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1. INTRODUCTION AND TERMINOLOGY: Let C denote the field of

complex numbers equipped with the usual topology. Denote by X
the family of all transformations f: € — C, such that

(1.1) f(s) =3 a,et, s=0+iteC,
n=1

where 0 < A} < ... < A, — o with », and further

log |a,|

(1.2) ,,li,n;, sup —_—= = — ]
(1.3) lim sup logn_/l,, =D <

Condition (1.2) implies that (1.1) is absolutely convergent and con-
ditions (1.2) and (1.3) imply that (1.1) represents a holomorphic
function analytic throughout the complex plane (see [4], p. 29-33).
We endow X with two topologies 7| and T, so as to make it a locally
convex topological vector space (. c¢. TVS). Indeed, let for each
feX, define

M (o, f) = sup |f(o + )]

—co<t<oo

Then {M (g, ...) : 0 is real} defines a family of semi-norms (in fact
norms) on X, satisfying the axiom of separation, and suppose T is
the locally convex Hausdorff topology generated by this family on
X. Next, let for each fe X, define

b0 ) =5 la,len
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Then {p (o, ...): o is real} again defines a family of seminorms (in-
deed, norms) on X, such that this family generates a locally convex
Hausdorff topology, which we henceforth denote by 75, on X. One of
us (PKK) has proved earlier (see [3]) that X equipped with T is
a Fréchet space and hence a barrelled space (see also [2]). Invoking
the Cauchy-Ritt inequality for f(s) given as in (1.1), namely |a,) <
< M (o, f) exp (— o 4,), for all real o, one can easily show that for
any £ >0

(1.4) Mo, f) <p(o.f) <C(k)M(oc+ & f)

Inequalities (1.4) yield that 7y is equivalent to 75, i.e., T3 =T>.
Therefore we may interchange the role of 7, and T, according to
the convenience in our analysis; in particular, we find from what
has preceded above that X equipped with 7 is a Fréchet space and
so it is a barrelled space. When we wish to emphasize X equipped
with a particular topology T or T, we will hereafter write X as
(X, Ty) or (X, T,) respectively, otherwise merely X will denote from
now and onwards a l.c. TVS equipped with T7.

In this paper we shall be concerned with the characterisations
of certain types of bases in X. A sequence {f,} € X is said to be a
base in X if each fe X can be uniquely expressed as (with respect
to scalars in C)

18

(1.5) f=2cfu

n=1

where ¢,’s are the uniquely determined coefficients in C and the
convergence of the infinite series being with respect to the topo-
logy on X.

If ¢,¢ X, e,(s) = e’», n > 1, then each fe X can be expressed
by (1.1) with coefficients ¢, satisfying (1.2) i.e.

(1.6) fim sup 2B 1% — _ o

n—> 00 )'n

Therefore {e,} is a base in X. Now
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The sequence {f,}, where f, (s) = ¢*/n! is in X and forms a base
for X, but here

(1.7) lim 98 %1 _ g

n—> 00 An

Consequently there are at the outset two types of bases in X, for
which (1.6) is true or not true. A base {f,} in X will be called a ge-
nuine base if the corresponding coefficients satisfy (1.6). A sequence
{f,} in X is called an absolute base if it is a base in X and the infinite
series corresponding to each fe X is absolutely convergent with
respect to 7'y (or equivalently with respect to 75). A sequence {f,}
in X is called a proper base for X if it is a genuine as well as an abso-
lute base for X.

In this paper we shall give results pertaining to the characte-
risation of proper base in X and they are given in the following
section.

2. In the discussion that follows, we will be frequently making
use of

Lemma 2.1: Let {¢,} ¢ X and suppose that f} ¢, converges abso-
n=1

lutely with respect to the topology on X, i.e. i M (o, ¢,) converges

n—1
for every real o. Then given u > 0 and a real o, there corresponds
an integer p, such that for all #» > p, we have

log M (o, ¢) < ul,

Proor: The proof is straight forward. Indeed, let the conclusion of
the lemma be false. Then there exists an increasing sequence {1}
of {n}, m, - oo as k — oo, corresponding to a given u < 0 and a
real ¢, such that

log M (0, $u) = pi i,

Therefore

S Mo, ¢,) =3 &,
n=1

k=1

and this contradicts the hypothesis of the lemma.

The main result about the characterisation of proper bases will
require two intermediatry results and in this direction we first of
all have
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Theorem 2.1: Let {,} ¢ X. Suppose {c,} be an arbitrary sequence
contained in C, such that

lim sup log le| = — oo = the convergence of

n—> 00 )'n
2.1

|

Then (2.1) is equivalent to

ﬁMs

M (o, c,2,), for each real o
1

(2.2) lim sup l—og—fw—’l"—) < + oo, for each real ¢

n—> 00 ;"n

ProOF : (Necessity). Let (2.1) hold good. Suppose (2.2) is not true.
Hence for some o, there corresponds a sequence {n;} € {#}, such that

(2.3) log M (o, an) > kA, R=1,2,3, ..
Define {¢,} by

Ay — log M (o, aw), k=1, 2, ...
log [c,| = 0
e .

Then from (2.3)

|
lim sup log lewl _ _ oo

—> 00 )“n

and so (2.1) hold and in particular the series in (2.1) converges. Now
for every o
M (0, Cu %) = Coe M (0, o)
= etm,
M (o, ¢c,o,) =0, n £y

Thus

log M (o, cpt,) _ f L, n=mn(k=1,2..)

Aoy .(——oo,n#nk

and this contradicts the conclusion of the lemma (indeed, take
¢, =c, 0o, and u = 1)
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(Sufficiency). Let o be given. Then there exists a constant C = C (o)
depending on a pre-assigned real value o, such that (from (2.2))

(2.4) log M (g, a,) < e, for n > ny = ny (C)
Let C; > C. Then there exists n; = n; (C;), such that
(2.5) lc,| < e Cit, for n > n.

Now for real o, we get from (2.4) and (2.5)

M (O" Cy an) = IC”| M (Ur 'xn)
< ell=C% u > N = max (ng, 1)

Hence

8

M (o, c,2,)

1

n

converges for every o. The proof of the result is now complete.
Next, we have

THEOREM 2.2: Let {«,) c X and let {¢,} ¢ C, then

Convergence of S M (o, ¢, a,), for each real ¢

2.6 n
(2.6) . log |c,| _
= lim sup —=—* = — oo,
n—>00 }'n
implies and implied by
2.7) lim {lim inf k’_gMT("_“_)} — + o

ProoF: (Necessity). Let (2.6) be true and suppose that (2.7) is false.
Then for some £ > 0

lim {lim inf ML‘L)} <k<+ oo

G—>00 n—> oo }'n

But from the convexity of log M (o, f) with respect to o (see [1], p.
138) we infer that if o; < 0y, then M (07) < M (07).
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Therefore for each real o,

lim inf l_o_g_%lw <k
n— oo n
Hence there exists an increasing sequence {n;}, such that

log M (0, on) <k A,
Define {c,} c C as follows:

| (( —2&A, if n=mn
0og Icnl - i s ’ if " # nj
Then for a given ¢

2”1 leal M (0, a,) < z: exp (—k2,) < + oo
n= j=

and so X' M (o, c, a,) converges for each real. Consequently from (2.6),

lim sup log |c,|/A, = — oo. But it is not true, sice by construction
n—> oo
. log |c,l
lim sup ——2 = — 2k
n—> o }'n

This contradiction proves the first part of the theorem. (Suffi-
ciency). Let (2.7) hold good. Assume that (2.6) is not true. Thus
2 M (o, c,a,) converges for each o, but

1im Sup];?g—lq'_l# — oo (i,e,> —oo)

n—- oo l”
There exists a sequence {#;}, such that

log |ew) > M Ay, M > — oo

By (2.7), one may find a real o, such that

lim infloLAM>2—M

n—> 00 n
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Therefore

log M (6, Cpyotn)
Ay

>M+2—-M=2 k>1

but then this contradicts lemma 2.1 (take ¢, = c,«,, u = 2). The
proof of the result is now complete.

Combining Theorem 2.1 and 2.2, we have now our main result
of this paper, namely.

THEOREM 2.3: Suppose {z,} is an absolute base in X. Then {«,} is
genuine if and only if (2.2) and (2.7) hold good.

REMARK: In view of (1.4), it is clear that the above theorem
remains still valid, if the function M (o, ¢, ,) in (2.2) and (2.7) is
replaced by 9 (g, ¢, ,).
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