FIBRE INTEGRATION AND SOME
OF ITS APPLICATIONS

By
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INTRODUCTION. It is a classical result that the Fuler Poincaré cha-
racteristic of a compact connected manifold can be identified with
other invariants (see Theorem V, sec. 7).

The proofs of the various assertions in that theorem are scattered
through the literature, and make use of widely varying techniques.
It is possible, however, to establish these results within the single
context of differential forms, the exterior derivative and the inte-
gral. This article is a survey of this approach (without proofs).

The main tool (in addition to standard machinery) is the fibre
integral. This operator is an actual integral, and induces the «ho-
mological fibre integraly (defined in terms of a spectral sequence).
Although its existence has been in the folklore for a quarter century,
or more, there appears to be no explicit account of it in the literature.

0. Norarion. All manifolds in this paper are Cc and all maps
are Coe-maps. If M is an w-manifold, the algebra of Cee-functions
on M is denoted by S (M). The tangent bundle is written 7, =
= (Ty, m, M, R*) while 4 (M) denotes the graded algebra of Ceo-dif-
ferential forms on M. A (M) denotes the graded ideal of forms with
compact carrier. The exterior derivative is denoted by 4.

Corresponding to 4 (M) and A (M) are the de Rham cohomology
algebras H (M) and H; (M). The multiplication of differential forms
induces bilinear maps

H;(M) x HM) -~ H; (M) and H;(M) x H(M) - H¢ (M)
which are written

(¢, ) >a=f and (B, ) >f*a oeH (M)
BeHc (M).
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These make H (M) into a left and right graded module over the
ring H (M).

A map ¢: M — N induces a bundle map do: Ty — Ty (the
derivative of ¢) and a homomorphism homogeneous of degree zero,

p*: A (M) -~ A(N);
@* in turn induces a homomorphism
o*: H(M) <« H(N).

1. THE INTEGRAL. With each oriented #-manifold, M, there is asso-
ciated the integral, a linear operator

[ 4o ~r

M

It is uniquely determined by the following conditions :

i) Naturality with respect to orientation preserving diffeo-
morphisms.

i) If U c M is an open subset containing the carrier of
@ e A¢ (M), then
o= |D
7=l
iif) If R” is an oriented Euclidean #n-space and if fe S; (R*), then
ffax' A o A 857 =ff(x) ix' ... dx"
Rn Rn

(Riemann integral) where the x* are the coordinate functions co-
rresponding to a positive orthonormal basis of R”.
1t follows from Stokes’ theorem that

faav= 0, Pedi (M)
i
and so integration induces a linear map

* n
Mf.HC(M) SR
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This is extended to H; (M) by setting it zero in
He(M)(0<p<mn—1).

The Potncaré scalar product of an oriented n-manifold, M, is the
bilinear map

P:HM)x H; (M) - R

given by
+
5 [axp wcH (M), peHE? ()
P, f) = M 0<p<n
l 0  otherwise.

If we H? (M), fe H: * (M) are represented respectively by @ and ¥,
then

P(a,ﬂ)=f¢/\ P,

This scalar product induces a linear map
D:H (M) -~ H; (M)*

(H¢ (M)* denotes the space of (real) linear functions in H (M)). The
Poincaré duality theorvem asserts that D is a linear isomorphism for

every oriented #-manifold; in particular, the bilinear function P is
non-degenerate.

If p: M — N is a map between compact, connected oriented
n-manifolds, then the degree of ¢ is an integer, uniquely determined
by the equation

M[(p*@:deg (p-qu> ® e A (N)

For example let E be an oriented Euclidean space of dimension
7 -+ 1 and let Ay denote the positive normed determinant function
in E. Define 2¢ A" (S”) (S* the unit sphere) by
yeS”
Q(y; Ry o k) = N TR

(y 1 ) AE (y 1 ) kv P Ty (S").
Then 2 orients S* and

f Q = vol (S").

Sn

19 — Collectanea Mathematica
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Now let ¢ be a map from a compact, connected oriented #-mani-
fold M into S™. Regard ¢ as an E -valued function on M and define
DPecA" (M) by

D(x; hy, s b)) A =@ () ANdp(x, A)) A ... ANO@(x; h,).

Then @ = ¢* 2 and hence

j‘Q): deg ¢. vol (S").
M

In particular, if M = S* and if ¢ is the identity map, then
® = Q and

f@ — vol (S").

Sn

2. SMOOTH FIBRE BUNDLES. A Ceo-fibre bundle is a quadruple
&= (E, n, B, F). where E, B, IF are manifolds, # : £ — B is a map
and, for some open covering U, of B, there are diffeomorphisms

Yy: Ux F—=— 71 (U) UeU
which satisfy
a¥ (x,y) =x% xe,UyekF.

The collection (U, ¥y) is called a coordinate representation for &.
7! (x) is called the fibve over x and is written I7, (it is a closed sub-
manifold of E); the inclusion is written j, : F, — E.

A subset A c E is called fibve-compact, if, for each compact sub-
set Kc B, a='(K) n A is compact. The differential forms on E
with fibre-compact carrier are a graded ideal in A4 (E), denoted by
Az (E). Clearly,

A (E) c Ay (E) c A (E)

and the first (resp. second) inclusion is equality if and only if B
(resp. F) is compact. The ideal A (E) is stable under the exterior
derivative, and the corresponding cohomology algebra is denoted by
Hyp(E). Hp (E) is a left and right module over H (E).

Let dim F = », and consider the set, O, of 7r-forms on E which
satisfy the condition

(1) (7:* ¥) (y) # 0 xeB, yeF,
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(O may be empty). Thus if ¥ € O, then j* ¥ orients F, for each
x € B. Two such forms are called equivalent, if they induce the same
orientation in each F, Each equivalence class is called an orienta-
tion in the bundle £. An r-form satisfying (1) is said to orzent &; if
such forms exist, the bundle is called orientable.

If the manifold B is oriented by an n-form @, and the bundle &
is oriented by ¥, then n* @ A ¥ orients the manifold E : this orien-
tation of E is called the local product orientation.

3. FIBRE INTEGRATION. Let & = (E, n, B, F) be an oriented bundle
with dim F = v and dim B = n. Then we can associate with & a
canonical linear map, homogeneous of degree — 7, the fibre integral,

: Ay (E) ——— A (B).

R

It is defined as follows: Let Q € A%*" (E), p = 0. Fix a point ¥ ¢ B
and a system /;, ..., %, of tangent vectors in T, (B). Then an r-form,
Quiny.uny» 00 F, is defined by

(2) Qe (V5 k1 B) =2(y; by by, k1o Ry
yeF,, keT,(F,),

where /; € T, (E) is chosen so that (d7) /; = %;. Note that because of
the skew symmetry of 2, the right hand side of (2) is independent
of the choice of the I.

The function

(x; hl, very hp) —-'—"fgx;hl...hp
Fy

is p-linear, skew symmetric in the 4; and smooth in x. Thus it defines

a p-form, Tr Q, on B,
F

L9 (x5 by, ) = fo;hl,..h,,-
Fy

J
F

The operator J—r is extended to forms of degree less than 7 by setting
F
it equal to zero in this case.
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The fibre integral has the following properties:

i) It is linear and homogeneous of degree — 7.

@ e A(B)
QeAc(E).

F

i) Latop2=0 )10
F
In particular, the linear map J—r is surjective.
F

iii) It restricts to a surjective linear map J—r :Ac (E) - A¢ (B).
P

iv) It commutes with the exterior derivative

v) If B is oriented and E is given the local product orienta-
tion, then

fFJ—rQ:fQ Q ¢ A (E)
B E

(Fubini theorem).
It follows from iv) that -Jr induces linear maps
F

Hp(E) > H(B) and {:H.(E) - H,(B).

”’k_]-ﬁ-*:
.:’\_lﬁ#

If B is oriented then the Fubini theorem shows that the second of
these is dual to

a* : H (E) ———— H (B)
with respect to the Poincaré scalar products. Moreover if F is
compact then Hy(E) = H (E) and ;F:H(E) — H (B) is dual to
7% H, (E) < Hy (B). ’

4. VECTOR BUNDLES AND SPHERE BUNDLES. Let & = (E, n, B, F)
be a real oriented vector bundle of rank » > 2 over an #n-manifold
B. Since F is contractible, it follows from Poincaré duality that the

+
map [ : H; (F) — R is a linear isomorphism. This in turn implies
F

that the map
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is an isomorphism. The inverse isomorphism, written Tk, is called
the Thom isomorphism for & and the class §, = T A (1) is called the
Thom class of & It is an element of H7 (E). Using property ii),
sec. 3, we see that

Th(a) = (n*a)+ 0 ocH(B).

Any closed 7-form on E with fibre-compact carrier and fibre in-
tegral equal to 1 represents ;. Moreover, for every neighbourhood U
of the zero cross-section there is a representative of 0, with carrier
in U.

Next, choose a Riemannian metric in £ and let &5 = (Eg, ng, B, S)
denote the associated sphere bundle. Since S is compact, the fibre
integral determines a short exact sequence

I
(3) 0——ker L —— A (E5) 2 4(B) — 0.

S

On the other hand, since dim S > 1 we have J—ron’; = 0 and so =3
) S

may be regarded as a map into ker jr- The fact that H+ (ker [ ) =0
S §

implies that n% induces an isomorphism H (B) —— H ( ker J—r)

S
Hence, (3) yields an exact triangle

T,

H (B) s . H
/
B)

\
H(

where 0 is a linear map, homogeneous of degree 7. The class
ge= 0 (— 1) is called the Euler class of &. We have the relation

Es)

m‘—l'ﬂ*

doa = (— 1)P~ta-y, « ¢ H? (B)

and it follows that the sequence

r*
D Tﬂg': r Js P+1

(4) —— B (B) 2 mrr (B) T e (Bg) L5 Fp (B) ——



202 Stephen Halperin and Werner H. Greub

is exact, where
Da=ua-y o€ H(B)

(4) is called the Gysin sequence for the vector bundle é&.
With the aid of Stokes’ theorem it is shown that

a* (%) = A4 (6e)

where A:Ag(E) - A (E) denotes the inclusion map. Hence if o is
any cross-section in &, then y, = o% (6,).
If dim B = dim F and B is compact and oriented we can form

+*
the integral f %, called the Euler number of & If is any cross-
B

section in £, then
+ +
[ Xe = f o (Be)
B B

5. EULER CLASS AND INDEX SUM. Let & = (E, =, B, F) be an
oriented vector bundle of rank # over a compact oriented #-ma-
nifold. Let o: B - E be a cross-section with only finitely many
zZeros, ay, ..., 4, (o could be constructed with the help of the Thom
transversality theorem).

To each a, there is assigned an integer, j, (¢), called the index
of o at a,. It is defined as follows: In a sufficiently small neigh-
bourhood U, of a, we can write ¢ (v) = (x, 7, x) where 7,:U, - F
is a smooth map with an isolated zero at a,. Let S, be a sphere about
a, in U, and let Sy be the unit shere in F. Define ¢, :S, - Sy by

7 (%) xeS

7 ) = ‘

and set
ju (0) = deg Pu

(the degree of ¢, depends only on ¢). The number

is called the index sum of o.
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THrOREM I: Let £ be an oriented vector bundle of rank # over
a compact, oriented n-manifold B. Let o be a cross-section in & with
finitely many zeros. Then

.
i (o) = [ 2.

CororLARY I: The Euler number of £ is an integer.

CoroLLARY 11: The index sum of o is independent of o.

If B is connected, the zeros of ¢ can be moved around by a diffe-
omorphism so as to lie in a single chart neighbourhood, U, over
which the bundle is trivial. If S is the unit sphere in U we may as-
sume that the zeros are inside S. Identify the restriction of & to U
with UX F. Write ox = (v, tx) and set

TX
(pleTx_l xeS.
Then
4+
deg ¢ =j(0) = [ 1
B

In particular, if the Euler number of £ is zero, so is deg ¢. Thus
a theorem of H. Hopf yields a smooth map’\v:: U - F — {0y which
agrees with v outside a compact set. Evidently 7 determines a cross-
section in & without zeros and we have

THEOREM 11: With the hypothesis of Theorem I, assume that B
is connected. Then the vector bundle & admits a cross-section without
zeros if and only if its Fuler number is zero.

TeE GAUSS-BONNET-CHERN THEOREM. In this section we shall
discuss the relation between the Euler class of a vector bundle and
the total curvature of a Riemannian connection in this bundle. To
state the theorem in intrinsic terms it is necessary to recall the
notion of the Pfaffian of m skew-symmetric, linear transformations in
an oriented 2m-dimensional Euclidean space, F.

Let ¢y, ..., p, be skew-symmetric linear transformations of F.
Each ¢; determines the skew symmetric 2-tensor @; given by

D;(x,y) =< gx,y> %yeF.
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Let Ap denote the (unique) normed determinant function in F
which represents the orientation. Then a real number, Pf (@i, ..., @m),
is determined by

@1 /\ /\ ¢m = -Pf((pl’ seey ‘Pm) AF-

It is called the Pfaffian of the transformations ¢y, ..., @,,.

Now let ¢ = (E, =, B, F) be an oriented vector bundle of rank
2m. Introduce a Riemannian metric and Riemannian connection,
V, in & and denote by R the corresponding curvature tensor. It as-
signs to each point x € B and to each pair %y, %, of tangent vectors
of B at x a skew linear transformation

R(x; h’l: hZ)ZFx————> Fz.
Hence we can form the Pfaffian,
-Pf(R (x» hl: hZ)) seey R (x: th—l: h2m))'

Alternating over the tangent vectors #%; yields a 2m-form on B,
Pf(R), called the total curvature form. Explicitly,

-Pf(R) (X, hlr h2m)

— 1)
= ((47'6))"‘ %I 2:1: ea_Pf (R (x: ka(l): hu(Z))’ teey R (x) ko(Zm—l), h’cr(Zm)))’

where o runs over all permutations of (1, ... 2m). The Bianchi iden-
tity implies that the total curvature form is closed and hence it
represents an element of H?” (B).

THEOREM I1: (Gauss-Bonnet-Chern): The total curvature form
represents the Fuler class of &.

In the special case that B is a compact and oriented #-manifold
with # = 2m, Theorems I and III yield.

THEOREM 1v: Let ¢ be any cross-section in & with finitely many
zeros, Then

jlo) = f*xe=fPf(R)-

B
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The integral on the right hand side of this equation is called the
total curvature of &; thus Theorem IV shows that the total curvature
is an integer, independent of the connection.

The following proof of Theorem III is due to Chern. Let (E, s,
B, S) be the unit sphere bundle of & We explicitly construct a
(2m — 1)-form, 2, on Eg so that

Q= —1 and 602 =ntPf(R);

o

these relations show that Pf(R) represents X.

First define the vertical subbundle Vi c T by V, (E) =T, (Fa,). It
can be identified with the pull-back of & to E via the isomorphisms
VA(E)=T,(F,) = F,, x = nz. Restricting V; to the manifold Eg
yields a vector bundle # over Eg which inherits a metric and a con-
nection from &. Moreover, each z € E belongs to F,(x = @z) and
hence to V,(E). This correspondence defines a canonical cross-sec-
tion in V. Its restriction to Es is denoted by o, and satisfies

loz] =1 z e Eg.

Let the connection and curvature in % be denoted by {7\ and ﬁ;
regard R (2, k1, k2) as an element of A2F,, x = mz Let A, denote
the positive normed determinant function in F,. Then for each odd
integer p(1 < p < 2m — 1) define a covariant tensor field, ¥,, of
degree 2m — 1, on Eg by

Wy (2 kiy oo kamn) Ay = 6 (2) A Voo (25 k1) A -

Volz: k) A R (25 kyrrs bps) A o A R(25 Rames, Bamen).

Alternating over the %, yields a (2w — 1)-form, @,, on E. A straight-
forward computation shows that there are scalars ¢, G R such that

~

0% ¢, P, = Pf(R).

In particular,
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On the other hand, since 5 is the pull-back of v, it follows that
(5) R(z; iy, hy) = R (w2, (@) by, (d7) y)

whence
Pf(R) = a% Pf(R).
Thus we have
7s Pf(R) = 621",0,,@,,.

It remains to show that J—FZPI% ®, = — 1. Equation (5) shows
$

that R has no vertical dependence. Thus the restriction of @, to a
fibre S, in Es is zero, unless p = 2m — 1. This implies that

(J_r % Cp‘pﬁ?) (x) = f Cam—1Dam—1-

S Sz

Furthermore, the restriction of # to S, is canonically S, X F,,
and the induced connection is simply the exterior derivative. Also,
the restriction of ¢ to S, is the inclusion 7 : S, - F, (S, the unit
sphere in F,) regarded as a vector valued function on S,. Thus the
restriction of @,,,_; to S, is the differential form, @, of sec. 1. It
follows that

Com1Pom_1 = — L.
Sz

This completes the proof.
7. THE LEFSCHETZ CLASS. Recall that the Euler-Poincaré charac-
teristic of a compact #-manifold M is defined by

% (M) =3 (— 1) dim H? (M).
p=

TuEOREM V: Let M be a compact connected oriented 2m-mani-
fold. Then

* *
[ = [ PFR) = (X) =y (01)

where 7 (X) is the index sum of a vector field on M with finitely
many zeros and R is the curvature of a Riemannian connection
in the tangent bundle 7.
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The last equality was first shown by H. Hopf, via a triangulation.
For the sake of completeness we sketch here a (different) proof of
Theorem V, which identifies the Euler number of z,, with the Euler-
Poincaré characteristic of M.

Tet A:M —~ M X M be the diagonal map, and let

A~ H (M) - H (M x M)

be the linear map dual to A* (with respect to the Poincaré scalar
product). Then the element A™ (1) € H*" (M X M) is called the
Lefschetz class of M and is written 4,

Ay = AT (1).

It follows directly from the definition and the Kiinneth isomorphism
HM x M)=H (M)Q H (M) that

+
(6) [ 8% () = 2 (00).

On the other hand, a linear connection in 7, determines an ex-
ponential map, exp: 7T, — M. Let =n: T, — M be the projection
and let 0: M — T, denote the zero cross-section. Then a smooth
map ¢ : Ty, — M X M is defined by

o(h) = (wh, exsph) heT.

Moreover, in a neighbourhood O of 0(M), ¢ is a diffeomorphism.
Thus ¢ determines a map

(@)y : A.(0) - A (M X M).

Now let @ € A, (0) represent the Thom class of T. Since ¢ is
fibre preserving (where M X M is regarded as a trivial bundle over M
with respect to projection onto the left factor), (¢,), commutes with
fibre integration. It follows that (g,), @ represents the Lefschetz
class of M. Moreover, since po0 = A, we have

A* (@e)y @ = 0% ¢* (@) @ = 0* O,
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and hence

(7) f (ar) fA*svc =/0*q> jm,

Combining relations (6) and (7) we obtain Theorem V.

8. THE SPECTRAI, SEQUENCE OF A SMOOTH BUNDLE. Let & =
= (E, n, B, F) be a smooth fibre bundle with dim B =n, dim F =r.
The wvertical subbundle of Ty is the vector bundle V; whose fibre at
z € E is the vector space

V. (E) = Tz (Fx) = ker (dn)g X =Tz,

A cross-section in Vi is called a vertical vector field on E. The space
of vertical vector fields is written X, (E).

A decreasing  filtration, (F?), of the graded differential algebra
A (E) is defined as follows: F7 (4?7 (E)) (g = 0, 1, ...) consists of those
p-forms 2 which satisfy

i(Yy) i (Y, =0 Y;eXy(E)

In particular,

An (B) = X F7 (47 (E))

is the subalgebra of A (E) consisting of the forms, Q, such that
1(Y)R=0 Y ¢ Xy (E).

It is called the horizontal subalgebra of A (E).

The filtration F leads to a spectral sequence, (E¥Y) (i =0, 1, ...)
of graded algebras converging to the cohomology algebra H (E); it
may be identified with the standard Cartan-Leray-Serre sequence.
We shall recall how the first terms of this sequence can be computed.

Choose a subbundle, Hy of T, so that Tp = H; ® V. A cross-
section in Hy is called a horizontal vector field (with respect to H).
Let Ay (E) denote the subalgebra of 4 (E) consisting of those forms 2
which satisfy

1(X)2 =0, X horizontal.
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The multiplication in A (E) defines an algebra isomorphism
Ay (E) Qs Av (E) —=— 4 (E).

Moreover, Hy is the pull-back of T to E via x; hence, n* induces
an isomorphism

A (B) Qs 5 S (E) —=— Ay (E).

Thus an isomorphism

A (B) ®s5 Ay (E) —=— A (E)
is determined by
®cA(B)

PRV ——
@ wENF Wed, (E).

Under this isomorphism F7 (47 (E)) corresponds to
X 41(B)® 4} (B).
izq
It follows that F is the ideal in 4 (E) generated by =* (3 47(B)). It

729
also follows that this isomorphism may be regarded as an isomorphism

(8) A (B) ®s(p Av (E) —=— E,

of bigraded algebras.

The operator d, is obtained as follows: Observe that the Lie pro-
duct of vertical vector fields is again vertical. Identify A% (E) with
the skew symmetric maps

Xy (E) X ... Xx Xy (E) —— S(E)
which are p-linear over S (E). Define 8y, : 4% (E) — A" (E) by

By ®) (Yo, .., V) = 2 (— 1) Y;(@(Y,... Vi, ¥,) +

+ 2 (- )+ @ (Y, Yj, Yo.. V. V.. Y,).
<7
Then 0y (#*f) =0, feS(B) and so we can form the operator
wp® oy in 4 (B) @ Ay (E). (Hete wp @ = (— 1)? D, & ¢ A? (B). The
operator wp @ &y corresponds to dy under the isomorphism (8).
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Henceforth it is assumed that £ satisfies the following conditions :
1) dim H(F) < oo

ii) There is a coordinate representation {U,, Py of & such that
the restrictions ¥, , : F —=— F, of ¥, satisfy ¥, = ¥, x ¢ U, A, U,

Thus in particular we may identify H (F) with H (F,).

Under these hypotheses there is a unique isomorphism

u: A (B) @ H (F) —=— H (A (B) ® 4y (E)), w5 ® by)

such that u (@ ® «) is represented by @ Q@ ¥, where 6, ¥ = 0 and
for each x ¢ B, j: Y represents o.
Thus we have an explicit isomorphism

4 (B)®rH (F) —=—E,.
Under this isomorphism d;z ® ¢ corresponds to 4; and so an isomor-
phism

H (B) ®g H (F) —=— E,

is induced.

_9. FIBRE INTEGRAIL AND SPECTRAL SEQUENCES. The development
of the preceding section applies equally well to Ay (E), except that
H (F) must be replaced by H,(F). Thus we have canonical iso-
morphisms

Ey= A (B) Qs Av,r (E)
E,~ A (B) Qr H (F)
E,~ H (B) ®r H, (F).

Now assume that £ is oriented, so that the operator

L 4:(B) —— A(B)

is defined. Filter A (B) by setting F?(4 (B)) = X 47 (B). The spec-

izq
tral sequence for this filtration is given by

Ey=E; = A (B)
E,=H(B), i x2.
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Since

F1(Ap (E)) = n* I (4 (B)) A\ 45 (E)

it follows from property ii) of sec. 3 that J—r preserves the filtrations.
2
Thus it induces a homomorphism of spectral sequences.
With the identifications above the maps between the E,, E,

and E, -terms induced by J—r are given by
F

¢ ® £ : A (B) ®s5) A, (E) —— A (B)
F

*
a®f:A<B)®RHc(F)~A(B>

and
+*

z®f:H(B) Qg H¢ (F) —— H (B)

P

+
The last equation shows that J_f coincides with the homological
F

fibre integral of Chern and Spanier.

University of Toronto
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