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I. Throughout this paper I consider f (2) to be a transcedental
mermorphic function. Let / be a finite positive integer (/ > 1). Let
f® (2) stand for the / —th derivative of f(z). It is assumed that the
reader is familiar with the symbols (7, f), N (7, f), N (r,a), S (r)
and T (r, f) frequently occuring in the Nevanlinna theory of mero-
morphic functions and so m (7, f¥), N (#, f%), N (7, f®) and T (7, f%)
stand as above with f% (z) instead of f (z). Let

0 (o) = 6 (2, =1—1'_N(r’a);@fx=@oc, =1——1T—_—
() =0 (2, f) ,lﬁf(y,f) (o) (o, f) f-lflo:r(r,f)

=—N (7, ) —N(?, o)
90(-26 o, :1 b
() = 8 (o ]) ,iino' T f)

when one has 0 («) + 9§ (o) < O ().

I wish to prove a number of results on the various relations amongst
T@f),T((f%,N(@[f), N, m,f) and m (r, fV), and also
amongst the deficient values defined above. A major role is played by
lemma 1 of this paper and also its intermediate steps. The second
inequality in (i) of lemma 1 is roughly contained in lemma 4 of
Hayman [2] but I include its proof for the sake of completeness.
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2. LeEmMA I: Let f (2) be a meromorphic function in the plane
and let

- )

(z) — Ay

Then for all » - o©

Y m(r, @) + N (r, 1/f9) + 0 (log 7) < T (1, f0)

n=1
(i) <O (log7)+m(r.f)+ @+ 1) N f),

provided f(z) is of finite order p; for 7 - oo, excluding a set of finite
length, we also have (for every order)

q

Y m(r.a) + N 1/f% + 0 (log T (r, f)}) < T (r, f)

u=l
i)  <O(log T (M) +mrf)+ @+ 1N
This lemma includes the result of Ullrich ([9], p. 207).

Proor: We have:

q

- m(r,a,) = 21 m (7’ m)

n=1 pu=
<m(r, F) + 0 (1)

<m (r, F fO) + m (r,1/f%) + 0 (1).
But

m(r, FfO) <m(r, F fO7Y) + m (7, fo/fo-n)

<m (r, F f¢0) 4 m (v, fOD/fC7D) 4 m (v, fO/fC7D)
<m(r, F fV) 4 li‘,l m (v, fO[f¢71)
i=2

<m(r, F fO) + (I—1) S (),
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by lemma 4 of Hayman ([2], p. 13). If f (2) is of finite order then
S (r) = O (log 7), therefore (see p. 32 [3])

m (r, F f9) = —m(r, fV/f) + O (log 7)
= O (log 7).

Hence

i

=
I
-

m(r,a,) <m (¥, 1] f9) + O (log 7).

But
m(r, 1f%) = — N (1, 1/f9) + T (7, 1/f")
— — N (, 1f% + T (r, f) + log |/ (0) |
and we may let f (0) # O. Therefore

m(r,a,) <O (log #) — N (r, 1/f%) + T (,f9) + 0 (1),

1

=

and so first inequality in (i) follows.
Now
(i) T (r, fO) =N (7, f%) + m (7, fO).
But
m (v, fO) <m (r, fOIf) + m (7, f)
(iv) <S () +m(f),

by lemma 4, cited above. Also at a pole of f (z) of order %, f® (2) has
a pole of order 2 + /. Thus

(v) N, f" <@+ 1N
Therefore from (iii)-(v), we find that

T fM<SO+m@Ef)+0E+1)NE ),
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and if f (2) is of finite order, S (r) = O (log 7), one finds that the second
inequality in (i) is done.

If f (2) is of infinite order, then
S@# =0(og (T (r,f)}),
for all » but in a set E of finite linear measure (see [3]), and so
m(r, FfO) =m(r, fPf) + S ()
=0 (log {r T (r, /) }),
and the previous considerations lead to (ii).

Using lemma 1, we also have:
LeEMMA 2: Let f (2) be a meromorphic function of finite order. If

Y o f)=1—y;6(0, f) 21—y, (0<y<l)

aFoco

then

. - lim T (% _— T f")
V) s T S T =T

Proor: From the second inequality in (i), we have
T (r, f*) <O (tog7) +m (1, f) + N (. f) + 1N (1, f), 7 =,
<0 (log”) +T (/) + (1 —b (o, f) + &) T (1, f),r =1
<O0ogn) +T(rf)+1lr+ T f)r=r

Therefore

_ 0
fim L0 SY)

oo T(1,f)

1 4+ 91,

Now from the first of the inequality in (i), one has

: U] i
lim T(.f%) § tm ma) {50 0p
r-> T (r,f) ,Zir—-00 T(r,f) =

>1l—y>1—yl 1>1).
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Therefore (vi) follows.

LemMMA 3: We also have for f (2) to be of finite order, the following

_ @
(vi) fim N _(+ Dy,
e T (1, f9) ~ 1 —y1

PR 5 ()
(viii) fm N0 UM 2pl
oo T (r, ) 14yl

and therefore

B+Dy —(2—-10)y?
1 1292 .

(ix) k(1) <

Proor: We have

im Niﬂ? < ( + 1) fim N({f) T/
r—oo 1 (1’, f(l)) r—oo 1 (7, f) T (7’ f(l))

<t fm YOI from (v
1 —ylrseo T (r,f)

C+1Dy.

’

1 —yl

(A

also from (i) (first inequality) for » > rg,

N UM _ & mbha) | Tef) & ma)

v

T = =T rfY) T f® = T(f)

S 5(a, f)

<1 — =

l+yl+4 ¢
1 —yl

l+yl4 ¢

(4 Z }’0).

Hence
R ; @
im N (r, 1/f )S 2yl ’
r—oo T (v, f®) 1+ vl
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and so (vii) and (viii) are proved. (ix) follows from (vii) and (viii) by
adding them.

Corollary: Let y = O (so that 6 (oo, f) =1, X 6 (2, f) = 1), then

o FE 00

(x) fm NV 1Y) + N Uf®)

lim =0
00 T (r, f%

REMARK: Let f (2) be a meromorphic function of non-integral order
o, then ([4], [3])

(xi) iﬁﬁ N (7, f(t)) + N (.,,, l/f”)) 0
— T (s, %)

3

since the order of f(z) is not changed (f™ (2) is also of order p).
Hence if 6 (oo, f) = 1, E 0 (e« f) = 1, and f (2) is a meromorphic

Ede el

function then the order of f (z) is an integer, for otherwise (xi) will
hold good and we shall arrive at a contradiction on account of (x).
This result was proved by Shah and Singh {8].

REMARK: Lemma 2 includes Theorem 2 of Shah and Singh [7], since
taking y = O, xe get

T f% ~T @f),

and if / = 1, this result is of Shah and Singh. Lemmas 2 and 3 also
include lemma 1 of Edrei and Fnchs [1] (for I = 1).

LeMMA 4: Let f (2) be meromorphic of finite order and let «; # a5 ;
lap] < oo, |ap]| < oo. Let

fim Y %) .y ),
r—>00 T(}’, f)
Then
T f~C+1) T(f).

ReEMARK: This result also includes Theorem 3 of Shah and Sing [7].
Proor oF LEMMA 4: We have



T J")

=

=
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N (r, )
N (r, f*70) + N (1, f¢70)
N fY) + N fO+N@E 2+ ...+ N, /o)
N f)+N@H+NE )4 ...+ N fo)
(¢ + 1) N (7, f).

Now from (2.9) in (3] (putq = 2, a; = oy; a4y = )

(1+o(l))T(1’,f)SN(1', ! )+1‘\7(r, : “)+N(r,f)

f—o e
=N (r, 1)) + N (7, ) + N (r, f)

<o(T(n ) + N f) (r=m).

Therefore, as T (v, f) > N (7, f).

Hence

(xii)

N (nf) ~T @ /).

lim T (r, ) St
y—>oo T (r,f) '

From (i) (second inequality) now

T(r,f") <0 (logr)+{m(r./)+N@f)} +1T(f)

Therefore

(xii)

<0 (log7) + (L + 1T, f).

Lo/ <pp,
oo T(r f)

From (xii) and (xiii) the result is proved.

3. Let

: Z' (7’ l/f(l))
M =1 — v T 7
A0, fO =1 th v .
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Then we have the following
THEOREM l: Let | a;| < oo (¢ = 1, 2...), then if f(2) is a meromorphic

function of finite order, one has

(16 (0, )20, f) %, 8 (a,) < (+18 (0, /)= (e, £)) 2(0, ).

w=1
Proor: First af all we have (using (iv))
T(r,f%) =N (1, f%) +m (r, f0)
<IN @#H+NEf)+m(,f)+ 0 (log7)
or, T(r,f"T(r,f) <1+1(l —6O (o, f)+ ¢ all »=>y,.

Therefore

i) m H <41 — (8o, ) +6(c0, )L

For the sake of simplicity, let

A = Iim T(f:f_”’_); g lim T f9
r—>00 T()’,f) ¥ —> oo T( f)

From (i) we have

(=v) ¢T (. /) “é N (v,a,) + N (r,1/f%) + 0 (logr) < T (, f9).

n=1

For r =7,.

NOUMOTEL) pygt sy (1—6()+ e
q+ ( ’f(l) T(y, f) ( ) [‘:l( ((l,,)

Hence

G+ (=20, f%) —e)(B—e<B+et+y (1—06()+ e

p=1

or, 3 6(a) < BAO, %) + 0 (o).

n=1



The derivatives of a meromorphic function 13
Making ¢ — O, we have

(xvi) 3 8(a,) < Ba(o, fU).

u=1
Again from (xv) we have for all » > 7,

NeUMTEL) g0 0 §qj (1 — 90 (a)) + o),

A Z,

and so

1+ (=000, f%) —g B—e<A+et+y (1-0@)+o),

1

and therefore

(1—3(0,f%) B<A—Y da),

1

and as 1 — 4 (O, f®) > O, we find from (vxi)

(=30, /% $ 8 (@) =~ (@) 2 (0, ).

=

This inequality leads to Theorem 1.

3. Lut S be a family of all increasing functions ¢ (), such that

log x = o (¢ (x)), and that x*/p (x) (x — O) is non-decreasing — oo
with x. Let

lim T (r, f)

(=) r oo (r, @) g (7)

>0,0<|a| <o,

where @ € S and call « as e.v.S. (eceptional value S). Since # (7, «) >
N (r, «)/log 7 and so if « is an e.v.S., then

T(r,f)<Amn(r,a)p(r), (allr >ry)
and therefore it follows that

(xviii) 3 (o f) = 1.
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If 6 (o0, f) =6 («, f) =1 (¢ # 00), it follows from lemmas 2 and 3
that 6 (oo, f%) = 6 («, f¥) = 1, and also note that (xvii) =»> (xviii)
and we have the fact that there cannot be more than two e.v.S. for
f(2) since X' 6 («, f) < 2. Let now «; and «y («; # «,) be two e.v.S.
for f (2), does it imply that «; and «, are also e.v.S. for f¥ (z) ? The
answer is contained in the following

THEOREM 2: Let f(z) be a meromorphic function of finite order o,
having « (|a| < o) and oo as e.v.S., then f¥ (2) has O abd o as
e.v.S.

Proor: Let a = O, so that 6 (O, f) = 1. Also ¢ (oo, f) = 1. The-
refore (see Shah and Sing [8]) T (7, f) ~ A 7* where g is an integer.
Also from lemma 2. '

T f9 ~T( f)
Further
n(r, fO) <@+ 1) n( )
Hence

lim T (v, f) > 1 lim T (r, f)
rocon(n, f) o) L+ 1r>con(r /e

since oo is an e.v.S. of f (2) and this implies that co is an e.v.S. of
f (z), where @ is some member of S.

> 0,

Now following Nevanlinna ([5], p. 105)
N (r, 1/f% < N (@, flf%) + N (, 1//)
< N(r, 1f) + N fOlf) +m(r, f21f) + 0 (1)
< N, 1/f) + N (. f9f) + O (log ),
from lemma 4 [2]. But
N(r, f91f) < N (. f¥) + N (., 1/f)
< ¢+ YN+ NS
Therefore

N 1f% < (+ )N, 1/f) + N f)) + O (log 7).
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Now using T (7, f) ~ A7® and denoting by A4,'s various constants, we
have

n (1) < H7
@1 (7)

n(r,f)<A279 ,
@2 (7)

where @, ¢; € S. Let ¢ = min (@1, @2). Also ¢ (x)/x* (& > O) is stea-
dily decreasing. Hence

N, f) + N (r, 1/f) <A3JW f(_;;dx<A4 ﬁ;—).

0

Therefore

N (r, 1f%) < 227 4 0 (tog )
¢ (r)

and this shows rhat

Hence

lim T (v, )
r—co N (r, 1/f%) ¢ (7)

since T (r, f¥) ~ A »*. Hence O is an e.v.S. of f¥ (2).

<0,

Finally, I wish to add a result which says something more, and
still with less restrictive hypothesis, than what Shah has proved in a
paper in 1952, see for instance his theorem 5 {6].

THEOREM 3: Let f(z) be a meromorphic function with d («, f) =
=6 (o, f) =1, (2 # ). Then

;Z(r, f—l—) ~Aor, (r — )

B )
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for all x, excepting when x = «, = oo, where 4 is some positive
constant.

Proor: Let « = O. Then T (7, f) ~ T (7, ) oo Are. Since
N O <kN(@, f)

and so 6 (oo, f¥) = 1. Also from the discussion of the preceding
theorem it also follows that d (O, f¥) = 1.

Applying Nevanlinna(s second fundamental theorem to f% (z) and
taking ¢ = 3,4; = 0, a; = ®©, a3 = x (see [5], p. 69) ans solving a
little, one finds that

T (r, f9) < N(r'ﬁ—l—_x) + N (r, 1/f®) — N (r, 1/f7+0) +

+ N (/9 + S fY)

1

n ) FN SN € ) 4 N (v }f—)) +5 (. f")

S(r, f%) = o (T (r. f%); N (r, f**) = N (r, f%) + N (r, f*)

Therefore
1

(L4 o) T (. f") <N (r F——x) + N (1% + N @, 1//7).

Hence

lim N (r, 1/(f" — x)) -1
r—>oo T (r,[%)

Consequently

N (r, 70 1_ x) ~ T (7, f¥) ~ Are, (r > ).

and this implies that

7_L(y’fml_ x) ~ Aot ()

The result is, therefore, proved.
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