ON PROXIMATE ORDER (R) OF ENTIRE FUNCTIONS REPRESENTED BY DIRICHLET SERIES (II)

by

PAWAN KUMAR KAMTHAN Birla College, Pilani, Raj., INDIA.

1. Let $F(s) = \sum_{n=1}^{\infty} A_n \ e^{s\lambda n} \ (s = \sigma + it \ ; \ 0 = \lambda_0 < \lambda_1 < \ldots < \lambda_n \ ;$ $\overline{\lim}_{n \to \infty} n/\lambda_n = D' < \infty \lim_{n \to \infty} (\lambda_n - \lambda_{n-1}) = h > 0 \ ; \ hD' \le 1)$ be an entire function of order $(R) \ \varrho \ (0 < \varrho < \infty)$ represented by Dirichlet series. Sunyer i Balaguer [3] has introduced the notion of proximate order $(R) \ \varrho \ (\sigma)$: according to him it is a function of σ to satisfy the following conditions:

- (i) $\lim_{\sigma \to \infty} \varrho(\sigma) = \varrho$
- (ii) $\lim_{\sigma \to \infty} \sigma \varrho'(\sigma) = 0$

(iii)
$$\overline{\lim_{\sigma \to \infty}} \frac{\log M(\sigma)}{e^{\sigma \varrho(\sigma)}} = 1; \qquad M(\sigma) = \sup_{-\infty < t < \infty} |F(\sigma + it)|.$$

Although $\varrho(\sigma)$ satisfies (iii), it will, however, be more convenient, in comparing $\log M(\sigma)$ with $\lambda_{v(\sigma)}$ and so on, to write

$$\overline{\lim_{\sigma \to \infty}} \ \frac{\log M(\sigma)}{e^{\sigma \varrho(\sigma)}} = A.$$

- 2. Our aim in this note is to establish certain results involving the growth of log $M(\sigma)$ with $\lambda_{\nu(\sigma)}$ and so on. First of all we establish some general results.
 - 3. Define:

$$A(\sigma) = \exp \int_0^{\sigma} \varrho(t) \, dt; \quad B(\sigma) = \int_0^{\sigma} f(t) \, \varrho(t) \, dt,$$

where f(t) is a non-decreasing function, at least for $t \ge t_0$. Also let

$$\frac{\overline{\lim}}{\sigma \to \infty} \frac{f(\sigma)}{A(\sigma)} = \frac{C}{D}; \frac{\overline{\lim}}{\sigma \to \infty} \frac{B(\sigma)}{A(\sigma)} = \frac{E}{F};$$

- 4. THEOREM: (i)
- (4.1) $eE \ge Ce^{D/C}$; (4.2) $F \ge D$.
- (4.3) $E \le C$; (4.4) $F \le D(1 + \log (C/D))$.
- (ii) If $0 < F \le E < \infty$, then $0 < D \le C < \infty$ and conversely.
- (iii) If C = D then E = F and conversely.
- (iv) If (ii) holds, then

$$e^{-\xi} < \overline{\lim_{\sigma \to \infty}} \frac{B(\sigma)}{f(\sigma)} < e^{\xi},$$

where ξ is the root of the equation $eEx + eE - Fe^{\alpha} = 0$, which lies in the interval $(1, \infty)$.

5. Preliminary lemmas:

Lemma 1: $e^{\sigma \varrho(\sigma)}$ is an increasing function of σ for $\sigma > \sigma_0$. For.

$$(e^{\sigma \varrho(\sigma)})' = e^{\sigma \varrho(\sigma)}(\sigma \varrho'(\sigma) + \varrho(\sigma)) > (\varrho - \epsilon)e^{\sigma \varrho(\sigma)},$$

for $\sigma > \sigma_0$; since by (i) and (ii) of §1, we have respectively

$$\sigma \varrho'(\sigma) > -\frac{\epsilon}{2}$$
 ; $\varrho(\sigma) > \varrho - \frac{\epsilon}{2}$ for $\sigma > \sigma_0$.

Therefore, for $\sigma > \sigma_0$, $(e^{\sigma\varrho(\sigma)})' > 0$ and so the lemmas follows.

Lemma 2: For $0 < k < k_1$, $\exp \{(\sigma + k)\varrho(\sigma + k) - \sigma\varrho(\sigma)\} \rightarrow \exp(\varrho k)$ uniformly as $\sigma \rightarrow \infty$.

For let $\zeta = \max \varrho'(x)$ for $\sigma \le x \le k_1 + \sigma$. Then

$$\frac{\exp \{(\sigma + k) \varrho(\sigma + k)\}}{\exp \{\sigma \varrho(\sigma)\}} = \exp \{k\varrho(\sigma + k)\} \exp \left\{\frac{\varrho(\sigma + k) - \varrho(\sigma)}{k} k\sigma\right\}$$

 $=\exp\{k\varrho(\sigma+k)\}\ \exp\ (k\sigma\xi),$

where $0 < \xi < \zeta$, and so the lemma follows from (i) and (ii) of §1.

Lemma 3: This is:

$$\frac{A\left(\sigma + k\right)}{A\left(\sigma\right)} \to \epsilon^{\varrho k}$$

uniformly as $\sigma \to \infty$.

For

$$\log \left\{ \frac{A(\sigma + k)}{A(\sigma)} \right\} = \int_{\sigma}^{\sigma + k} \varrho(t) \, dt = t\varrho(t) \Big|_{\sigma}^{\sigma + k} - \int_{\sigma}^{\sigma + k} t\varrho'(t) \, dt.$$

But $\left| \int_{\sigma}^{\sigma+k} t \varrho'(t) dt \right| < k\epsilon$ for $\sigma \ge \sigma_0$ and so the result follows from lemma 2.

6. Proof of the theorem: Suppose $\mu \geq 0$. Then

$$B(\sigma + \mu) = \int_0^{\sigma} \frac{f(t)}{A(t)} A'(t) dt + \int_{\sigma}^{\sigma + \mu} \frac{f(t)}{A(t)} A'(t) dt$$

$$\frac{B(\sigma + \mu)}{A(\sigma + \mu)} \ge \frac{1}{A(\sigma + \mu)} \int_0^{\sigma} \frac{f(t)}{A(t)} A'(t) dt + \frac{f(\sigma)}{A(\sigma + \mu)} \int_0^{\sigma + \mu} \frac{A'(t)}{A(t)} dt$$

$$\therefore \frac{B(\sigma + \mu)}{A(\sigma + \mu)} \ge \frac{1}{A(\sigma + \mu)} \int_{\mathbf{0}}^{\sigma} \frac{f(t)}{A(t)} A'(t) dt + \frac{f(\sigma)}{A(\sigma + \mu)} \int_{\sigma}^{\sigma + \mu} \frac{A'(t)}{A(t)} dt$$
$$= P + Q.$$

Now

$$\lim_{\sigma \to \infty} P = e^{-\varrho \mu} \lim_{\sigma \to \infty} \frac{\int_0^{\sigma} \frac{f(t)}{A(t)} A'(t) dt}{\int_0^{\sigma} A'(t) dt} \ge e^{-\varrho \mu} \lim_{\sigma \to \infty} \frac{f(\sigma)}{A(\sigma)} = De^{-\varrho \mu}.$$

$$\varlimsup_{\sigma \to \infty} Q = e^{-\varrho \mu} \varlimsup_{\sigma \to \infty} \frac{f(\sigma)}{A(\sigma)} \log \left\{ \frac{A \ (\sigma + \mu)}{A(\sigma)} \right\} = \varrho \, \mu \ C e^{-\varrho \mu}.$$

Therefore

$$(6.1) \quad E = \overline{\lim}_{\sigma \to \infty} \frac{B(\sigma)}{A(\sigma)} \ge \underline{\lim}_{\sigma \to \infty} P + \overline{\lim}_{\rho \to \infty} Q \ge De^{-\varrho\mu} + \varrho \mu \ Ce^{-\varrho\mu}.$$

Similarly

(6.2)
$$F = \lim_{\sigma \to \infty} \frac{B(\sigma)}{A(\sigma)} \le Ce^{-\varrho\mu} + \varrho \,\mu D.$$

We also have, following (6.1) and (6.2),

(6.3)
$$F > D(e^{-\varrho\mu} + \rho \mu e^{-\varrho\mu}).$$

(6.4)
$$E \leq C (e^{-\varrho\mu} + \varrho\mu).$$

Now the maximum and minimum of $(D+\varrho\mu C)e^{-\varrho\mu}$ and $Ce^{-\varrho\mu}+\varrho\mu D$ respectively occur at $\mu=(C-D)/\varrho C$ and $\mu=\frac{1}{\varrho}\log (C/D)$; and so subtituting these values of μ in (6.1) and (6.2) we get (4.1) and (4.4). Similarly subtituting $\mu=0$ in (6.3) and (6.4) respectively, we get (4.2) and (4.3). This proves (i).

- (ii). Now let $0 < F \le E < \infty$. Then from (6.1) $C < \infty$. We say $D \ne 0$, for if it is then from (6.2) F = 0 and so a contradiction. Hence D > 0. Thus $0 < D \le C < \infty$. Next suppose $0 < D \le C < \infty$; and we have then from (6.4) and (6.3) $E < \infty$ and F > 0. This establishes (ii).
- (iii) Let $\mu = 0$. Then from (6.1), (6.4) and (6.2), (6.3) we have D < E < C; D < F < C.

Suppose first that D=C, then the preceding inequalities yield E=F=C. Next suppose E=F, then we show that D=C. To do that let η be an arbitrarily chosen positive number. Then

$$(1 + o(1))\varrho\eta f(\sigma) = f(\sigma) \int_{\sigma-\eta}^{\sigma} \varrho(t) dt$$

$$\geq \int_{\sigma-\eta}^{\sigma} f(t) \varrho(t) dt$$

$$= B(\sigma) - B(\sigma - \eta)$$

$$= A(\sigma) (1 + o(1)) E - (1 + o(1)) EA(\sigma - \eta)$$

$$= (1 + o(1))(1 - e^{-\varrho\eta}) EA(\sigma)$$

$$= (1 + o(1)) (\varrho\eta + 0(\eta^2))EA(\sigma)$$

and since η is arbitrary, we find that

$$\lim_{\sigma \to \infty} \frac{f(\sigma)}{A(\sigma)} \ge E.$$

Similarly by considering the expression $f(\sigma) \int_{\sigma}^{\sigma+\eta} \varrho(t) dt$ we can show that

$$\lim_{\sigma\to\infty}\frac{f(\sigma)}{A(\sigma)}\leq E,$$

and thus (iii) is completely established.

(iv). We have from (4.1) C < eE. Hence from (6.2)

$$e^{\varrho\mu} F < eE + \varrho\mu D e^{\varrho\mu}$$

Consider now the equation

$$Eex = Fe^{x} - eE$$
 $(0 < F < E < \infty)$

It has one and only one root in the interval $(1,\infty)$. Let it be ξ . So putting $\varrho \mu = \xi$, we have

$$e^{\xi}F - Ee < \xi De^{\xi}$$
.

$$eE\xi < \xi De^{\xi}$$
, or $D > \frac{eE}{e^{\xi}}$.

Hence

$$\frac{1}{e^{\xi}} < \frac{D}{C} \le \lim_{\sigma \to \infty} \frac{B(\sigma)}{f(\sigma)} \le \frac{C}{D} < \frac{Eee^{\xi}}{eE} = e^{\xi}.$$

This furnishes the proof of (iv).

Applications: Let $f(\sigma) = \lambda_{r(\sigma)}$; $\frac{B(\sigma)}{\varrho} \sim \log \mu(\sigma) \sim \log M(\sigma)$ and so the above theorem includes the results of Srivastava ([2], p. 137) and Rahman ([1], p. 173).

REFERENCES

- 1. RAHMAN, Q. I. A note on entire functions (defined by Dirichlet series) of perfectly regular growth; Quart. J. Math. 6 (1955), 173-175.
- 2. Srivastava, K. N. On the maximum term of an entire Dirichlet series; Pro. Nat. Aca. Scs., (Allha.), India, 27 (1958), 134-146.
- 3. Sunyer i Balaguer. Sobra la distribución de los valores de una función entera representada por una serie de Dirichlet lagunar; Rev. Aca. Ciencias, Zaragoza, 5 (1950), 25-49.

