el «Patronato para el Fomento de la Investigación en la Universidad».

 nB^0 es metrizable para la topología inducida por $\sigma(E', E)$ y, por lo tanto, podemos hallar en nB^0 un conjunto numerable $A_n \sigma(E', E)$ denso en nB^0 . Sea S la familia de todas las sucesiones de $\overset{\infty}{\mathbf{U}} A_n$ que convergen en $E'[\sigma(E', E)]$. Sea f una aplicación de E' en S tal que si $x \in E'$, $f(x) \circ (E', E)$ -converge a x. Si $x, y \in E'$, $x \neq y$, es inmediato que el conjunto $\{x_1, x_2, ..., x_n, ...\}$ es distinto de $\{y_1, y_2, ..., y_n ...\}$ siendo $f(x) = \{x_n\}_{n=1}^{\infty}, f(y) = \{y\}_{n=1}^{\infty}$ y, por lo tanto, card $E' \leq \text{card}$ $\mathcal{P}_n\left(\bigcup_{n=1}^{\infty}A_n\right)=2^{\omega}$. Por otra parte, E', con la bola unidad cerrada B^0 , es un espacio de Banach de dimensión infinita, y puesto que todo espacio de Banach separable de dimensión infinita tiene dimensión igual a 2^{ω} , [3], entonces dim $E' = 2^{\omega}$. Si M es el dual algebraico de E', con la topología $\sigma(M, E')$, M es igual a K^I , card $I = 2^{\omega}$. Sea L el subespacio de M formado por todas las funciones que son nulas en todos los puntos de I salvo, a lo sumo, en una infinidad numerable, veamos, ahora que L es un espacio tonelado. Puesto que L es sucesionalmente completo basta ver que dicho espacio es casi-tonelado. En L sea U un conjunto absolutamente convexo cerrado y bornívoro y sea \overline{U} su clausura en M. Puesto que M es tonelado es suficiente probar que \overline{U} es absorbente en M. Sea x un vector en M. Sea $\{x_i:j\in A\}$ $\in J, \leq \}$ una red en L tal que J es el conjunto de todas las partes finitas de I, de manera que \leq es la relación de inclusión en J, y $x_i(i) = x(i), i \in j, x_i(x_i) = 0, i \in I \sim j$. Dicha red converge a x en M. Puesto que el conjunto $\{x_j: j \in J\}$ es acotado en L existe un $\lambda \in K$, $\lambda \neq 0$, tal que $\{\lambda x_j : j \in J\} \in U$ y, por lo tanto, $\lim \{\lambda x_j : j \in J, \leq\} = 0$ $=\lambda x\in \overline{U}.$

Es inmediato que card $L=2^\omega$ y puesto que card $E=2^\omega$, se tiene que la envoltura lineal G de E \cup L tiene 2^ω como número cardinal. Si H es el conjunto de elementos de M, que son límites de sucesiones contenidas en G, entonces es obvio que card $H=2^\omega$. Puesto que card $M=2^{2^\omega}>2^\omega$ existe un $x_0\in M$, que no es límite de ninguna sucesión de G. Sea F la envoltura lineal de G \cup $\{x_0\}$, con la topología σ (F,E'). Evidentemente E $[\sigma$ (E,E')] es denso en F y vamos a probar que F es tonelado y no es bornológico. El espacio L es tonelado y denso en F, de donde se deduce que F es tonelado. Supongamos que F es bornológico. Si en F B es la familia de todos los conjuntos acotados, absolutamente convexos y cerrados, entonces F es el límite inductivo de la familia $\{E_B: B \in B\}$, en donde E_B es el espacio normado envoltura lineal de B, con bola unidad B.

Puesto que G es un hyperplano denso de F existe un conjunto A en B, tal que $G \cap E_A$ es un hyperplano denso en E_A , de aquí que exista un y_0 en E_A , $y_0 \notin G$, y una sucesión $\{y_n\}_{n=1}^{\infty}$ en $G \cap E_A$, de manera que en E_A $y_0 = \lim_n y_n$. Podemos poner $x_0 = \mu y_0 + z$, $\mu \in K$, $\mu \neq 0$, $z \in G$. La sucesión $\{z_n\}_{n=1}^{\infty}$ tal que $z_n = \mu y_n + z$, n = 1, 2, ..., está en G y converge en F a x_0 , lo cual es una contradicción, de donde se deduce que F no es bornológico.

c. q. d.

El teorema siguiente se refiere a la dimensión algebraica de ciertos espacios de Banach, (ver también [3]).

TEOREMA 2. Sea E un espacio de Banach de dimensión infinita. Si $\{x_i, u_i : i \in I\}$ es un sistema biortogonal para E, tal que $\{x_i : i \in I\}$ es total en E, entonces dim $E = \operatorname{card} \mathcal{P}_n(I)$.

Demostración: Sea S el conjunto de los elementos de E que se obtienen de todas las expresiones sumables en E de la forma $\sum \{a_i x_i : i \in I\}$, con a_i racional. S es un espacio vectorial sobre el cuerpo de los números racionales. Si $J \in \mathcal{P}_n(I)$ sea $x(J) = \sum a_i(J)x_i$, $a_i(J) \neq 0$ si $i \in J$, $a_i(J) = 0$ si $i \notin J$. Si $J_1, J_2 \in \mathcal{P}_n(I)$ y $J_1 \neq J_2$ existe un $j_0 \in J_1, j_0 \notin J_2$ y, por lo tanto, se tiene que

$$< u_{i_0}, x(J_1) > = < u_{i_0}, a_{i_0}(J_1) x_{i_0} > \neq 0$$

 $< u_{i_0}, x(J_2) > = < u_{i_0}, a_{i_0}(J_2) x_{i_0} > = 0$

de aquí que $x(J_1) \neq x(J_2)$, lo que nos indica que

card
$$S \ge \operatorname{card} \mathcal{P}_n(I)$$
, (1).

Si H es una base de Hamel de S, entonces cada elemento de S es una combinación lineal racional de un número finito de elementos de H, de donde se deduce que

$$\operatorname{card} H = \operatorname{card} S$$
, (2).

Por otra parte si en $S y_j = \sum \{a_{ij} \ x_i : i \in I\}, j = 1, 2, ..., p$ son vectores linealmente independientes, entonces, puesto que a_{ij} es racio-

nal, $i \in I$, j = 1, 2, ..., p, podemos hallar $i_1, i_2, ..., i_p \in I$, de manera que

$$\begin{vmatrix} a_{i_1} & 1 & a_{i_2} & 1 & \dots & a_{i_p} & 1 \\ a_{i_1} & 2 & a_{i_2} & 2 & \dots & a_{i_p} & 2 \\ & \ddots & \ddots & \ddots & \ddots & \ddots \\ a_{i_1} & p & a_{i_2} & p & \dots & a_{i_p} & p \end{vmatrix} \neq 0,$$

y, por lo tanto, $y_1, y_2, ..., y_p$, son linealmente independientes en E, de aquí que

$$\dim E \ge \dim S$$
, (3).

En E existe un conjunto A denso, de manera que card A = card I, y como a cada $x \in E$ se le puede asignar una sucesión en A, que converge a x, se deduce que

card
$$E \leq \text{card } \mathcal{P}_n(I)$$
, (4).

De (1), (2), (3) y (4) se obtiene

$$\operatorname{card}\, \mathcal{P}_{\mathfrak{n}}(I) \leq \operatorname{card}\, S = \dim S \leq \dim E \leq \operatorname{card}\, \mathcal{P}_{\mathfrak{n}}(I)$$

y de aquí, dim $E = \operatorname{card} \mathcal{P}_n(I)$.

c. q. d.

Nota. Si E es un espacio de Banach separable, de dimensión infinita, existe un sistema biortogonal $\{x_n, u_n\}_{n=1}^{\infty}$ para E, tal que $\{x_n\}_{n=1}^{\infty}$ es total en E y, por lo tanto, dim $E = \operatorname{card} \mathcal{P}_n(N)$, siendo N el conjunto de los números naturales, es decir dim $E = 2^{\omega}$ que es el teorema de Löwig.

REFERENCIAS

- 1. N. BOURBAKI: Sur certains spaces vectoriels topologiques. Ann. Inst. Fourier, 5-16 (1950).
- 2. J. DIEUDONNE: Recent development in the theory of locally convex spaces. Bull. Amer. Math. Soc. 59, 495-512 (1953).
- 3. H. Löwig: Über die Dimension linearer Räume. Studia Math. 5, 18-23 (1934).
- 4. L. NACHBIN: Topological vector spaces of continuous functions. Proc. Nat. Acad. Sci. USA, 40, 471-474 (1954).
- 5. T. Shirota: On locally convex vector spaces of continuous functions. Proc. Jap. Acad. 30, 294-298 (1954).
- 6. M. VALDIVIA: On nonbornological barrelled spaces. Ann. Inst. Fourier, 22, 2, 27-30 (1972).