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In a previous paper [1] we discussed the degrees of polynomial
solutions of a class of Riccati-type equations, and discovered that
they belong to well defined classes of numbers, which are functions
of the degrees of the coefficient polynomials. In this paper we shall
exhibit the existence of polynomial solutions of the following equa-
tion

Az’=§0—|—§lz—{—§222+...—}-B_,,_lz‘”—‘—l—z” (n>1)

where A, By, By ..., B,_; are polynomials in x.
Since every equation of this type can be reduced to the following
type of equation

Ay = By+ By 4+ Byy® + ... + B,py" 2 + y *)

by the transformation z=1y — (B,_,)/n, it is sufficient to consider
equation (*), in which the coefficients

B; (¢1=0,1, .., n — 2) are still polynomials in x.

The results obtained for (*) can be modified to apply to a class of
higher order differential equations, as we shall point out.

Before dealing with equation (*) we shall consider some special
cases, viz. # = 2 (Riccati’s equation) and #» = 3 (Abel’s equation),
which will be helpful in following the lines along which we proceed
in the general case. We first give the following definition and Lemma.

DermnrrioN. If P is a polynomial such that the degree d(P) of
P is a multiple of n (> 1), define [}/ P] as the polynomial part of

* Adapted from a chapter of the first author’s doctoral dissertation.
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the expansion of (P)!* in descending powers of x. (Ior uniqueness,
among the #n™ roots of a number take the one with smallest non-
negative amplitude.)

Now let [/P] = T. Then there exists a polynomial Q such
that 0 < d(Q) < d(7") and

P=T"+4Q.
LEMMA. — The degree of Q is less than the degree of 771
Proof : Since P =T"+Q
[VP] = [VT* + 0]

= the polynomial part of T ( 1+

\

)

= the polynomial part of 7 + 1.0 + }
n Tt

Now suppose that the degree of Q > degree of 7",
Then we would have non-zero polynomial terms in the expression
{Q/(nT"1) + ..} which we call R(x). Thus

nVP] =T + R(x)
which is a contradiction. Hence R(x) =0; that is, the degree of
Q < the degree of T 1.
Q.E.D.
In the following discussion S = [y — B,] and Q is a polynomial
such that By= — S" — Q.
Consider now the equation :
Ay = By + y? (1)
For the case A = 1, the following result was obtained by RAIN-
VILLE [2]:
«If in the equation
¥ = By + y*
the degree of By is even, then no polynomial other than [:l:"\/ — B]

can be a solution. If the degree of B, is odd, there are no polyno-
mial solutions. »
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We may remark here that the above result is true not only for
A =1, but also if 4 is any constant. This will be clear when we
obtain a similar result for equation (*).

Consider now the equation

Ay" = By + By + y? (2)

which is equation (*) for # = 3. It is not immediately obvious that
solutions of equation (2) can be obtained by applying a procedure
similar to that applied to equation (1) by RAINVILLE, although it
may seem plausible to obtain similar results for the equation y’ = By
+ 93, and in general for ¥’ = By + y*. However, it turns out that
by suitable restrictions on the coefficient polynomials, we can even
obtain all possible polynomial solutions of equation (*), and in par-
ticular for equation (2), for which our result is as follows : (4, b,, b, are
the degrees of A, By, B;; o, f, are the coefficients of the highest
power in 4, B)).

THEOREM 1. Let b, be a multiple of 3 in the equation
Ay" = By + Byy +y* (2)
and let (i) @ — 1 << by/3, b; < by/3
(i) PBifoe < 2by/3, if B/e is an integer.

Then there exists a polynomial solution of equation (2) if and only
if for some 1 <71 <3

Aw;S' = —Q + Byw; S

(where w; are the cube roots of unity), and in that case w; S is the
solution.

If b, is not a multiple of 3 and hypotheses (i) and (ii) are satis-
fied, there are no polynomial solutions.

Proof: 'The proof of this theorem is covered in the proof of
the general case, given later.
It may be pointed out again that the ABrL equation

AZ, - §0+ EIZ + EZZZ + 23

can be transformed into equation (2) by putting z = y — B,/3,
where

B, = By — By B,/3 + (2/21)B;* + AB",/3
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-and
Bl - El —_ §22/3.
Thus to be able to apply Theorem 1 to the above equation, all
we need to know is By and B; in terms of the given coefficients. To

see the application of Theorem 1, let us consider the following exam-
ple :

Example. — In the equation
@FP+2x+1)2 = — 2% + 26 — 5x* + 11x2 — 22 — 20
+6(—x2+2) z 4+ 3(x2— 2)22 4 23

using the transformation
2=y — (¥ —2),
we get
@B+2x+1) vy =—2+ 322+ 32+ 2) y + 93

This has the same form as equation (2) and the hypotheses (i)
and (ii) of Theorem 1 are satisfied. Also

S=#» —32] =42
satisfies the equation
Aw;S" = —Q + B, w; S for w; = 1,
that is,
(%3 + 2% + 1) 3x%2 = 322 + 3 (2 + 2) &3,

Hence S = 3 is a solution of the above equation in y.
Therefore z = x* — (2 — 2) is a solution of the given ABEL

equation,

Thus for a given ABEL equation with coefficient of ¥ equal to 1,
we can easily find whether a polynomial solution exists or not by
using Theorem 1. We shall now extend this result to equation (*).

Let w; (1 = 1, 2, ..., n) be the #™ roots of unity. We then have the
following existence theorem for equation (¥):

THEOREM 2. — Let b, be a multiple of # in the equation
Ay = Bo+ B1y + Byy* + ... + B, 2 y" 2 9" *)
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andlet (i) a—1 <=2y, 5, <™ =0FDy o 45  w_2
n
(i) bz<n_?(a— D, by <=0 Dy o 1o a3
— n—1

(iii) py/e < (2/m) by, if By/a is an integer.

(@, b; are the degrees of A, B;; «, f; are the coefficients of the
highest power in 4, B;)

Then there exists a polynomial solution of equation (*) if and
only if for some 1 <7 <#n

Aw,- S = — Q -+ B1 CL),S -+ Bz w; 252 4+ ...+ B”_z w.,-”"z Sn=2

and in that case w; S is the solution.
If b, is not a multiple of #, and hypotheses (i), (ii) and (iii) are
satisfied, there are no polynomial solutions.

Proof : Let m denote the degree of a polynomial solution of (*),
We shall show that under the hypotheses (i), (ii) and (iii) the only
value m can have is by/n, which is from class IV, of Theorem 1 [1].
To show this, it suffices to show that m cannot have values from
Classes III, IVy, IV,, ..., IV, _,, except the value by/n from Class IV;.
Since a — 1 and b, satisfy the same conditions by hypothesis, proofs
for values of m in Classes I and II will be similar to those for Class ITI,
and can thus be omitted. All possible degrees for polynomial solutions
except by/n, given by Classes I11,IV;, ..., IV, _, can be listed as follows:

(@) m = By/a, if By/o is an integer.

(b) m~b"—_—b’fi=0, 1,2, .on—3 k=i+1, .., n—2

ok —d

(¢) m= bi ,1=1,2, ..., n—2.
n

Considering (a), if §1/o is an integer and m = B, /« then by Theo-
rem 1 [1] Ay’ and B, y have the highest degree in equation (*). But
d(Byy) = b + Bi/

n—2
<

Bo + 2 B, by hypotheses (i) and (ii)
n

= by = d (By)
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. d(Byy) < d(By) which is a contradiction.
Hence m # f/o.
Consider now the degrees given by (d). If 7 = 0, m can have values
(b —br)/k (R =1, 2, ..., n—2), and in this case B, and B; y* must
have the highest degree in equation (*). But
by — b
k

d(y") =n ,k=1,2, ..., n—2

> Z (bo — n—(k+1) by) by hypothesis (i)
n

b
=bo + 739
> d (B,) which is a contradiction.
Thus m £ (by — )[Rk, k=1, 2, ..., n — 2.

To show that m £ (b; —b,)/(k—1), 1=1, 2, ..., n—3, k=11, ...,
n — 2, we first note that for any 2 > 7,

n—=k

n—1

by < b; (o)

which is easily proved by induction.

Now if m = (b; — b)/(k —1), 1=1, 2, ..., n — 3,
k=1+1,..,n—2, then as stated in [1] the terms B;y’ and B; y*
have the highest degree in equation (*), and

d(Biy‘)zd(Bky")zbi—{—im:bk—i—km:kb;——z.b—k.
e — 1
But d(y*) = nbi — b.k
k—1
kb; — 1b, 1 .
= n—=kb —m—1)b
S [ — B b — (n — ) B
= d (B;y!) + b where b > 0 by ()

> d (B;y*) which is a contradiction.

Thus the possibilities of degrees given by (b) cannot occur.
Again, considering (c), if m = b;/(n — 1),
i1=1,2,.. n— 2then B;y" and y" are highest degree terms, and
, b;
d(B;y')=d (") =mn

n—1
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n—@G+1)

%bi

But d(By)=by> i=1, 2, ..., n—2 by hypothesis (i)

= X
n—1

= d (B;y).
Hence d (By) > d (B;y') which is a contradiction.
Thus the only possible value # can have is by/n, provided b,
is a multiple of n. If b, is not a multiple of #, then there can be no

polynomial solutions. This proves the last part of the theorem.
If however, b, is a multiple of #, and if for some 1 <7 <,

Aw;S'=—Q+ B,w;S+ Byw2 S2+ ... + B, w0252
then
A (w,‘ S)' = — ((,(), S)" —_— Q + Bl w; S + BZ (0),‘ 5)2 +
+ Buq (@0 S)*72 + (s S)*

or
A (w; S)" = By + By (0. S) + By (@i S + ... + B,_5 (@0; S)" "2 4 (@; S)"
since — (w; S)* —Q = — S* — Q = B,, which shows that y = w; S

is a solution of (*).
To show the converse, that is, to show that if equation (*) has a
solution then

Aw;S"=—Q+ Biw;S + ... + B,_,w"25"2for some 1 <1 <,
it is sufficient to show that the only possible polynomial solutions
of (*) are w; S, w, S, ..., w, S. For, then the existence of a solution will
imply that ;S is a solution for some 4, and substituting w;S in
equation (*) will give the desired result.

We can write equation (*) as follows:

Ay’ = —S"—Q+ By + B>+ ... + B,y 2 4y (n > 1)
Since the degree of a polynomial solution here can only be by/#,
for m = by/n = d (S) it can be easily verified by hypothesis (i) that
d(4y') <d(S*1)
d(B;y)<d(S*1) 1=1, 2, .., n—2
Also by the Lemma d(Q) <d (S"™1).
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Hence S and y* are not only of highest degree but their terms
at least up to x*~1" have higher degree than the remaining terms
in the equation, and therefore must balance each other. Let a polyno-
mial solution be

Y =Cn x™ + Cmi—1 %" 1 + ...+ Co where m = bo/n

and let S =s, 2" + s,_1 2" 1 4+ ... + s

then

Y* = Cop X" + nel! Cpg "1 4 (nc::,_l Conz - 7% 2 C,z,,ml)x””"‘z
+ (nen™" Gy ) BT 4 (neh g ) A L

5% = Sp " £ nSp Sy A (nh T 5 gk % s 2 sh_1) xmm—2

-1 _ _ 3
+ (”S:; Spoz o) XM - (ns:, ! So = L) BT

Equating the first terms we get ¢,, = w; s,,, and equating the remaining
terms up to the yerms involving =", we see that ¢; = w;s;,7 = 0,
1,...m—1,2=1,2,..,n Hence if y is a polynomial solution then
y=w;S,%2=.1, 2, ..., n, are its only possible values.

This completes the proof.

REMARK 1. — We see now that the theorem applies to the Riccarr
equation if and only if 4 is a constant, because by hypothesis (i)
a— 1< [(n—2)/n]by, that is @ — 1 < 0. This means that the only
value a can have is zero, which implies that 4 is a polynomial of
zero degree. Setting A = ¢ (constant), we can now restate RAIN-
VILLE'S theorem in the following way :

«If in the equation ¢y’ = B, + y2, B, is of even degree, then
there exists a polynomial solution of this equation if and only if
cw;S"=—0Q for =1 or 1 =2 (where w; =1, w,= — 1, and
S = V' — B, as before). If the degree of B, is odd there are no poly-
nomial solutions.»

REMARK 2. — It must be pointed out that the above theorem
can be modified for the equation

Apy® + Ay y& 0 + L+ 4,9 + Ay =
By+ Biy+ ..+ B, ,y"2 4 y*
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where the A4; (=2, ..., k) are suitable polynomials. For example,
if a; (1 =2, ..., k) are the degrees of 4; (i = 2, ..., k) such that 4; < a,
and the hypotheses of Theorem 2 are satisfied then the above equa-
tion has a polynomial solution if and only if for some 1 <7 < #

Ak w; S(k) + Ak—l w; S(k_” + + A2 w; S” + A w; S =
— Q + Bl (J),;S + .es —|— Bn—2 w{‘“z Sn—Z.

If by is not a multiple of #» and hypotheses (i), (ii) and (iii) are
satisfied, there are no polynomial solutions.

In general, Theorem 2 is applicable to the above equation if the
polynomials 4; (i = 2, ..., k) are such that the degree of 4;y%® (s = 2, ...
k) is less than the degree of any of the remaining terms.
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