LINEARITY GEOMETRY. L*
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ROBERT J. BumcCrOT

O. InTrRODUCTION. Although not as basic as incidence, the
concept of linearity plays an important role in both classical and
modern geometry. In this paper we begin the development of a geo-
metric theory in which the basic undefined notion is that of linea-
rity of three points. A similar study for abstract betweenness has
been made by Hasmmmoro [1].**

The present study is, in a sense, part of two programs :

(1) generalization and abstraction of the concept «dimention,
(2) the study of ordered structures (see section 2).

It is hoped that the inclusion of several unsolved problems will
stimulate interest.

1. Basic assumprions. Consider a ternary relation defined on
an arbitrary set m. If (x, y, 2) is in this relation we write xyz (to be
read «x, v, z linear»), while if xyz does not subsist we write ~ xyz.
A consideration of the ordinary linearity relation in euclidean space
suggests the following assumptions :

(A) =xyz implies xPyPzP for any permutation P,
(B) xxy for all x, y in M.

In order to develop a significant geometrical structure in m it
will be necessary to assume one or more transitivities of linearity.
We shall restrict ourselves to four- and five-point transitivities.
A strong four-point transitivity of linearity is a statement necessarily

* Part of this work was done while the author was an NSF cooperative
graduate fellow at the University of Missouri.

** Numbers in brackets refer to the bibliography.
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involving four « points » (elements of M) in which two linearity rela-
tions imply a third, which is valid for euclidean linearity, and from
which no relation can be omitted leaving an equivalent statement.
A weak four-point transitivity is one in which three linearity rela-
tions imply a fourth. For example :

(2) xyz.xyp.x #y —>xzp (strong),
(v) xyz . xyp . x2p — yzp (weak).

Note that ¥ # y is required in (f) in order that the statement be
valid for euclidean linearity. Note also that no four-point transitivity
can have more than three linearity relations to the left of the impli-
cation sign. It is easy to see that any transitivity of five points must
have three linearity relations to the left of the implication sign. Those
having exactly three are called stromg. The following theorem seve-
rely limits the choice of transitivities.

THEOREM 1. The only four-point transitivities of linearity are
(¢) and (7). Every strong five-point transitivity is equivalent to (¢), and
hence (t) implies every five-point transitivity.

Proor. ILet x, y, z, p, be four points of m. Any two pairwise
distinct triples selected from these points must have two points in
common. In view of (A), then, we may assume the hypothesis of
any strong four-point transitivity to contain xyz . xyp. As remarked
above it is also necessary to require x % v in order to get any mea-
ningful statement for euclidean linearity. There are then two possible
strong transitivities: (¢) and xyz . xyp . x %=y — yap. But these
are equivalent under the permutation (xy). Obviously any weak
four-point transitivity is equivalent to (z). Now let x, y, 2, p, ¢, be
five points in M. Of any three pairwise distinct triples selected from
these points, some two of the triples must have two common ele-
ments. Therefore the hypothesis of any strong five-point transiti-
vity may be assumed to contain xyz . xyp.

Eliminating statements which do not involve five points as well
as etatements which are equivalent after relabelling, there remain
the following three basic hypotheses :

Ty:xyz . xyp . xvq,
Ty:xyz . xyp . x2q,
Ty: xyz . xyp . 2pg.
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These statements are invarient, by (A), under the following per-
mutations: 7y : (xy), (sp), (2q), and (pq); To: (v2) (pq); L's: ()
and (2p). Use of these permutations serves to reduce the twenty-one
meaningful implications of these hypotheses to nine. These are listed
below together with those inequalities required for the implications -
to hold for euclidean linearity.

Ty:xyz . xyp . %yq . x £V — x2p

Tis:%y2 . xyp . xyq . ¥ =y — 2pq

Toy:ixyz . xyp . %29 . % # 2 — xyq

Tog:xys . 2yp . %29 . X =y . ¥ # 2 — xpy
Txyz L xyp L x2g KX FY > yIP

Txyz.xyp .Lapq .z FE P = xyq
Txyz . xyp L 2pq . X FE Y > x2p
Tag:xyz . xyp . 2pq . x Fy .2 Fp —x2.

T23
Toy:xyz . xyp . x2q . XFY . xF2>Ypg
Ty
T,

Now equating elements these implications follow from (B): for
x =2:Tq, and T3, imply (¢); for y = 2: Ty, and T, imply (¢) ; for
x=p:T, implies (¢); for y = q: 7T, implies (¢); for 2z =¢q: Ty
and T, imply (2); for p = ¢q: T45 implies (). Thus every transiti-
vity implies (¢). It is very easy to see that (f) implies T4y, Toy, T o3
and T4, For example xyz . x2q . ¥ 7% 2 — yzq by (¢), and so (f) implies
T,5. To show that () implies Tyy, Ty, and T g3 Tequires two steps.
Yor example xyz . x29 . ¥ 2 —xyq and xyq . xyp . x =y — xpq
by (¢), hence (¢) implies T 5,. For T, we have xyz . xyp . x £y — yzp
and xyz . xyq . x #y —>yzq. If y # z then yzp . yzq — zpq, while
if y = z then x £ z and xzp . x2qg — 2pg. Thus (f) implies Ty, Fi-
nally, for T3, note that if x = y then xyq and if » = ¢ then xyg (since
xyp). Assuming x # 1y, p 7 g we have wxyz . xyp —x2p and yzp,
zpx . zpq .z F P > pxg, 2py . zpq .z Fp > ypg, and pgx . pgy —~
xyq. Thus (¢) implies T5;. This completes the proof.

This theorem is analogous to the results in Part I of PrrcHER and
SMILEY‘s investigation of abstract betweenness [2]. It would be
interesting to show that every strong #z-point transitivity of linea-
rity is equivalent to (z).
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For the remainder of this paper we shall assume the linearity
relation satisfies (A), (B) and (2).

2. LINEARITY IN TERMS OF OTHER RELATIONS

(a) Order. Let < be a binary relation on m. We say x and y
are comparable, written xCy, if x <y or y < =x. x and y are strictly
comparable, xC'y, if xCy and x #y. Assume

(01) < is a partial ordering of M.
(02) 2Cx . pCx . xC'y — 2Cp,

and define xyz to mean xP <yP < zP or x P = yP for some per-
mutation P.

This linearity relation is easily seen to satisfy (A), (B), and (¢).

(b) Comparability. The definition used in (a) suggests taking
xCy as a primitive relation. Indeed let C be any equivalence relation
and define xyz to mean xCy . yCz or two of %, y, z equal. Clearly
(A) and (B) are satisfied. A simple argument shows that (¢) holds.

(c) Betweenness. Consider a ternary relation (xyz) on M which
satisfies the following.

(B1) (wyz) — (zyx),

(B2) (xy2) . (x2y) —y =2,

(B3) (xxy) for all x, v,

(B4) (xy2) . (xpy) — (py2),

(B5) (xy2) . (xpy) — (xp2),

(B6) (wy2) . (yzp) . y # z — (xyp),

(B7) (xyz) . (xyp) . x £y — (x2p) or (xp2),
(B8) (xzy) . (xpy) — (x2p) or (wpaz).

These postulates all hold for euclidean betweenness. All except
(B6), (B7), and (B8) hold in a general metric space with distance
d(x, y), where (abc) is defined to mean d(a, b) + d(b, c) = d(a, c).
(These and other postulates will be discussed for various types of
betweenness in an arbitrary lattice in a later paper.) Using the results
of Huntington and Kline [3] (B1)-(B8) may be shown to be inde-
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pendent. If xyz is now defined to mean (xyz) or (xzy) or (yzx), then

(A) and (B) follow from (B1)-(B3) and (¢) follows from (B4)-(B8).
(d) Triangle area. (See [4]). Conmsider a real-valued function

of three variables a(x, ¥y, z), defined on M which satisfies the following-

(Al) a(x, v, 2) =0 for all x, v, z,

(A2) a(x, v, 2) = a(xP, yP, zP) for any
permutation P,

(A3) a(x, x, ) =0 for all %, v,
(Ad) alx, y,2) + alx, v, p) + alx, 2, p) = a(y, 2, P).

If xyz is now defined to mean a(x, y, z) = 0 then (A), (B), and (7)
are are clearly satisfied, but () may not hold. For example if
M = {x,9, 2, p}, a(xP, 2P, pP) = a(yP, zP, pP) = 1 for all permuta-
tions P, all other values zero, then (A1)-(A4) hold but () fails. The
direct generalization of (A4),

(A4) alx, y, 2) + alx, ¥, P) = alx, 2, D),

does not hold for triangle area in the plane, as may be easily seen.
Thus far no postulate other than the obvious one,

a(x,y,2)=0.a(x, 9, p)=0.x#y »>al(x, z, p) =0,

has been found which holds for triangle area in the plane and which
yields (¢). In searching for such a postulate it might be helpful to
note that a(x, y, 2) = a(x, y, ) = 0 implies a(x, z, p) = a(y, 2, p) by
(A4).

3. TiNEs. A subset s of M is linearly closed if a, bin s, a #~ b, and
abx always implies x in s. The intersection of all linearly closed sets
containing a set {a, b, ...} is called the linearly closed set generated
by {a, b, ...} and denoted s(a, b, ..) A straight subset of M is one
in which every triple is linear. For a = b in M the line L (a, b) is de-
fined as follows.

L(a, by ={x: abx}.

(By (B) 1(a, a) = M for any a in m.)
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THEOREM 2. Let a, b be distinct points in m. Then :
(1) 1(a, b) = s(a, b).
(2) 1(a, b) is the largest straight set comtaining a and b.
(3) if ¢, & are distinct points of L (a, b) then 1(c, d) = L(a, b).

Proor. (1). a and b are in L(a, b) by (B) and x in L(«, b) implies
abx by definition. Thus 1(a, ) is part of every linearly closed set
containing a and b, i.e. s(a, b) D L(a, b). On the other hand if «, y are
distinct elements of 1(a, b) and if xyz for some z in M, then abx . aby .
xyz . a #b . x #y which by T35 gives abz, i.e. z in L (a, b). Thus
1 (a, b) is linearly closed, and so s(a, b) c L(a, b).

(2). Letx, y, z be points of L(a, b). Then abx . aby . abz . a # b,
so by Ty, xyz. Thus 1(a, b) is straight. Let ¢ be any straight set con-
taining ¢ and b and consider any x in 6. Then abx, i.e. x is in 1(a, d),
and so G c L(a, b).

(3). Suppose xisin1i(c, d). Then by T4, abc . abd . cdx . ¢ #d —
abx, hence x is in 1(a, b). Thus L(c, 4) € L(a, b) and in the same way
L(a, b) € L(c, 4). This completes the proof.

Combining (1) and (2) and reinterpreting (3) we have the COROLLARY.

(1) A line is the only linearly closed straight set containing two
given distinct points.

(2) Two distinct lines intersect in at most one poing.

4. Pranes. Let £ be the set of all lines in M. (M, L) is clearly a
partial plane in the sense that two distinct elements of m determine
a unique element of £ and two distinct elements of L determine at
most one element of m.

The concept of dimention may be introduced in M as follows. A
subset T of M will be called (linearly) independent provided p ¢ s(T—{5})
for all $ in 1. The dimention of a subset x of M is then given by the
equation

1+ dim x =sup{|r|:T € Rand T independent},

where |1| denotes the cardinality of 7. It is easy to see that dimm>—1,
dim M = — 1 iff M is empty, dim M = 0 iff [M| =1, and dim M =1
iff M is a line. The planar (dimention two) case is of course more com-
plicated.
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DEFINITION. A semi-projective plane ¢s a partial plane in which,
given any line 1, and point p not on L, there is at most one line containing
P which does not intersect L.

If dim M <1 then (M, L) is a semi-projective plane by default.
A statement equivalent to the definition is that the «parallel » re-
lation: L || N provided L. = N or L does not intersect N, is an equiva-
lence relation on 1. _

A discussion of B-1, (BOLYAI-I,OBACHEVSKY) planes may be found
in [5] and references there.

THEOREM 3. For a, b, ¢, in M let
Ula, b, ¢) ={d:d=c or for all x cdx — ~ abx}.

Then : (1) dim U(a, b, ¢) < 1 for all, a, b, ¢ if and only if (M, L)
1S a semi-projective plane.

(2) dim u(a, b, ¢) <1 for all a, b, c implies dim M < 3 ; and
dim M = 3 if and only if (M, L) consists of two non-intersecting lines.

(3) dim u(a, b, ¢) = 0 for all a, b, c if and only if (M, L) is either
a point, a line, two intersecting lines, or a projective plane.

(4) dim U(a, b, ¢) = 1 for all non-linear a, b, ¢ if and only if (m, L)
is either two mon-intersecting lines or an affine plane.

(5) dim u(a, b, ¢) > 1 for all non-linear a, b, c, if and only if
(M, L) is a B-1.. plane.

Proor. (1). Iet ¢ be a point not on 1, = L(a, b) and suppose two
lines 1,, L, through ¢ do not intersect 1. Then 1, U L, € U(a, b, ¢),
so dim U(a, b, ¢) > 2. Conversely if (M, L) is semi-projective then
for any a, b, ¢ U(a, b, c¢) is either {c} or a line (or empty), and so
dim u(a, b,c) < 1.

(2). Suppose M contains five independent points a, b, ¢ d, e.
If for some x abx and cdx then d € S(a, b, c), contradicting indepen-
dence. Hence 4 is in U(a, b, ¢) and similarly so is e. ¢ is in U(a, b, ¢) by
definition. But ~ cde, whence dim u(a, b, ¢) > 2, a contradiction,
which implies dim M < 3. Now suppose dim M = 3 and 4, b, ¢, 4 are
independent. Then 1(a, b) does not intersect L(c, 4). Suppose there
were a point e not on L(a, b) or L(c, d). Then L(c, ¢) and L(4, ¢)
would meet L(a, b) in distinct points, say f, g respectively. Then

16 — Collectanca Mathematica
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c,feS(a,b,c),soeeS(a,b,c),ande, geS(a,b,c) implies d e S (a, L, c)
contradicting independence. Thus M consists of L(a, b) and L(c, ).
It should now be clear how (3), (4), and (5) are proved.
Combining Theorem 3 part (3) with section 2 part (¢) we obtain
a characterization of projective planes in terms of betweenness, which
has been requested by several mathematicians.

THEOREM 4. Let M be any set on which theve is defined a ternary
relation (xyz) satisfying (B1)-(B8),
(B9) Given a, b, c, d in M there exists x in M such that

(abx or axb or xab) and (cdx or cxd or xcd),

(B10) There exist a, b, ¢, d in M, pairwise distinct, such that ~ (xyz)
for all distinct %, vy, z in {a, b, ¢, d}.
Then (M, L) is a projective plane with lines defined by

L(a, b) = {x: abx or axb or xab}, for a # b.

Proor. (B9) gives the condition of (3), Theorem 3, while (B10)
requires dim M > 2 and also eliminates the case of exactly two inter-
secting lines.

A similar characterization of affine planes exists.

Another approach to these «generalized planes» makes use of
k-sets of lines (k-spaces in [6]). Consider three distinct points , b, ¢ in M.
TetLo={a,b,cyand L, ={L(x,y):x #y,x,yeU L, },k=1,2,...
If abc then L; = L, = ... If (M, L) is semi-projective and ~ abc
then [, = L,. The general structure of k-sets will be examined in a
later paper.

5. PraxEs IN SPACE. Throughout this section we assume each
line in M contains at least three points. If planes are to be indentified
with the sets s(a, b, ¢), where ~ abc, the fundamental requirement
will be

(D) ¢, f’ g es(a, b: C)) ~ 5fg —>S(6, f} g) = S(ﬂ, b, C)~

This is implied by the «Pasch’s axiom »

(E) In s(a, b, ¢) if a line meets one side of a triangle it meets another
side.

For if (E) is assumed. and a ¢ L(e, f{) we may choose % € L(e, f)
distinct from e, f, and 4. Then the line r(a, %) intersects the triangle
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(e, /, g) in & and hence in another point % which must be distinct
from k. Therefore since %, k es(e, [, g) it follows that in any case
a esle, f, g), and in the same way that b, ¢ € s(e, £, g). Thus s(a, b, ¢) €
S(e, £, g) and the sets must be equal. (D) does not imply (E) for exam-
ple in the finite non-homogeneous B-I, plane of [5], where the line
AKM meets exactly one side of the triangle (F, E, J.). Indeed (E)
fails in any B-L plane, while (E) holds in any semi-projective plane.
(What can be said about the largest class of designs in which (E)
holds)

THEOREM 5. Suppose dim M > 2, (D) holds in M, and every line
in M meets every plane. Then M is a projective 3-space.

Proor. Tet p; = s(a, b, ¢), P, = s(d, ¢, f) be distinct planes. We
may assume a ¢ P,. Then 1(a, b) and 1.(a, ¢) do not lie in P, and hence
intersect P, in points, say % and k. b = k, since ~ abc, so L(h, k) C
P; N P,. If P, N P, contains a point $ not on L(A, &), it contains the
plane p = s(p, L(k, k)), and P, = P = P,. Thus two distinct planes
meet in a line. Now let 1, L, be distinct lines in a plane p. Since
dim M > 2 there is a point a of M which does not liein p. Then p,=s(a, L)
and p, = s(a, L,) are distinct planes, since p; = P, would imply
P = (L, Ly) € Py, P = Py, and a € P. Let L be the line of intersection
of P, and P,. I, does not lie in P since @ €1, so L N P is a single point,
say p. Thenp ep,NP=1,andp €P, N P =1L, S0 p €L; N Ly, and
in fact {$} =1, N L,. Thus P is a projective plane, and so M is a
projective 3-space.
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