A REMARK ON THE STALKS IN THE L-RECIPROCAL IMAGE

por

MIGUEL L. LAPLAZA

We have showed in a recent paper [4] the natural morphism between the stalks in the reciprocal image is an isomorphism. The object of this note is to extent this result for the case of 1-reciprocal image, defined in [3].

We have taken — without essential modifications — the proof of [4], ameliorating and shorting the exposition.

We shall follow [1] and [2] in all the definitions and terminology not explicitly given. Through all the note the presheaves will take values on a category K. If E is a topological space, $\mathcal{R}(E)$ will be the family of the open sets.

1. Preliminaries

- **1.1.** Let, $\psi: X \to Y$, be a continuous map and \mathcal{B} a presheaf defined over Y. $\{\psi^1 \mathcal{B}, \omega\}$ is the left-reciprocal image of \mathcal{B} if $\psi^1 \mathcal{B}$ is a presheaf over X, ω an element of H ($\mathcal{B}, \psi_* \psi^1 \mathcal{B}$) such that the map of Hom ($\psi^1 \mathcal{B}, \mathcal{F}$) in Hom ($\mathcal{B}, \psi_* \mathcal{F}$ defined by, $f \to (\psi_0 f) \circ \omega$ is (1-1) for every presheaf, \mathcal{F} , defined over X [3].
- **1.2.** Let X be a topological space, $x \in X$, $f \in Hom(A, B)$. There exists a sheaf, \mathcal{H} , given by, $\mathcal{H}U = A$ if $x \in U \in \mathcal{R}(X)$, $\mathcal{H}U = B$ if $x \notin U \in \mathcal{R}(X)$, and $\mathcal{H}\varrho_U^U$, the unit morphism if $x \in U'$ or $x \notin U$, and $\mathcal{H}\varrho_U^U = f$ in the other cases. It is immediately seen that \mathcal{H} is a sheaf (s. [4], **1.3**). We shall note this sheaf with $\mathcal{H}(x, A, B, f)$.
- **1.3.** If $\psi: X \to Y$ is a continuous map, with the definition of **1.2** it is easy to prove that, $\psi_* H(x, A, B, f) = \mathcal{H}(\psi(x), A, B, f)$. It is also immediate the stalk of $\mathcal{H}(x, A, B, f)$ in x is the object A, being the unities the morphisms composing the inductive limit.

- **1.4.** The morphisms of $\mathcal{H}(x, A, B, f)$ in $\mathcal{H}(x', A', B', f')$ are the elements (a, b) belonging to $\operatorname{Hom}(A, A') \times \operatorname{Hom}(B, B')$ such that, f'a = bf.
- **1.5.** If \mathcal{F} is a presheaf defined over X and $\{\mathcal{F}_x, \mathcal{F} \varrho_x^U\}_{x \in U \in (X)}$ is the stalk of \mathcal{F} in x, the relations, $\mathcal{F} \varrho_\phi^U = \mathcal{F} \varrho_\phi^{U'} \mathcal{F} \varrho_v^U$ for $x \in U \subset U' \in \mathcal{R}(X)$ and the concept of inductive limit involve the existence of a morphism, $\mathcal{F} \varrho_\phi^x \colon \mathcal{F}_x \to \mathcal{F} \phi$, uniquely determinated by the relations, $\mathcal{F} \varrho_\phi^U = F \varrho_\phi^x \mathcal{F} \varrho_x^U$ for $x \in U \in \mathcal{R}(X)$.
- **1.6.** We shall note with $\mathcal{H}(y, \mathcal{F}_x)$ the sheaf $\mathcal{H}(y, \mathcal{F}_x, \mathcal{F}\phi, \mathcal{F}\varrho_{\phi}^x)$ (s. **1.4**).
- **1.7.** The morphisms, $\mathcal{F}\varrho_{\phi}^{U}$ and $\mathcal{F}\varrho_{x}^{U}$ define a morphism of \mathcal{F} in $\mathcal{H}(y, \mathcal{F}_{x})$ (s. 1.4) that we shall note with $\alpha(y, \mathcal{F}_{x})$.
- **1.8.** If $\eta \in \text{Hom}$ $(\mathcal{F}, B, \text{ being } \mathcal{F} \text{ and } B \text{ presheaves over } X, x \in X \text{ and } \{\mathcal{F}_x, \mathcal{F}\varrho_x^U\}, \{B_x, B\varrho_x^U\} \text{ are the respective stalks of } \mathcal{F} \text{ and } B \text{ in } x, \text{ the morphisms } \eta_x \text{ and } \eta \neq \text{ define a morphism, } \alpha(y, \eta_x) \text{ of } \mathcal{H}(y, \mathcal{F}_x) \text{ in } \mathcal{H}(y, B_x), \text{ by reason that the relations, for } x \in U \in \mathcal{R}(X), B\varrho_\phi^x \eta_x \mathcal{F}\varrho_x^U = B\varrho_\phi^x B\varrho_x^U \eta U = B\varrho_\phi^U \eta U = \eta \neq \mathcal{F}\varrho_\phi^U = \eta \neq \mathcal{F}\varrho_\phi^x \mathcal{F}\varrho_x^U \text{ and the concept of inductive limit imply } B\varrho_\phi^x \eta_x = \eta \neq \mathcal{F}\varrho_\phi^x. \text{ We remark that, } \psi_* \alpha(y, \eta_x) = \alpha(\psi(y), \eta_x) \text{ for any continuous map, } \psi, \text{ as follows immediately from definitions.}$
- 1.9. Let X, Y, be topological spaces, $\psi \colon X \to Y$ a continuous map, B a presheaf defined over Y, $\{\psi^1 B, \omega\}$ the 1-reciprocal image of B. If $\psi_x \colon \psi_* \psi^1 B_{\psi(x)} \to \psi^1 B_x$ is the natural morphism between the stalks, defined by the relations, $\psi_x \cdot \psi_* \psi^1 B \varrho_{\psi(x)}^V = \psi^1 B \varrho_{\psi}^{\varphi^{-1}V}$ for $\psi(x) \in V \in \mathcal{R}(Y)$, and we have in mind the relations for $\psi(x) \in V \in \mathcal{R}(Y)$, $\psi_* \psi^1 B \varrho_{\psi}^{\psi(x)} \cdot \psi_* \psi^1 B \varrho_{\psi(x)}^V = \psi_* \psi^1 B \varrho_{\phi}^V = \psi^1 B \varrho_{\phi}^{\varphi^{-1}V} = \psi^1 B \varrho_{\phi}^X \cdot \psi^1 B \varrho_{x}^{\psi^{-1}V} = \psi^1 B \varrho_{\phi}^X \cdot \psi_x \cdot \psi_* \psi^1 B \varrho_{\psi(x)}^V$ and the concept of inductive limit, we find $\psi_* \psi^1 B \varrho_{\phi}^{\psi(x)} = \psi^1 B \varrho_{\phi}^X \cdot \psi_x$, and then, ψ_x and the unit morphism define a morphism from $\mathcal{H}(y, \psi_* \psi^1 B_{\psi(x)})$ to $\mathcal{H}(y, \psi^1 B_x)$ that we shall denote $\alpha(y, \psi_x)$. It is easyly shown that $\psi_* \alpha(y, \psi_x) = \alpha(\psi(y), \psi_x)$.

2. The natural morphism between the stalks

2.1. — From now on, X, Y will be topological spaces, $\psi: X \to Y$ a continuous map, B a presheaf defined over Y, $\{\psi^1 B, \omega\}$ the 1-reciprocal image of B, $\{B_{\psi(x)}, B_{\psi(x)}\}_{\psi(x) \in V \in \mathcal{R}(Y)}$,

 $\{\psi_* \psi^1 B_{\psi(x)}, \psi_* \psi^1 B \varrho_{\psi(x)}^V\}_{\psi(x) \in V \in \mathcal{R}(Y)},$

the stalks of B and $\psi_* \psi^1 B$ in $\psi(x)$, respectively, and

$$\{\psi^1 B_x, \psi^1 B \varrho_x^U\}_{x \in U \in \mathcal{R}(X)}$$

the stalk of $\psi^1 B$ in x. We have to remark we only suppose the existence of this inductive limits: no other assumptions are made on the category K.

- **2.2.** Accordingly with **1.7**, α (ψ (x), $B_{\psi(x)}$): $B \to \mathcal{H}$ (ψ (x), $B_{\psi(x)}$) = $= \psi_* \mathcal{H}(x, B_{\psi(x)})$ and taking into account the definition of 1-reciprocal image, there is a morphism, β : $\psi^1 B \to \mathcal{H}(x, B_{\psi(x)})$, such that, α (ψ (x), $B_{\psi(x)}$) = $\psi_* \beta \circ \omega$. The morphism β origins a morphism, β_x : $\psi^1 B_x \to [\mathcal{H}(x, B_{\psi(x)})]_x = B_{\psi(x)}$, uniquely determinated by the relations, $\beta_x \psi^1 B \varrho_x^U = \beta U$, for $x \in U$.
- **2.3.** For $\psi(x) \in V \in \mathcal{R}(Y)$, we have, $\beta_x \cdot \psi_x \cdot \omega_{\psi(x)} \cdot B\varrho_{\psi(x)}^V = \beta_x \cdot \psi_x \cdot \psi_x \cdot \psi_x \cdot \psi_1 \cdot B\varrho_{\psi(x)}^V \cdot \omega V = \beta_x \cdot \psi_1 \cdot B\varrho_x^{\psi^{-1}V} \cdot \omega V = \beta \cdot \psi^{-1}V \cdot \omega V = (\psi_* \beta \circ \omega) V = \alpha (\psi(x), B_{\psi(x)}) V = B\varrho V_{\psi(x)}^V$, and accordingly with the concept of inductive limite, $\beta_x \cdot \psi_x \cdot \omega_{\psi(x)}$ is the unit morphism.

and taking into account the definition of 1-reciprocal image, we find, $\alpha(x, \psi^1 B_x) = \alpha(x, \psi_x) \circ \alpha(x, \omega_{\psi(x)}) \circ \alpha(x, \beta_x) \circ \alpha(x, \psi^1 B_x)$, and so, for $x \in U \in \mathcal{R}(X)$, we have, $\psi^1 B \varrho_x^U = \psi_x \cdot \omega_{\psi(x)} \cdot \beta_x \cdot \psi^1 B \varrho_x^U$, and by the definition of inductive limit, $\psi_x \cdot \omega_{\psi(x)} \cdot \beta_x$ has to be an anity.

2.5. — From **2.3** and **2.4** follows that the morphism $\psi_x \cdot \omega_{\psi(x)}$ — the natural morphism between the stalks — is an isomorphism.

REFERENCES

- 1 GROTHENDIECK, A.: Eléments de Geométrie Algébrique. I. Le Langage des Schémes. Publications Mathématiques, n.º 4. I.H.E.S. Paris. 1960.
- 2 GROTHENDIECK, A.: Sur quelques points d'algébre homologique. Tokôku Math. Journ. IX (1957), 119-221.
- 3 Laplaza, M.: Imagen reciproca de un prehaz. Actas del Coloquio Internacional sobre Geometría Algebraica. Madrid, 1966. 133-141.
- 4 LAPLAZA, M.: Sobre el morfismo natural de las fibras en la imagen reciproca. Rev. Mat. Hisp. Americana, XXVI (1966), 8-33.

MIGUEL L. LAPLAZA

Department of Mathematics (University of Puerto Rico, Mayaguez) Instituto Jorge Juan de Matemáticas (C.S.I.C., Spain)