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1. THE ORTHOGONAI SEQUENCE.

The method of obtaining Bessel-Fourier sequences from solu-
tion J, (x) of Bessel’s equation

(1) (xy")’ +( —%)y=0

is well known [5, p. 576]. The purpose of this note is to show that
the method is available for solutions of the more general differential
equation

@ ) + (e +Hy=0 >0

where ¢ (> 0), %, and m are constants. If the coefficient of y is desig-
nated p (x), all solutions of (2) will be oscillatory on [1, o), when

jjp(x)dx=+oo

(see [3, Ch. 11]). When ¢ =1, m = 1, B = — n2, equation (2) be-
comes the Bessel equation.

When m > 0, equation (2) has a regular singular point at x = 0.
Its indicial equation is

A3) R2+k=0 (m > 0).
(*) This will acknowledge the partial support of the author by the U.S.
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For ¢, k, m fixed let y, (x) be any nonnull solution of (2) on (0, ).
If 2 and y are any two constants (u A 7 0), the functions z = y; (1%)
and w = y; (ux) satisfy the differential equations

22+ A2+ R2p(Ax)z=0,

4
“ xpw + pw + @2p(px)w =0,

respectively. If we multiply the first equation in (4) by pw and the
second by — Az, and add, we have

% (w2" —zw") + (w2’ —z20) + [Ap(Ax) — pup(ux)]wz=0.

Accordingly, if 4 and b are any two points of (0, o), with a < b,

®) J (¢ (02 —20") + (w2 —zw')] dx =j'b [up (ux) — Ap (Ax)] wzdx

a

An integration by parts yields
b

(6) [x(@e —zw)]s=c(utt — 1+ J a"y1 (%) y1 (px) dx.

To avoid solutions oscillating infinitely often on (0,1) we take
k <0 and set
k= —n2

where # is a nonnegative real number. We assume, henceforth, that
m > 0. We may then set a = 0 and rewrite (6) as (¥)

(7 % (291 (n2) y1 (A%) — uyy (22) 31 (e 2)]lo

b
= et g [ G (e

if we choose y; (x) to be a principal solution of (2) associated with
the point x = 0 (**) [2, 1]. If follows that

lim xyy" = 0.

z — 0+

(*) This result can be obtained from a formula derived by ILommel
(4 p. 522].

(**) The solution y; (¥) is now identifiable as ¢; Jx [% xo] (» > 0), where
6
20 =m 4 1 and c; is any constant # 0,
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We recall that ], (x) (» > 0) is a principal solution of Bessel’s equa-
tion associated with the point x = 0. From (7) we have

b

(8) ¢ (urt — l’"“)J 2" y1 (A%) y1 (ux)dx

0

=04y (1) y1(20) — py1(20)y1 (wb)].
Denote by «; (s = 1, 2, 3, ...) the positive roots of the equation
y1(xd) =0,

in ascending order. Note that if «, and «, are any two such roots,

v £ S,

©) [[mneaneair=0  @<a);

that is, the functions %2 y; (; %) (i =1, 2, 3, ...) are orthogonal on
the interval [0, 8].
One can show that the integral

0

(10) Jb ¥y (Ax)dx

1 2
RTESY [z b2y{? (AB) + ( ot — %)y% (M)]

in the usual way by dividing both members of (8) by u — A and
taking the limit as u — 1 with the aid of 1'Hospital’s rule. The
following method is just as simple.

It is easy to verify the identity

(11)  [(22)*y 2 (Ax) + Axp (Ax) ¥} (Ax)] = A[xp (A%)]) yF (A )
if we recall that

Axy1(Ax) = —y1(Ax) — p(A#)y (A%).

Noting that
[xp(A%)]) = cA™(m 4 1) x™



196 Walter Leighton

we can integrate both members of (11) obtaining (10). Again, since
1 (%) is a principal solution we have been able to employ the fact
that

lim (xy')2 =0, lim xy2 = 0. (*¥)

z— 0+ z— 0+

When A = a, equation (10) becomes

b b2y («, b)
12 "y (o, %) dyx = —=21L 27~
(12) Lx%w Jan = X

In the case of Bessel functions it is customary to take b = 1.
If f(x) is, say, continuous on the interval [0, 4], one can obtain
a formal expansion of f(x) as a series

160 ~ S0 3, ),

in the usual way. It is not difficult to verify that

_c(m—i—l)a.:-”—1 b 3 .
a; = 0y Lx @) y1 (%) dx (=1, 12,3, ..).

It is clear that y; (a;0) 7 0.

2. POWER SERIES EXPANSION OF THE PRINCIPAL SOLUTION.

We now suppose that m is an integer > 0. In this case, according
to the classical theory of the regular singular point, there exists a
power series expansion of the principal solution of the form

e ==Xar (a0,

where &k = — %2, and # > 0. When s > 1, the usual calculation
yields
ay=ay=..=a, =0,
—ca;

(=0, 1,2, ..)

bimil = T m T )G+ m 20 1 1)

(*) To see this easily, consider two cases » > 0 and » = 0.



Generalized Bessel-Fourier Functions 197

These become the coefficients of J, (x) when ¢ = m = 1. When m = 0,
we have
—Ca;

a,; = m (l - 1, 2, 3, ..‘),

with aq arbitrary but % 0 as in the first case. The test-ratio test
applied to the series Y a,x* yields the fact that the series converges
0

for all x [as it must, of course, from the form of (2)].
The case m = n = 0. When m = n = 0, it is readily verified that

%
icao

e

a;=(—1)

with a, arbitrary but # 0. In this case, equations (9) and (12) be-
come, respectively,

b
f Y1 (“r x)yl (as x) dx =0 (0(, < ‘X:-):

0

[ 0y an = B l)

0 4

and the functions y, (¢;%) (j = 1, 2, 3, ...) are orthogonal on the
interval [0, b].
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