MULTIPLE SUMS AND GENERATING FUNCTIONS
by

L. CarriTZ

1. INTRODUCTION. Put
8 8 (V)N

i=0 j=0 \ ] J n—y n—j
Paur, Brock prosed as a problem the identity

2
(1.1)  H (m,n) —H (m—1, 1) — H(m,n— 1) = (m +”> .
m

For references see [1].

In generalizing Brock’s identity, the writer [1] considered the
generating functions

(1.2)
© (i) (i) (i) oy on
F(uy, 0y, ...,u,) = % ( H 2)( 2 3). : ( . l)uil uy. . uy
P50 e eyin=0 (7 13 71 V4
(1.3) G (g, 4y, ..., )= X H(my, my, ..., m)ui" ud®. .. ul
Myye o g, =0
with
(1.4) Himymy, ..., m)=3 (zﬂ.—tz) (lz—-f-is) o (zz, + 11) ’
12 3! 71

where the summation in over all nonnegative 7, such that
ot tys=m, (s=1,2,...,7).
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He showed that
(1.5) F(uy, uy, ..., u,)=(P,2—4u; Q, R,)},
where

\ Pn :f‘ﬂ—l (“2, 743, RRR) %n) + uy f11—3 (%3, Ugy -, un—l);
(16) ¢ Qﬂ =fn—2 (%2, Uzy - ey Mn—l):

Ry = fuy (w3, g, ..., w,),
and f, (uq, %5, ..., #,) is a polynominal defined recursively by
fi (w)) =1—uy, fo (u,u3) =1—u;—uy
and
(1.7) fuluy,usy,. . W) =fu 1 (U, 8, o Uy )y, [ (%1, %0, o, Uy s).
As for (1.3) we have
G (uy, %s,...,u,) = U,~ L. F(u1,uy,...,4%,),
Where
(1.8) U, =U,(uy,%u3,...,%,) =fo_1 (42, .., %) —uy fr_3(ts3,...,%,_1).
Thus for example
Ui=1,Uy=1—u;—u,;, Uy=1—u; —uy—u;,
Usg= 11—y —thy— thy — thy + U1 43 + 13 ty.

The object of the present paper is first, to make the general results
of [1] somewhat more explicit. This depends on a more explicit des-
cription of the polynominal U, defined by (1.8). Incidentally the
number of terms of U, is equal to the Lucas number L,. We note
that formula (1.5) can be rewritten in terms of U,,;

(1.9) F(uy, tg,..., wy) = (U2 — duy ... u,)"%

Indeed this formula is basic for the later applications.

As an application of the explicit form of U, we can state expli-
citly a generalization of (1.1) involving the function H (my,...,m,)
defined by (1.4). The special cases » = 3 and 4 have already been
obtained in [1]; for the general case see below.
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However we can go considerably further. We show that the poly-
nominal

U (81, oy Yy ooy U, o ., Uy,)

can be exhibited as a polynomial in U, (%, ..., %,) and %; u, ... u,.
Using this result we are able to obtain results similar to (1.1) for
the function

H® (my, ..., m,) = 2(]1 _.'_jz)(jz—_kk)...(j”kﬂ_jl) ,
J2 J3 !

where the summation is over all nonnegative j; such that

js +js+n + e +js+n(k—1) = M (S = 1: 2: ] 7’1/)

The general result becomes quite complicated but can be obtained
in any particular case without much difficulty. For the special case
n =2, k=3, see (7.12) below. When # = 1, the general formula
reduces to

k—j 2m
v_lf( _)Hm _-=( )
2. We shall first recall some properties of f, (4, ..., u,) defined

by (1.7). As noted in [1], f, is a continuant. It can be exhibited as a
determinant of order » 4+ 1:

1 U,
1 1 Uy
1 1 u

(2.1) foluy, ..., u,) =

......................

Indeed if we let D, denote the determinant in (2.1) we have
Dy=1,Di=1—uy, Dy=1—u;—u,

and

(2.2) D,=D, —u, D,_,.

Comparing (2.2) with (1.7) it is clear that D, = f,.
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We find that
fi=1—uy —uy —uy + ujuy
fo=T1—uy —ug—uy — uy + uy uy + g uy + uy 1,
fs=1—uy — by — thy — g — s + uy U3 — ) Uy + 0y s —
— Up Uy + Uy Us + U3 Us + Uy Us Us.

The number of terms in f, is easily seen to be equal to the Fibonacci
number F,,, defined by F, = 0, F| = I,

Fn-!—2=Fn+l+Fn (ngO)

This is a variant of Sylvester’s theorem on the number of terms in
a continuant [2, p. 503].

The terms of f, can be described as follows. Each term is of the form
(2.3) (—1)% s uiy o ouy, (R=0,1,2,...),
where
1>+ 1 (s=1,2, ..., k—1)

and ¢ < 44, 7, < n. For fixed %, the number of terms (2.3) is equal o
n—=~k+1

-

N (n, k), we have

). Indeed if the number of such terms is denoted by

N@#n R=Nm—1,k)+NMmn—2,k8—1),
from which it follows that

(2.4) N, k) = (”_k+ 1) .

k

Thus the total number of terms is f, is equal to

—Fk
2 (n +l)=Fn+2'

2kZn+1 k
We note also that f, satisfies

{2.5) Salwy, ooy u,) = f, (%,, ..., uq).
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Moreover we have the recurrence [1, p. 27]

(26) fn (ul: Uy -y M,,)
= fr (un——f-i-l: RS %,,) fn—r—l(ulr sy Mn—r-!—l)
- u’n—rfr—l (M-n—r'i-z: ) Mn)fn—r—Z (%]r sy %n—r»‘»z) (1’2 27+ 2)

We remark that

2.7
(fu (g, 00, ..., 0,) "' = 0}3 (h_HZ) (iz_!_ i3) ...(i"'l.+i"

)ul"l Uy ..u,™,
igenin=0" 12

13 n

Turning next to U,,, it follows from (1.8) and (2.3) that the general
term is of the form

(2.8) (— 0% wu, wsyooomy, (R=0,1,2,...)
where
by >dd1 (s=1,2 ..., k—1)

and in addition the combination 7; = 1, 7, = # is ruled out. For
example we have

Us=1—uy — uy — Uy — Uy — s + 4y w3 + 1 g + 1y u,
+ Uz us + U3 us,

Us=1—u;—uy—uy—ug— ths— g + Uy U3 + 4y thy + % Us
-y Uyt g U5+ U U+ U Us - U3 U = Uy U1 U3 Us— U Uy U

For fixed %, the number of terms (2.6) in U, is equal to

n—1 n—k—1 n  (n—Ek
2.9 = .
@9 ( k ) * ( k—1 ) n——k( k )
‘This can be proved directly or by making use of (1.8). It follows from

{2.9) or (1.8) that the total number of terms in U, is equal to the
Lucas number L, defined by L; = 1, L, = 3,

Lyyo=L,y+ L, (n=1).
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It follows also from (2.6) that U, satisfies

(210) Unv (ul: Uz, - - un.) = Urn (um Up—15 -« Ml)
as well as
(2.11) U, (w1, 3, ..., u,) = U, (4, 03, ..., u,, u).

As we have seen, f, sarisfies (2.8); however f, does not satisfy (2.9).

We may state

THEOREM 1. The polynominal U, = U, (uy, ..., u,) defined by
(1.8) has the explicit expression

(212) U”= l—zui—*—zuiluiz‘—... +(—1)k2uil’ui2 N uik+ ey

where in the general term

G 1<ig, (=12, ...,k—1),
but the combination 11 = 1, i, = k 1s not allowed. moreover U, satisfies
(2.10) and (2.11).

Another relation involving f, and U, is implied by the explicit
representations, namely

(2.13)

fu (W1, -y ug) = U, (g, oo, ) + w0y 9, f g (w3, ..., u, 5) (0= 4).

Repeated application of this formula yields

(2.14)  fu(uy, ..., u,)=U, (g, ..., u,) + g v, U,_4 (3, ..., %,_5)
' Uy Us Uy Uy Uy g (s, ooy Uy_g) + ..,

where in general the final term contains an f. For example,

fo (W, oo, ug) = Uy (uy, ..., ) + uy sy,
fs Wy, .., us) = US (uy, ..., us)+ uyusfy (u3),
fo (w1, -, ug) = Us (w1, ..., tg) + 11 U fo (U3, ty).
3. We shall now show that
(3.1) P2—4u, Q, R,=U2—4u, uy ... u,

where P,, Q,, R, are defined by (1.6) and U, by (1.8). The proof
depends upon the identity
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(3.2) fac1 (my, wa, ooy 1) froo1 (8, 465, ..., ,)
— fay, oo, ) fua (U, s, oo, W) = U Uy ... Us.
For n = 2, (3.2) reduces to
(1 —uq) (L—uy) — (1 —uy —up) = uy uy,

which is correct. Assuming that (3.2) holds up and including the
value %, we have, by (1.7),

Ja(wyy ooy my) fu(ua, ooy thy1) — furn (wr, oot 01) fuoa (g, o 0y)

= {for (o, oo, ) — iy fuo (U, ooy 1)} fo (g, -, w,)

= {falvby, oo, ) — gy fuo1 (1, ooy 1)} fuon (w2, oo, 1)

= thy1{ fuo1 (w1, ooy 1) fuon (w2, oo, w) —f, (uy, ..., w,)
= fao (U, oo, Uy 1)} = UL Uy oo Uy, Uy g

In the next place we have, by (1.8) and (3.2),

U2—d4uyuy ...y {fyoy (W2, oo, t,)—ty foz (U3, oy %y 1) }2—
—duy {fura (U2, oo Uyy) fuo (w3, .0, w) — font (0, <oy )
Sas(uy, ooyt 1)y = {fam1 (g, oo, ) + 9y fr 3 (3, ooy 9y 1)} —

— Ay f_ o (U, .oy Uy q) fuen (U3, ..., u,) = P2—4u;Q, R,.
This evidently proves (3.1).

An interesting feature of (3.1) is that the right member is obviously
unaltered by cyclic substitutions of w;, #,, ..., %, but it is not
apparent that the left member has this property.

Combining (3.1) with (1.5) we have at once for the generating
function defined by (1.2)

(3.3) F (uy, y, ..., u,) = (Uz2—4u; uy ... u,)" %

It is evident from (1.2) that F(u, %5, ..., #,) is unaltered by
cyclic substitutions of u;, uy, ..., #,.

4. We now consider U,, (%1, #,, ..., #%y,), wWhere

4.1) U=y (j=1,2, ..., m).
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For brevity we put
(42) Uyoa=U,r(u1, ..., u,)=Up, (uy, ..., u,, 41, ..., u,).
We shall show that
(4.3) Uyo=U2—2u1u, ... u
where U, = U, (4, ..., u,).
By (1.8) and (4.2)
Us2=/fon1(M2, ... 0,01, ..., %,)— Uy fo, 3 (U3, ..., %, %1, .., %,_1).

But by (2.6) and (4.1)

Jou—1 (Mo, .o, W, wy, ..., w,)
=[Pt (w2, .., w)—ur fo_p (U3, ..., W) fu_o (ug ..., u, 1)
and
Sonez M3, ooy u,, %y, ..., U, 1)

=fn—2 (MZ: RS M’n—l) fn—2 (u3: SRR M”) — % fzn—-3 (MS’ SRR un—l)’

so that

Un,Z =f2n-l (MZ: ] un) - 2“1 fn—2 (“2’ R M’n——Z) fo—2 (u3’ RS un)

+ u21 fzn—3 (u3’ ) un—l)

= {fuc1 (w2, ..., w,) — g fou_ 3 (U3, ..., u, 1)}
— 2wy {fua (U2, oo, 1) fuoa (U3, ..., u,)
— fac1 (U2, oo, ) frs(Ug, .., u,_1)}

= U2, ..., %,)—2u1 %5 ... 0

by (1.8) and (3.2).

n

It follows from (4.3) that

U,(my, ..., 4, w1, ..., u,)—4u? u2, ... u2,
= {U2, (w1, ..., w,)—2uy ty ... u,}2—4u?y u? ... w2,
= U2 (uy, ..., w,) {U% (u1, ..., u,)— 4wy 4y ... u,},

and therefore
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(4.4) (U%, (w1, ooy %y, vy, oo o) —du? u?y ... w2} ?}
U,(, ..., u,) {U% (w1, ..., w,)—4uy uy ... u,} %
Combining (4.4) with (1.3), (1.4) and (1.9) we get
(4.5) G(uw, uy, ..., w,)=U," (U, —4duy uy ... u,)"*
= U, F(uy, , ..., 1)
in agreement with (7.8) of [1].

5. We shall now show that (4.3) can be generalized considerably,
We assume in what follows that

Up= Uy = ... = U041 (1=1,2, ..., n).
Put
(5.1) U,y =U,, (41, ..., u,)
= U, W1, «ooy Uy «on, %1, ..., U,).

We show first that
(52) Un.k+1 = Un Un,k_ul Uy ... U, (jn,k—l (k 2 2)

The proof of (5.2) depends upon the following two identities:

(5.3) Ja2 (s, oo, 1) fraoa (42, .oy #,_1) —
= —fac1 (w2 oo, W) frnoz (U3, <o ., Uy_1)
= —urty ... U fap-n-1 (U3, ..., 1) (R>1),
(5.4) a2 (3, ooy ) frna (o, .., ty_1) —
= —facs (U3, ooy Uy_1) furo1 (U2, ..., w,)
= Uy ... Uy fupo1-1 (42, ..., ) (R>1).

In these formulas it is understood that, for example,

Sor—1 (o, ooy ) = fon1 (Mo, ooy Uy Upy ooy Uy oy Upy o, Uy

To prove (5.3) and (5.4) we make use of (2.6). Thus the left side of
(5.3) is equal to

fn—2 (u2: RS un—l) {fn—l (u2: L] Mn) fn(k—l)—Z (M3, R u’n)
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— w1 faoa (U3, oo W) fape-no3 (U3, -, %, 1)}
— fuo1 (g, oo 0t,) {fuo2 (w2, oo, 1) fun—ny—2 (43, ..., u,)
— g froz (U3, oo, Uy1) fa—1—3 (U3, oo, Uy_1)]
= —wy {fya (U, .., 1) fuz(uy ..., )
— fa1 (W2, oo, ) faos (W3, ooty %y 1)} fam-1y3 (%3, .., ,_1)
= —up uy ... Uy fop-1y—7 (B3, .., %, 1),

where at the step before the last we have used (3.2).

Similarly the left member of (5.4) is equal to

oz (3, ooy ) {fuc2 (2, ooy %y 1) fug—ny—1 (2, - .., u,)
— w1 fus (s, ooy Uy 1) fup-ny-2 (w2, -, U, 1)}
— fooa (s, oo, Uy 1) {fuo1 (w2, oo, ) fuony—1 (U2, ..., u,)
— w1 faoz (U3, ooy ) fup—1—2 (42, ..., #,_1)}
= {fac2 (U3, ..., W) fua (4, ..., %, 1)
— faz (3, ooy 1) fa1 (o ooy )Y fugony—1 (w2, .., )
= Uy U3 ... Uy [up_ny—1 (U2, ..., ).

We now prove (5.2). By (1.8) and (3.6) we have
Un,k+1 - Un Un,k

= fagrn-1 W2, ooy W) — w1 fugrny—3 (U3, ..., t,_1)
— {fac1(vg, oy W) — i fru3(u3, ooy 1) {fup1 (42, -0, ) —
— U1 fups (U3, .., Up_1)}
= fuc1(ta, - - %) fap—1(t, - - - ) —01 fru_o(th3, . . %) frp—2(ta, - - - 00y 1)
—y fao (W2, <o, Un1) Sur—2 (U3, ..., %) +
+ w12 faoz (U3, oo, Un_1) fap—3 (U3, ..., Uy_1)
— {fac1 (Mg, ooy w) — g fuog (U3, .., U_1)}
— {fur—1 (w2, oo, W) — 1 frpz (43, ..., 1)}

= — wy {fucz (U2 -0, Un_1) fup—2 (43, ..., w,) —
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— fuo1 (2, oo, W) Sz (3, oo, s 1)}
— g {fua (U3, oo, W) frr—2 (42, oo 1) —
— fuoa (s, oo, Uy 1) frupo1 (M2, o, )}
= Uy Uy ... Uy Uy fupo1y_1 (3, oo, Uyy) — faoty o1 (M2, e, W)}
= — u; Uy ... u, U1y,

by (5.3) and (5.4). This evidently completes the proof of (5.2).

6. We have seen that the polynominal U, , defined by (5.1) sa-
tisfies the following relations.

(61) Un,] = Un:
(6.2) U,o = U2 — 2uy uy ... u,
(6.3) U1 =U, U,py—ug g ... u, Uppqy (B> 2).

By means of these formulas we can express U, , in terms of U, and
%, 4y ... 4, Indeed we show that

Rk (kg . 4
(6.4) U,,= X (—1y ( : )Uﬁ"z’ (o4 10y ..., (B >1),
’ 2i<k E—7\ j

For k = 1, 2, (6.4) is evidently in agreement with (6.1) and (6.2).
Assuming that (6.4) holds up to and including the value %, we get

b
DTn,k-E-~1 = Un 2 (_1)7 ( ] ]) Uﬁ—Zf (Mlv Uy ... un)j

22k k—j

- e k—1 (k—y'——l) -2it .
J— e 21— Y
Uy Uy ... U, =, (—1) i1 ; % (%5 ... u,)

. (k—l) k—1 (k—j‘ — ,
e —_ . PE— T 7
. R4l (h—j1
= Y (=) ( .
Y<k+1 k—j+1 J

This completes the proof of (6.4).

If we prefer U,, can be written in terms of the Chebyshev poly-
nominal [3, p. 223] :

) Ub=2i+1 (uy uy ... u,).
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T, (x) = cos (k arc cos x).
In this connection we note that if we put
(6.5) U= (U, yuy ... u,),

so that

2j<k .
then
(6.6) ¥y = (x +y, wy)
If we put
(6.7) x+y=U, 2y =u 4y ... u,

then by (6.6) we have
(6.8) U,, = x* 4y
Note that (6.7) implies
(6.9) x—y=(U2—4uuy ... u,)k.

It is of interest to evaluate

W,.=1{U2—4(uyuy ... u,)}t
It follows from (6.7) and (6.8) that
(6.10) W = {(xF + y¥)2 — 4 (xy)*}} = (x* — y*).
Put
Y, (w,v) = X (—1)i (kf].) uk=2i i,
2jsk ]

It is not difficult to show that

ka.-l__ k+1
L = W, (x4, ),
r—=y

so that (6.10) becomes, in view of (6.9)

(6.11)

(6.12) W,, =¥, 1(U,, g s, ..., u,) (U2—4u; u, ..

. u,)k.
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A special case of some interest in # = 1. Them U; = 1 and
Ul,k = Uk (ul, Uy, .., ul).

Replacing #; by u, (6.4) becomes

o
(6.13) U, (u, ..., u)= 3 (—1)7'——]-—.( .])w',
%<k k—j ]
while (6.12) reduces to
b
(6.14) Wii= X (——1)7‘( ﬂ)w’. (1 — 4du)? .
2j<k -]

To sum up, we state the following

Theorem 2. Let n > 1, & > 1. The polynomial

Un,k = Un,k (ulx ] Ml) = Unk (ulr ] u’m ceey U, ..., un)
can be exhibited as a polynomial in U, (uy, ..., u,) and uy uy ... 4,:
- , k—j _ .
Un,k = }J (_1)7 . . Uﬁ‘Z? (ul) L) %”) (Ml Uy ... Mn)] -
%<k k=g \ 1

Alternatively we have
U, = % 4 ¥,
where
x+y=U, (U1, ..., ), Xy = Uy Uy ... Uy,
In particular, when n = 1, U, (u, ..., u) is evaluated by (6.13).

7. Applications. Put

0 ot =(M (R (M)
k2 k3 kl

Then H (ky, ky, ..., k,) as defined by (1.4) satisfies

(7.2) H ki, By oovy k) =X C (J1, 520 -5 Jouhs

where the summation is over all nonnegative

JsFinrs=FkR (s=1,2, ..., n).

20 — Collectanea Mathematica
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By (3.3) and (4.3) we have

(7.3) Uy (uy, -, u,) G(uy, ..., w,)=F (1, ..., u,).
In view of Theorem 2, a certain linear combination of the H(k, ..., k,)
is equal to C (ky, ..., k,). For # = 2 we have
® (k4 ky\2
(7.4) ((I—w —w)2—duyuy = 3 ( : 2) uitt uy2;
kika=0 \ Ry

in this case (7.3) implies (1.1). For n = 3, since
Us=1—u—uy—us,
we get
(7.5) H(ky, ke, k3)—H (ky—1, ky, ky)—H(ky, ky—1, k3)—H (ky, k2, ky—1)
| = C(ky, hy, Fy) .
For n = 4 we have
Ug=1—ug—ttg— 3 — muy + 13 47 + 4, 1y,
which gives
(7.6) H (1, ko, ks, ky) —H (ki —1, ko, k3 ky) — H (Ry, ky— 1, ks, ky) —
— H(ky, Ry, ky—1, ky)—H(ky, ko, ks, ky— 1)+ H (ky—1, ky, ky—1, ky)+
+ (k1 By — 1, k3, ky— 1) = C (Fy, ko, k3, ky).

Both (7.5) and (7.6) have appeared in [1].

The case # = 5 leads to a more complicated formula, namely
(7.7)  H(ky, ko, ks, kg, ks)— X H (k1 — 1, ky, ks, ky, ks) +

+ X H (k1 — Lky, ky—1, kg ks) = C (k1 ko, k3, ka, ks),

where the summations on the left are in accordance with Theorem 1.
For the general case we have

(7.8) H(ky, by ooy ) — S H(ky—1, ky, ..., ky)
+ ¥ H(ky—1, ky, ky—1, kg, ..., k,)
— XY H(ky—1, by, ky—1, kg, ks—1, ke, ..., ky)
+ .. =C(ky, kyy ..., k).
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By making use the results of § 6 we may state more general re-
sults. For fixed # > 1, £ > 1 we define

(79) Hn(k) (ml» ey mn) = E C (jlr jZ’ ey jnk);
where the summation is over all nonnegative j, such that

js +js-:—n + ...+ jx+n(k—-]) = My (S =12, ..., %)
It follows from (7.9) that

[ee]
(7.10) G,W (uy, ..., )= X  HP® (my, ..., ;m)u™ ... u"
M. .. Upy=0
= Fnk (ul, ey Uy, UL, -, Uy, oo, UL, ..., Mn),
where
Fo(u, ...,u)= Y COmy, ..., m,) w™ ... u .
m1f. . mp=0

Thus

GM (wy, oo, ) = (U2, (g, ..., u,)—4 (ug ... u,)}"?

=Y 12U, u ...w,)(U2—4u; ... u,)" ¥,
by (6.12). This implies
(7.11) Y1 (U, w1 ... w,) G,B (uy, ..., u,) = F,(uy, ..., u,).

We can therefore assert that a certain linear combination of the
H,® (my, ..., m,)is equal to C (my, ..., m,). The general case is very
complicated. To illustrate we take n = 2, & = 3. Then since

P2 (Ua, uy ) = (1 — g —up)2 —uy uy
= 1 —2u1—2up + w12 + uy uy + uy2,
we get
(7.12) Hy® (my, my)—2H,®) (my—1, mp) — 2H,® (my, my—1) 4
+ Hy® (m1 — 2, my) + Hy® (my— 1, my— 1) +

2
+ Hy® (my, my— 1) — (’”1 + mz) .

mq
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Forn = 3, &k = 3 we have

Vo (Us, uy sy wy) = (1 — g — sy — 3)? — y Uy U3
and the final result can be stated witthout any difficulty.

When #» = 1, however, we can give the final result an explicit
statement. It follows from (6.14) that

k—j o 2 (2m
s oy () B e oman = 3 () e,

2j<k m=0 m=0 \ M
so that
-\ (h—] ) (2m'
(7.13) Y (—1) ( . ) H\® (m— j) =( ) :
2j<k 1 m

We note that (7.9) reduces to
o —x("E) (TR,
S b 17 n

where the summation is over all nonnegative j; such that

i+t ... Fi=m
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