SUMS OF ARITHMETIC FUNCTIONS
by

I,. CarLITZ

1. By an arithmetic function will be meant a function from the
positive integers to the complex numbers. An arithmetic function
f is said to be factorable if f(1) = 1 and

(1.1) flab) = f(@)f(?) ((a, 8) = 1).
An arithmetic function g is said to be additive if
(1.2) gla+b) =gl +¢g0) (@ b)=1)

thus necessarily g(1) = 0.

It is well known (see for example [2, pp. 101-113]) that if 7 (n)
denotes the number of representations of # as a sum of s squares,

n=2%12 + %2 + ... + %32,

then 7,(n), 7,(n), 74(n), 7,(n) are "essentially” factorable functions
of ». In particular

74(n) = 8a(n) (n odd)
74(2m) = 240(n) (v odd, & > 1),
where o(n) denotes the sum of the divisors of #. On the other hand
[1, Ch. 9]
16 128
o) = — -0, (n) +E{ (—1)2597(n) — 5127 n)} ,
where

0%, (n) = X dit (n odd)

dln
o*,(n) = X dit — X dlt (n even)

dln din
d even dodd
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and 7(n) is the RAMANUJAN function, which is known to be facto-
rable.

In view of the above it is of interest to study equations of the
type

(1.3) h(a) = Af(a) + Bg(a),

where f, g are factorable and A, B are nonzero constants. It is con-
venient to first treat the case B = — A, so that 4(1) = 0. This case
is covered by Theorem 1 below. This theorem is then applied to the
case A + B # 0; the final result is contained in Theorem 2.

We next discuss the equation
(1.4) h(a) = Afla)g(a),

where f, g are additive and 4 is a nonzero constant; the result is
contained in Theorem 3. Finally we treat the mixed equations

(1.5) h(a) — kla) = fla)g(a),
where %, k& are factorable and f, g are additive and
(1.6) h(a) = f(a) — g(a),

where % is additive and f, g are factorable.

We hope on a later occasion to consider equations of the type
h(a) = A,fi(@) + ... + Aife(a),
where f,, ..., f, are factorable, for arbitrary £ > 2.
2. We consider first the equation
(2.1) ha) = A(fla) — gla)),

where f, g are factorable and 4 is a nonzero constant. Clearly it is
necessary that

(2.2) k(1) = 0.
From (2.1) and the factorability of f and g we have

(2.3) h(ab) = A[f(@)[(b) — g(@)g®)]  ((a, b) = 1).
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We have also
(2.4 Wb) = A(fb) — g(b))-
Eliminating g(a), g(b) from (2.1), 2.3), (2.4) we get
(2.5) A[R®)f(@) + h(a)f(B)] = Ah(ad) + h(@)h(®) (@, B) = 1).
Similarly we have
ATh(O)f(@) + @)fie)] = Ahlac) + h@)h(e) (@, ¢) = 1),
ADRS®) + HOfO)] = AR(ee) + hBYRE) (B, ) = 1).
From the last two equations we get
(26)  hOhB)f(@) — h@)f®)] = hlac)h(®) — h(bc)h(a),
where
(a, b) = (a, ) = (b, ) = 1.
If (a, d) = (b, d) = 1 we have also
@7) @O @) — WafO)] = had)h(b) — h(bd)h(a).
From (2.6) and (2.7) we get
(2.8)  [h{ac)h(s) — h(bc)h(a)]h(d) = [h{ad)h(b) — h(ba)i(@)]h(c),
where
(2.9) (@, b) = (cd, ab) = 1.

Note that ¢ and 4 need not be relatively prime. Also we may
assume that

a>1 b>1 c¢>1 d>1,

for if any of the parameters is equal to 1, it is easily verified that
(2.8) reduces to an identity.
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We note that (2.8) can also be written in the form
(2.10) h{ac)h(B)h(d) + h(bd)h(a)h(c) = h(ad)h(B)h(c) -+ h(be)h(a)h(d).
This is then a necessary condition that k(a) satisfy (2.1).

In the next place, from (2.5) and (2.6) we get
(2.11)  24h(B)h(c)f(@) = ATh(ab)h(c) + h(ac)h(b) — h(be)h(a)] +

+ h(a)h(b)A(c),

and
(2.12) 24R(b)h(c)g(a) = AR(ab)h(c) + h(ac)h(b) — h(be)h(a)] —
— h(a)h(b)A(c),
where
(2.13) (@ )= (@ c)= (b ¢) = 1.
In (2.11) replace ¢ by d, where (ab, d) = 1, so that
(2.14) 24h(B)h(d)f(@) = Alh(ab)h(d) + h(ad)h(b) — h(bd)h(a)] +
+ h(a)h(B)h(d).
Eliminating f(a) from (2.11) and (2.12) we get
[#(ab)h(c) + h(ac)h(b) — h(bec)h(a)[h(d)
— [h(ab)h(d) + h{ad)h(b) — h(bd)h(a)h(c),
which reduces to
[h(ac)h(®) — h(be)h(@)h(d) = [h(ad)h(b) — h(bd)h(a)Ih(c).
This is identical with (2.8). Thus when (2.8) is satisfied (2.11) and

(2.14) are equivalent. Similarly if we replace b or ¢ in (2.11) by any
other numbers that satisfy (2.13).
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3. We shall now obtain a second necessary contition. Returning

to (2.1), replace a by b, ¢, d, where the four numbers are relatively
prime in pairs. Then we have

Ma)h(@)h(c)h(d) = A%(f(a) — g(a)) () — g(B)) (flc) — &(e)(f[d) — &(d))
= AY flabed) + g(abed)]
— A*2[ f(bed)g(a) + fla)g(bed)]
+ A*2Z[ f(ab)g(cd) + flcd)g(ab)].

On the other hand, (2.1) also implies

h(a)n(b) = A2[ f(ab) + g(ab)] — A?[f(a)g(b) + f(b)g(a)].
Hence (3.1) gives
h@)hB)h(e)h(d) = A f(abed) + glabed)]
— A22{A?] flabed) + g(abed)] — h(bed)h(a)}
+ A2X{A?[ flabed) + g(abed)] — h(ab)h(cd)}.
This reduces to
(32 h@h®B)h(c)h(d) = A2(Zh(a)h(bed) — Zh(ab)h(cd)}.

We assume in what follows that there exist values of 4, b, ¢, d
relatively prime in pairs such that

(3.3) (@) h(B)h(c)h(d) - O.

Then A2 is uniquely determined by (3.2). Another way of putting
it is that the quotient

Zh(a)h(bed) — Zh(ab)h(cd)
(@) h(b)h(c)h(d)

(3.4)

is constant (for all quadruples a, b, c, d, relatively prime in pairs,
that satisfy (3.3)).
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4. We now assume that (2.2), (2.10) and (3.3) are satisfied and
that A2 is determined by (3.2). Then the functions f, g are given by
(2.11) and (2.12). It remains to show that f and g are factorable.
If A is replaced by -4 (2.2), (2.10), (3.2), (3.3) remain unchanged while
f and g are interchanged. It therefore suffices to show that f is facto-
rable.

In place of (2.11) we take

(4.1) 24h(c)h(d)f(a) = A[h(ac)h(d) + hlad)h(c) — h(a)h(cd)] +
+ h(a)h(c)h(d),

which is indeed equivalent to (2.11). We have also

(4.2)  24h(c)n(d)f(b) = A[h(be)h(d) + h(bd)h(c) — h(b)h(cd)] +
+ h(b)h(c)h(d),

(4.3) 24h(c)h(d)f(ab) = Alh(abe)h(d) + h(abd)h(c) — h(ab)h(cd)] +
+ h(ab)h(c)h(d).

It is assumed that a, b, ¢, d are relatively prime in pairs.
By (4.1), (4.2), (4.3) and (3.2) we get

4A42h2(c)h2(a)[ f(a)f(b) — flab)]
= {A[(ac)h(d) + h(ad)h(c) — h(a)h(cd)] + h(a)h(c)h(a)}
- AA[M(be) (@) + h(bA)h(c) — h(b)A(cd)] + R (b)h(c)h(d)}
— 24h(c)h(d){A[h(abc)h(d) + h(abd)h(c) — h(ab)h(cd)] +
-+ h(ab)h(c)h(d)}
— A2([h(ac) h(d) + h(ad)h(c) — h(a) R (cd)] [ (be) h(d) + h(bd)h(c) —
— (b)h(cd),
— 2(c)h(d)[h(abe)h(d) + R(abd)h(c) — h(ab)h(cd)]}
+ Ah(c)h(@){[h(ac)h(d) + h(ad)h(c) — h(a)h(cd)[h(D)
+ [A(be)h(d) + h(bad)h(c) — h(b)h(cd)]1h(a) — 2h(ab)h(c)h(d)}
+ A2h(c)h(d) (Eh(a)h(bed)-Zh(ab)h(cd)}.
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The coefficient of A is equal to
Uh(ac) i (d) + h(ad)h(c) — h(a)h(cd) Ja(b) + [h(be) R (d) + h(bd)h(c) —
— h(b)h(cd) (@) — 2h(ab)h(c)h(d)
— ((a)h(b)h(d) + h(Bd)h{a)i(c) — hab)h(e)h(d) — h(cd)h(a)h(®)y
+ Oilad)h(B)R(e) + h(be)(@)h(d) — h(ab)h(e)h(d) — h(cd)h(a)h(b)} = O,

by (2.10).

As for the coefficient of A2 we have
[h(ac)h(d) + h(ad)h(c) — h(a)h(cd)|[h(be)h(d) + R(bd)h(c) — h()h(cd)]
— 2h(c)(d) (h{abo)h(d) + h(abd)h(c) — h{ab)h(cd)]
+ h(e)h(d) (Eh(a)h(bed) — Sh(ab)hcd))
h(e)h(d) th(a)h(bed) + h{b)h(acd) — hc)h(abd) — h{d)h(abo)}
+ h()h(d) (h{ab)h(cd) — hac)h(bd) — h(ad)h(bo)y
+ h(e)h(d) {h(ac)h(bd) + h(ad)h(bc)} + h(ac)h(be)h2(d) + hlad)h(bd)h2(c)
— h(@)h(cd) [h{bc)(d) + h(ba)h(c)
— h(B)h(cd) ((a)h(d) + had)h(c)] + h(@)h(b)h2(cd)
h(d) Un(acd)h{B)(c) + h(ac)h(be)h(d) — h{abe)h(c)h(d) — hlac)h(cd)h(b))
-+ (e) (h(bed)h(@)h(d) + hlad)(bd)h(c) — h(abd)h(d)(c) — h(bdyh(cd)h(a)}
+ h{ed) (h(ab)h(c)h(d) + hlcd)h(a)h(b) — had)h(B)h(c) — h(bc)h(@)h(d)}.
Each of the quantities in braces vanishes by (2.10). This is obvious

for the third; for the first we use the quadruple 4, d, ¢, ac while for
the second we use «a, ¢, d, bd.

We have proved

f@)f() = flab)  ((a, b) = 1).

This completes the proof of
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THEOREM 1. Let hia) be an arithmetic function such that
(i) M1) = o,
(i) hac)h(B)h(d) + hbd)(@)h(c) = had)hB)h(c) + h(be)h(@)h(d),

where
(a, b) = (cd, ab),= 1,

(iii) h(a)h(b)h(c)h(d) = A2({Zh(a)h(bcd) — Zh(ab)h(cd)},
where A is constant and a, b, ¢, d are relatively prime in pairs; moreover
(iv) h(a)h(b)h(c)h(d) + O
for at least one quadruple a, b, c, d relatively prime in pairs. Then
ha) = Alf(@) — (@),
where 1, g are factorable functions.
5. We now consider the equation

(5.1) ha) = Af(a) + Bg(a),

where f, g are factorable and 4, B are constants such that

(5.2) AB(A + B) # 0.
Note that
(5.3) h(l) =4 + B #0.

If (a, b) = 1 it follows from (5.1) that
h(b) = Af(b) + Bg(b), hab) = Af(a)f(b) + Bg(a)g(b),
so that
Bh(ab) = ABf(a)f(b) + [h(a) — Af(a)][A(b) — Af(b)],
or

A(A + B)f(a)f(6) — Ah(b)f(a) — Ah(a)f(b) = Bh(ab) — h(a)h(b).
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This can be rewritten in the form
(5.4) A[A + B)f(a) — h(a)][4 + B)f(b) — h(b)] = (4 + B)
Bh(ab) — Bh(a)h(b).
Since
(4 + B)f(a) — h(a) = B[f(a) — g(a)],

(5.4) becomes

(5.9 AB ¢ (a) ¢ (b) = h(1)h(ab) — h(a)h(b),
where
(5.6) ¢ ((l) = fla) — gla).

If (ab, ¢) = 1 then in addition to (5.5) we have

57 { AB ¢ (a) ¢ (c) = h(1)h(ac) — h(a)h(c),
UV AB ¢ () 6 () = h(1)h(be) — h(b)A(c).

For brevity put
(5.8) A(a, b) = h(1)h(ad) — h(a)h(b).
Then (5.5), (5.7) become
(5.9) ABé(a) ¢ (b) = 4(a, )AB¢()¢( = 4(a, ¢),
AB ¢ (b) ¢ (c) = 4(b, o),
where
(a, b) = (a, ¢) = (b, ¢) = 1.
From (5.9) we get
(5.10)  (4B)* ¢ 2(a) ¢ 2(b) ¢ %) = A(b, ¢) 4 (c, a) 4 (a, D).
Now it is easily verified that
(4 + B)Zh(abc) — h(a)h(b)h(c) — Zh(a) 4 (b, )
= —AB(4 — B) 1T [fla) — gla)]
= —AB(4 — B) ¢ (a) 4 (0) 4 (c).



116 I. Carlitz

Hence (5.10) gives

(.11)  G2(1)h(abe) — h(1)Zh(@)h(be) + 2h(a)h(d)h(c)y2
— M, )4, a)A(ab)

where

(5.12) A —B)_ w1

AB  AB
A relation simpler that (5.11) can be obtained. For a, b, ¢, d rela-
tively prime in pairs we have
h(1)h(abed) — Zh(a)h(bed) + Zh(ab)h(cd)
— (A+B)[Af(abed) + Bg(abed) | — Z[ A (a) + Bg(a)] [Af(bed) + Bg (bed))
+ Z[Af(ab) + Bglab))[Af(cd) + Bglcd)]
= A B[f(abcd) + g(abcd)] — ABX[f(a)g(bcd) + g(a)f(bcd)]
+ ABZ[f(ab)glcd) + glab)f(cd)].
On the other hand
¢ (@) ¢ (6) ¢ (c) ¢ (d) = T (fla) — g(a))
= flabed) + g(abed) — X[ fla)g(bed) + g(a)f(bed) ]
+ Z[flab)g(cd) + g(ab)f(cd)]

and therefore
(5.13) AB (h(1)h(abcd) — Zh(a)h(bed) + Zh(ab)h(cd)y = A(a, ¢)A(b, d),
where a, b, ¢, d, are relatively prime in pairs.

Returning to (5.9) it is evident that

A(a, b)A(a, ),

(5.14) AB §2(a) = oo

where (a, b) = (ab, ¢) = 1. Hence if (ab, d) = 1 we have also

AB ¢2 (a) =
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It follows that

(5.15) A(a, c)A(b, d) = A(a, 4)A(b, c)
provided
(5.16) (a, b) = (ab, cd) =1

Note that (¢, d) = 1 is not assumed.

6. We now assume that &(a) satisfies (5.13) and (5.15) and that
(6.1) Aa, c)A(b, d) #0

for some quadruple a, b, ¢, d relatively prime in pairs. Then A B is
determined by (5.13); this together with A 4+ B = A(1) gives 4 and B.
The function ¢ (a) is given by )5'14). We now apply Theorem 1 to ¢.
It will accordingly suffice to show that

(6.2) ¢ (ac) ¢ (0) ¢ (d) + 4 (db) ¢ (a) & (¢)
= ¢ (ad) ¢ (b) ¢ () + ¢ (bc) 4 (a) ¢ ()

where
(6.3) (a,b) = (ab, cd) = 1
and
(6.4) 2 (@) § (bed) — X ¢ (ab) ¢ (cd) = ¢ (a) () 6 (c) & (@) # O,
where a, b, ¢, d are relatively prime in pairs.
We show first that (6.1) implies (6.4). Since
AB ¢ (a) ¢ (c) = A(a,c), AB ¢ (a) ¢ (d) = Aa, d),
AB ¢ (ac) ¢ (b) = A(ac, b), AB ¢ (bd) ¢ (a) = A(bd, a),
AB ¢ (ad) ¢ (b) = A(ad, b), AB ¢ (bc) ¢ (a) = A(bc, a),
(6.2) becomes

(6.5) [Alac, b) — A (bc, a)] 4 (a, d) = [A(ad, b) — A(bd, a)A(a,c)

9 — Collectanca Mathematica



118 L. Carlitz
But
W(1)[A(ac, b) — Afbe, a)] = h(1)[h(be)h(a) — h(ac)h(b)]
= h(@)4(b, ¢) — 1(b) 4 (a, ¢),
h(1)[A(ad, b) — A(bd, a)] = h(a)A(b, d) — h(b)A(a, d),
so that (6.5) reduces to
[h(a)A (b, c) — h(b)A(a, c)]A(a, d) = h(a)[A(D, d) — h(b)A(a, d)]A(a, c).
This is an obvious consequence of (5.15).

In the next place we may replace (6.4) by
AB{XA(a, bed) — ZA(ab, cd)y = A(a, ¢)A(b, d)
which in turn may be replaced by
AB{h(1)h(abed) — Zh(a)h(bed) + Zh(ab)h(cd); = A(a, c)4(b, 4).
This is evidently identical with (5.13).

This completes the proof of
THEOREM 2. Let h(l) = A+ B # 0 and let a, b, ¢, d be four
numbers that ave relatively prime in pairs. Assume that
(1) A(a, )4, d) #0
for at least one such quadruple and that
(i) AB{h(1)h(abed) — Zh(a)h(bed) + Zh(adb)h(cd)y = A(a, c)A(b, 4),
where AB is independent of a, b, ¢, d. Moreover assume that
(iii) A(a, c)A(b, d) = A(a, d)A(b, c)
Jor
(a,b) = (ab, cd) = 1.
Then
Ma) = Af(a) + Bg(a),

where f and g are factorable.
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7. We have made no use of (5.11) in proving Theorem 2. It may
be of interest to point out that when (5.15) holds, (5.11) and (5.13)
are equivalent. We shall now prove this assertion.

For brevity put
A(a, b, ¢) = h2(1)h(abc) — h(1)Zh(a)h(bc) + 2h(a)h(D)A(c),
Aa, b, ¢, d) = h(1)h(abcd) — Zh(a)h(bed) + Zh(ab)h(cd).

Thus (5.11) and (5.13) become

(7.1) A2(a, b, ¢c) = 24(b, ¢)4(c, a)A(a, b)
and
(7.2) ABA(a, b, c,d) = Aa, c)A(b, d),
respectively.

Since

Aa, b,c) = AB(A — B) ¢ (a) ¢ (b) & (c).
Afa, b, c,d) = AB ¢ (a) ¢ (b) ¢ (c),
it follows that

A2(a, b, ¢) $2 (d) = (A — B)242(a, b, ¢, d).

Then
(7.3) A2(a, b, ¢) A(b, ¢) ¢2 (d)
’ A, c)A(c,a)d(a, b) Ab,d)A(c, d)
— (4 — B)2 A2(a, b, c, d)
A(a, b)A(a, c)A(b, 4)A(c, 4)
— (4 — By {A————(“’ b0, 4) }2,
(a, c)A(b, d)
by (5.15). Since
AB §2 (d) — A(b, d) A (c, d) ,
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(7.3) becomes

A2(a, b, c)

(7.4)
A(b, ¢) A(c, a) A(a, b)

_ g2py @00 d) b,c, d) }2
| )

(
A(a, c)A(b, d
and the asserted equivalence follows at once.

We remark that A may vanish. This evidently occurs if and only
if A = B. The condition (7.1) now reduces to simply

(7.5) Afa, b, ¢c) = 0.

8. We now briefly discuss some problems involving additive
functions. To begin with we consider the equation

(8.1) h(a) = Af(a)g(a),
where f, g are additive and 4 is a nonzero constant. The condition
(8.2) k(1) =0

is obviously necessary. Also there is no loss in generality in assuming
that 4 = 1. We may accordingly take

h(a) = f(a)g(a), h(b) = f(b)g(b), h(ab) = [f(a) + f(b)][g(a) + &(b)].
where (a, b) = 1. Then
(8.3) h(ab) — h(a) — h(b) = fla)g(b) + f(b)g(a).
If (ab, ¢) = 1 then by (8.3)
habe) — h(a) — h(bc) = fla)[g(b) + g(c)] + [f(b) + flc)Ig(a)
— (h(ab) — h(a) — h(®)} + {hlac) — h(a) — h(c)}.

It follows that

(8.4) h(abc) — Zh(ab) + Zh(a) = 0,
where
(8.5) (b, ¢) =(c, a) = (a, b) = 1.

Thus we have the two necessary conditions (8.2) and (8.4).
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In addition we shall also assume that there exist three integers
a, b, ¢, that satisfy (8.5) and such that

(8.6) h(a@)h(b)h(c) # 0.
We shall require the following
ILEMMA. If a, b, ¢ satisfy (8.5) and (8.6) and (abc, d) = 1, then

we can find complex numbers o, B, y, 8 such that the determinants of
order two in the array

[ o p 14 0 ]
Ma)a RO Ry ()

arve all different from zero.

The proof of the lemma is immediate.

Now assume that the function A(a) satisfies (8, 2), (8.4) and (8.6).
Let a, b denote any two of the four numbers a, b, ¢, d in the lemma
and let #, v denote any two positive integers such that the numbers
a, b, u, v are relatively prime in pairs. Then by (8.3) we have

fla)g(u) + g(a)f(v) = h(au) — h(a) — h(u),
(8.7) fla)g(v) + g(a)f(v) = h(av) — h(a) — h(v),
fla)g(uo) + gla)f(uv) = hlauv) — h(a) — h(uv).

—_

It follows from (8.7) that
f(@)[g(m) — gw) — )] + g(@)[flwr) — flw) — fio)]
= [h(awv) — h(a) — h{uw)] — [h(aw) — ha) — h(w)]— [(av) — h{@)— h(v)]
= h{auv) — h(a) — h(av) — h(un) + h(a) + h(u) + h(o)
Hence by (8,4) we have
(8.8) fla)lgwo) — glu) — g(e)] + &(@)[flwo) — flw) — fl0)] = O.
Similarly we have

(8.9) f(b)[g(uv) — g(u) — g(v)] + g(b) [(wv) — flu) — flv)] = O.
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We now define

@) e@ |,
Jo) g
so that (8.8) and (8.9) give
(8.10) fluv) = flu) + f(v), g(uv) = g(#) + g(v).

Clearly #, v may represent any pair of relatively prime integers.
We have therefore proved
THEOREM 3. Let h(l) = 0 and

(8.11) h(abc) — Zh(ad) + Zh(a) = 0

for all triples a, b, c, such that

(8.12) (6, ¢) = (c, a) = (a, b) = 1.

Also assume that there exists a triple a;, by, ¢y, satisfying (8.11) and
such that

h(ay)h(b1)h(c;) # 0.
Then we have
(8.13) h(a) = fla)g(a),
where f and g arve additive functions.

As we have seen, (8.11) is a necessary condition for (8.13).

9. As a special case of (8.13) we may consider the equation
(9.1) h(a) — u(a) = fla)g(a),
where f, g are additive, % is factorable and # is defined by

(9.2) u(l) = 1, u(a) = 0 (@ > 1).
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Applying the necessary condition (8.11) we get
(9.3) h(abc) — Zh(ab) + Zh(a) = 0,
where a, b, ¢, are relatively prime in pairsand ¢ > 1,06 > 1, ¢ > 1.
Since % is factorable (9.3) becomes

h(abc) — Zh(ab) + Zh(a) = 0

or
(9.4) [A(a) — 1][A(6) — 1][A(c) — 1] = 1.

Thus a necessary condition for (9.1) is
(9.5) ha) #1  (a=1).

Let (ab, d) = 1. Then by (9.4)

[i(a) — 1][A(6) - 1][A(d) — 1] =1,

so that
(9.6) hie) = h(d).

It follows from (9.6) that
9.7) ha)=C #1 (a>1).

Thus (9.1) becomes

(9.8) fl@)g(a) =C (a>1).
Again applying the condition (8.11) we get C = 0.
Hence (9.1) reduces to

(9.9) fla)gla) =0 (a>1).

Theorem 3 now does not apply. However the general solution
of (9.9) is easily obtained. Clearly (9.9) implies

(9.10) fla)g(®) + g(@)f(d) =0 ((a,8) =1,a > 1,6 > 1).

If we assume

f@) #0,/1b) =0, gla) = 0, g(b) #0,
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(9.10) is contradicted. Hence one of the functions f, g vanishes iden-
tically. We conclude that the general solution of (9.1) es given by

(9.11) h=u, f=0, g arbitrary,
. h=u, g =0, f arbitrary.

In view of this result it may he of interest to discuss the more
general equation

(9.12) h(a) — k(a) = fla)g(a),

where &, k are factorable and f, g are additive. Applying the condi-
tion (8.11) we obtain

(9.13)  h(abc) — Zh(ab) + Zh(a) = k(abc) — Zh(ab) + Zk(a),
where
(b,¢) = (c,a) = (a, ) = 1.
Since % and % are factorable (9.13) reduces to
(9.14)  [h(a) — 1][A(b) — 1][A(c) — 1] = [k(a) — 1][R(b) — 1][k(c) — Ir.

We assume that there exist two numbersa > 1,6 > 1, (4, b) = 1
such that

(9.15) [h(a) — 117h(b) — 1][k(a) — 17[A(B) — 1] # 0.
Let (ab, d) = 1. Then by (9.14) we have
(9.16) [h(a) — 1][k(b) — 1][A(d) — 1] = [k(a) — 1][k(b) — 1][k(d) — 1].
Therefore, by (9.15),
[h(c) — 1][k(d) — 1] = [A(d) —~ 1][k(c) — 1],

or
W) — k(e) = h(d) — k().

This evidently implies
(9.17) We) — ko) = A ((c ab) = 1),

where A is constant,
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Combining (9.17) with (9.12) we get
(9.18) fd)gd) =4 (d, ab) =1,d > 1).
Applying (8.11) once more we get 4 = 0.
We now replace (9.15) by the stronger condition
(9.19)  [A(a) — 1][~(b) — 11[A(c) — 1][k(a) — 1][k(b) — 1][k(c) — 1] # 0
for some triple a, b, ¢, such that
(b,¢) =(c,a) =(a,0) =l,a>1,b>1,¢c> 1.
It then follows from (9.18) that
fld)g(d) = 4
for all 4 > | and as before 4 = 0.

We have therefore

THEOREM 4. Consider the equation

(9.20) h(a) — k(a) = fla)g(®),

where h, k are factorable and f, g arve additive. Assume that h, Kk,
satisfy (9.19). Then

(9.21) h=*k, fg=0.
Finally we remark that the equation

(9.22) ha) = f(a) — g(a),

whre % is additive and f, g are factorable implies

(9.23) [fla) — 1][f(b) — 1] = [g(a) — 1][g(6) — 1] ((a, b) =1).
If we assume that

(9.24) [fla) — 1[#(6) — 11[(g(a) — 1][g(6) — 1] #0

for some pair a > 1, b > 1, (@, b) = 1, then it follows from (9.23)
that
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(9.25) 1 —gle) = A(1 — f(e)),
for all ¢, where 4 is constant. Since (9.25) implies
fle) —gle) = (1 — A)(fle) — 1),
(9.22) becomes
he) = (1 — A) (fle) — 1).

By the additivity of / this gives
(9.26) (fle) = D) =1) =0 (lc, 4) =1).

This evidently contradicts (9.24).

Hence (9.22) implies

[fla) — 1][f(6) — 1][g(a) — 11[g(6) — 11 =0 ((a, b) =1)

and so by (9.23)
(9.27) (fla) = () — 1) =0 ((a, b) =1).

Conversely if (9.23) and (9.27) are satisfied then %, as defined by
(9.22), is additive.

We may state

THEOREM 5. The equation

h(a) = fla) — g(a),

where h 1s additive and f, g are factorable, is satisfied if and only if £
and g satisfy

(fla) = D) — 1) = (gla) — 1)(g(0) — 1) =0
for all (a, b) = 1.
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