THE UNIQUENESS PROBLEM IN THE THEORY OF NUMERICAL
DIVERGENT SERIES AND FORMAIL LAWS OF CALCULUS II (*)

by

R. SAN JuaN Lr1osA

§ 2. ldentity of an algorithm with those of LULER and BOREL.
1. Definition of convergence and addition algorithms through the formal laws of calculus.
Let

So S

be the set of s, numerical convergent se- | be the set of the numerical convergent series
quences

oo
lim s, << oc ; ap < oo
n—0co n=0
and
Ao { Oo
the isomorphism existing between
So ! S,

and the complex field € = R2 with respect to the formal laws of calculs used in the
elemental theory of

convergent sequences convergent series
The problem of
the generalized limits | addition of divergent series
should be attempted in our meaning in this other way (21, no, 1, 2 1, Chap, V, 339
Problem A. To extend the isomorphism
Ao : Op
by means of another isomorphism .
A : g
between a set

$i D Sy (82 % Sp) ! Se D Sy (S¢ # Sy)

(*) This research has been sponsored by the European Office Air Research and Deve-
lopment Command U. S. A. F.
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and the same complex plan ¢ with respect to certain formal laws, for instance, the laws
a, b, c d, eand f ] a’, b, ¢, d or d,, e and {
stated below in the weak form that will be used.
Def. 1. We will cail permanent method of

convergeace I addition
or more briefiy, algorithm of
convergence | addition
any solution
A | 4
to problem A with respect to an system of formal laws.
The algorithm will be distributive when, among these laws, there exists the

a and b | a’ and b’
Def. 2. The
7 =00
sequences {s,} € 8a series Y, aneSg
n=0
are called
A-convetrgent ; | o-summable ;

and the number
l | s

homologous in the isomorphism is called

A-limit | o-suml
of the
oo
sequence {sp} serie ¥, an
=0
and is written
(>
A-lim s, =1 o Yan=s
n=0
Def. 3. We say that an algorithm
A i o
s (strictly) weaker than another
A o’
or that
A | o’

is (strictly) siromgey than
A o
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sometimes written

ACAV(ACA, A#£ 1) | csCo (cCa, 05 o)
when it is
S €8x’ (saC sy, sa# sy) l So € So’ (8¢ C 8o, So # So')
Prop. 1. (Transitive property). If
AcXand ¥Ci’, ACLi” ! ¢ Co and ¢’ C 0", 6 Cc”
Proof. Evidently, if
saC sy’ and 82’ €817, s2a € s1” S; € Sy’ and S,” € So”’, Se C Sq¢”’
Def. 4. If
{Aa} {oa}
is an algorithms family of
convergence | addition

with a variable parameter a within a set F, we will say that the set or union of these
algorithms

U (Ae a € F) | U (0g, a€ F)
is (strictly) weaker than an algorithm
A | o
or that the latter is (strictly) stronger than the said set of algorithms, and may write
U (Ag,ae F) CA,(U (Ag,ac F)CA,U (A€ F) #24) | U(ox,aeF)Co,(U (oqacF)Co,U (0q,a€ F) #0)

when

U (Ssaae F) Csy, U (So,, ac F) C Sy,
(U (sa, xe F)Csa, U (sa, o€ F) % s3) (U(Suu, ae F) €S, U (S.,a, ae F)# Sq
Def. 5. We will say that an
addition algorithm ¢ | convergence algorithm 2

is equivalent to

a convergence algorithm, 4 | an addition algorithm, o

and we will write sometimes

oc=24 | A=oc
when the two following conditions are verified
oo (o)
Y aneS, s___> {sn) €82 (1) (swbesa > Y aneSq (1)
n=0 n =0
[o ) oo
o Y an = Alim s, Alims, =0 Y an (2
n =0 » =0
being
”
sw= ¥ a,forn=012 ... (3) ap—= sgand an— Asu_1 forn=1,2, ... (3)

y=0
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Prop. 2. (Converse property).
o= 12 :
it is
A=o¢
Proof. If
(1) and (2)

are verified for the
{sn}
defined in
(3),
are verified
(1) and (2)
for the

defined in

Prop. 3. (Transitive property). If:
=21, ¢’ =A and A =1’

also

g=20'
Proof. Being, by assumption

s3 = sz’ and A lim sy = A’ lim s, for

it results

oc oo oC
Sy = Sg’ and aza,.z G’Eu,,forz ay € Sg
n=0 n=0 n=0

by virtue of
(1) and (2)

Prop. 4. If:
ACHA (ov ACA but A= 1)
and, on the other hand

o= Aand o/ = 1,

we have
ocCo (or o Co but o£a')
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If :

oo
an for ¥ an €S,

oo
{sn} €51 I So =S8, and ¢ ¥} ay = o
0 n=0

n=0

Sk

sa = 83" and A lim s, = A’ lim s, for {s,} €53

! (1) and (2)

6 Co (or 0 Co but oo

! A=o0 and A = o’

! ACA (ov AC A but A+ 1)



The uniqueness problem in the theory of numerical series 27

Proof. Being

S2 C 82’ (or s3 € si’ but s; =),

it results

S; C Sy’ (0F Sy C Sy’ but S, = Sg) |

after
(1) and (2)
a) If
{sn} €51 and {1,) €5,
also

{sn+ tn} €52

and we have

Alim. (s, — t,) = Alim s, + Alim ¢,

b) If

{sn} € 83,
also

{csu} € 82
and it is

lim (¢ sy) = c. Alim. s,

whichever the constant ¢ may be.

c) If
{sn} € sa and {sy.1} € sa,

being
so = o,

| S: € 8¢ (or S; C So” but Sy == Sy'),
$2 C 82’ (or s; € 82" but s3==8")

| (1) and (2%

Formals laws
Additive law
a’) If
20 (e o]
Y ane S; and 3 bueSo

n=0 #=0

o)

E (an + hy) € So
n=0

[ee) oo [ o)
G E (an ~by) =0 Z a, -+ o 2 by
n=0 n =0 n =0
Homogeneity
' b)) If
oo
N aneS,,
n =0
o0
2 ¢ ay € Sq
n =0
oo oo
oY (ca)=c oY an
n =0 n =0

Initial term
c’) If

oo o

| Y, aneS; and - Y] aueS,,
! n=0 n=1
ag =0
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we have

Alim s, = 4 lim sy

d) If

{sn} € 84, {ta} € 52 and {z,} € 82
being

Zy = Sp iy for n =0, 1, 2,...

we have
Alim z, = A lim s,. A lim ¢,

{sn} € sa,
also

{sn "} € sa

”
2 Sy XY > € S2
y=0

Alim (sypx7) =0

and we have

R. San Juan Llosi

(o]
3 o

(e o]
o 2 Ay =0
=0 7=l

Product law

Abcl

d) If
=S oo (o)
2 an € SO; 2 by € sd and 3 Cy € Sa
n=0 n=0 7 =0

”n
2 Ay bu_y,forn=0,1,2,..,
y=0

Cn = an * by

oo o0 oo
a}_“cnzazan. rrzb,,
=0 n =0 n =0

ay) 1f

oQ o0 (e o]
Y ane S, Y bac So and Y ¢neSq
n=0 n =0 n =0

being

co=o0and cuj1=an* by forn=20,12,..,

we have
oo o0 oo
0‘}: Ch =0 2 . O'E by
n =0 n—0 n=0
law
e’,) If
oo
E ay € Sa, (47)
n =0
o0
Y anxneSq (5%)
n =0
oo
Y (1% an) 47 € S (6)
n=0
oo o0
o Yanxr=(x—1).0Y (1*an) s (7)
» =0 #n =0
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for any x €10, 1]
ey) If e’y) If
o]
{Sn} € S 2 Ay € SQ
»n =0
and x €]0, 1[, we have
” o0 [=e)
lim [(1—#). Alim ¥ s, »]=2lim.s, (8) lim o Y ansn=0 )] an (8"
1 — y=0 z—>1— » =0 »n =0
f) The limit f’) The sum
[> =]
Alim s, o) an
» =0
is a linear continuous functional in the space
Sa | Se
with a topology.
Remark. — When c’is verified, d’ and d’, are
evidently equivalent.
Through the laws
a and b, the law ¢ | a’ and b’, the law ¢’
can be generalized for any initial term as follows:
cy) If ¢’y If
(oo} (=]
{sn} € 83 and {sp+1} € sS4, Y an€Sqand Y ane S
n =0 el
we have
(v o] oo
Alim s, = Alim sy S oan =ay+ 2 Ay
=0 "]
whichever the initial term may be.
Proof. Writing
so=0and s’y=s,forn=1,2,... ag=0and a'y=a, forn=1,2,...
sy’ =59 and s, =0forn=1,2, ... a’y=agand a’,=0forn=1,2,...
we have evidently
Sp=S5n+s"nforn=20,1, 2,...; Ay =0a'y +a"’y forn=20,1,2,...
but us
oo oo oo
{50’} € 52, C 82, Alim s”y = lim 5", = 0 Y ascSeCSa 4 Y osw=Y sn =a
n—» 00 n =0 n =0 n=0

it follows from
a and b, | a’ and b’,
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that also

{s'n} € 8a;

R. San Juan Llos4d

oo
Y a'n € So;

n=0

wherefrom, being nul its initial term, it follows according to

c:Alimsy=Alm s'y+Alm s”y=Alm su41-+

+ Aglim. 57y = Alim. 5544

From the laws
ey and e,,

o (e o] o0 o0
c:o Y an=0 Y a's + u}: a”n=02 a’n+

”? =0 n=0 n=0 n=1

+og ¥ a’w=0 Y an+tag

n =0

% =l

| e’y and e’y

can be deduced the following one, which may replace hoth in the applications.

e) If

{sn} € 82

”n
{ 2 Sy XY 5 € 82
v =0

for every x €] 0, 1[, and we have

it is also

”
2_ sy 4] = Alim s,

lim [(1 —%). Alim
. y=0

—>1—

e’) If
oo
2 an € Sq

#=0

oc
2 ay 2" € Sq

#n =0

oo oo
lim o 2 Apit =0 E an
—>1—

n=0 n =0

Proof. The assumption is the same as in

ey and e,
and the conclusions are
(6) of eq and (8) of e;

| e’y and ¢’5

| (6') of ¢’y and (8') of e’y

Whichever may be the formal laws taken in Def. 1 of the algorithms, the laws

a, b, c, €1, e and |

are surely transformied in the

’

a’, b, ¢’, ¢, ¢/ and [’
in the equivalence (Def. 5) of
a convergence algorithm
with another
" addition omne,
as expressed in the following proposition
Prop. 5. If

a convevgence algovithm A

| a’, b, ¢, e’1, ey and f
| a, b, c, e1, e and f

an addition algorithm

| convergence one,

| an addition algorvithm o
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verifies the formal laws

a, b, c, ey, e5 and f a’, b, ¢, ¢y, e and f
with a cevtain topology .
Ta, I T,
every

addition algorithm o | convergence algovithm A

equivalent (Def. 5) to the v v
A o=1, ! o, A=o,

verifies the homolous laws .
a’, b’, ¢/, ey, ¢’y and [’ a, b, ¢, ey, e and f

with the topology

Tﬂn I TX
obtained by taking as meighbovhood of a
(=]
series Y, a(g) € Sqg in Sq, sequence {s(g)} € S3in Sz,
n=0

the set of the

sevies OEO ay € Sq sequences {Su} € S2
7" =0
whose
oo
sequences {sn} . series Y an
#n =0
gtven by
3) ' ! (3) -
belongs to the neighbovhood in
Sa, Sa,
after the topology
T, T,
with which is verified
f, r,
of the
sequence series
(e o]
(s € sa Y a9 ¢ 8,
n=0

obtained by applying
' (3) (3)
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for the sequence
Ay = a(g) | Sy = 5(2)
form=20,1,2,...
Proof. Being

sg C sa and sg £ Sy, | So C So and Sy # So,
it results from
(1): So € S¢ and S§j == Sg (1) : sq C s2 and sg # s3
Furthermore, if
oo
Y an €S, l {sn} € sa,
=0
i. e., after
| S
(1), {5} € sa | (17, Y an € S
=0

we deduce from

(2), ! (2)

being
A i o
an extension of
Ao : (il
o0 " (e o] o0 o0
a ] ap, = Alim s, = Ay lim s, = lim s, = | 4 lim s, =@ E an = 0g 2 an =Y, Gn=
n =0 7—>00 n=0 n =0 n =0
(oo} [ o]
=Y a.=0 Y an = lim s, = Ao lim s,
n—0 n =0 #—>Cc
that is
o A
is an extensién of
A | Ao

Now, we are going to proof the formal laws

a’) Let be a) Let be
oo oo .
Y an €Sg and Y ba € So {sn} € s2 and {Is} € s3,
7 =0 » =0
i. e., after
(o] oo
(1), {sa} € sa and {t4} € sa (1), Y, aneSg and Y} bs € So
7" =0 " =0
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being

”n n
Sp = Ea,, and 1y, = ¥ b, forn=0,1,2,... $
ve=0 y=0

Since
y=0

we have, after

(2) and a: \

(o]
0 Y (an+ bp) = A1im (sp + ) = Alin1 s, + E lim (sp + #n)
=0

. w |
+Alimt,,=azan+02bn; |
n =0 n =0 ;

which is the
a’)
b’) If b) If
o0
Y aneSo,
n=0
i. e., after
(1), {su} € sa
also, after

b, b{c su} € sa

whichever the constant ¢ may be, that is, after

o0
(n, E c ay € So
n =0

and hesides, we have, after

b b’

o0
o ¥ (cay) = A lm (¢ sy) =c. A lim s, =
n=0

o0
=c. 0 2 ay
n=0

Alim (csy) = @ E ¢ ay

ag = Sqp, An = ASp—1 and by = f, by =

=Aty_y forn=1,2,...
n
2 (@y + b)) =sn+tyform=0,1,2,...

(2) and a’:

[e o]
+0 ¥ by = Alim s, + Alim 4,

n =0

{sn} € Sa,

(1), {c sa} € 82

8

n =0

= ¢. Alim s,

=c.aE Ay =
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which is just

b’ b
¢’) Let be’ c) Let be
[} oo |
S ane Ssand Y] an € So (9) ! {sn} € 82 and {sn41} € 82 (9)
1 =0 #e=l I
being
ag = 0 | Sg =10

By according with

"

(3): sp= 2 ay for n =20, 1, ... (3): ap =0, an=Asp_y for n =1, 2, ...
v=0
n+1

S’ = Eavfor1z=0, 1, ... a'g =51, an =24 sp for n =1, 2,...

y=1

we have, after

o0 o0
(1) and (9), {sn} € s2 and {s's} € sa (1) and (9), ¥ aneSo and ¥ a'n € So

n =0 # =0

But it is abviously

S’y = Sp+1 | 'y = An+1
for n =0, 1, 2,...; whence it results by successive applying of :
(2), ¢ and (2): (2), ¢’ and (2%):
oo oo o0 o
c 2 ap = Alim s, =Alim sy = Alim s’y = Alims, =0 E ap =0 2 An=20 2 W=
" =0 n=0 "ol n =0
[0 o]
=0 2 an = Alim sy 41
n=1
e’1) Let be e,;) Let be
(o]
{sn} € s E an € So
=0
The conclusion
(6) of ey, | (6") of ey,
is exactly the
(6”) of e’y | (6) of eq
after
(1) and (3’) | (1) and (3)
From Abel’s identity, or partial addition :
#+1 " " n—1
Y oy =(1—x) ¥ & &+ sni1 #FL, span = Y ayxt — (1 —x) Y (1*a)a,
y-0 y=0

vy=0 y=0
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and through a new application of
(6), b, (5), b, @ and (1), !
it follows
el |
N ann e So
n=0
which is
(5) of e’y !
and besides, by virtue of
(2) and (7) of ey,

we have
oo "
\Y o — — 1) ;Ui Vs v oL
o ¥ ap ¥ = (1 —x) 2lim S s a2
n=0 y=0

1
+AHm (sy g 1) =2 (1 —w). 2Zlim 2 Sy AV =
y=10
o o
—(1=x).0 ¥ spxn==(1—2x).0 ¥ (I*au)x

n=0 n=0

(10)
which is just
(7') of ¢y i
¢’y) From
(10), (8) of e, and (2),

it results

oC "
lime Y a,x%=lim [(1—x). 2 lim ¥ si=
— » At -
17 0 —>1— v —0
[ee)
=ilims, =06 3] a,
n=0
which is the conclusion
(8) of e !

f) After
£, |

to every e-neighborhood of the number

[oe]
Y a,(g) = Alim s(g)
n =0

35
(6), (1), b, (5), (1), a and b,
{Sn 2"} € s1
(5) of er;
(2) and (7’) of e’y
"
Alim (sy #7) = Alim Y} a, 4v —
v=0
n—1 oo
—(1—x).2m ¥ (1*a) »=0Y] ayr" —
v=0 n=0
oo
—(1—2%).0 2 (I1*an) =0
#=0
(107
(7) of 1.
(10, (2, (8’) of ¢, and (2')
"
lim (1 —x).Alm ¥} sy »]=lim [(1 —%).
=1 p=0 v—>1—
” "
Al Y (1% ag) ] =1lim  [Alim ¥ ay 2] =
v=0 =17 v=0
[o =] [ee)
=lim o Y ansx"=0 Y ay=4Alims,
=17 420 n=0
(8) of €s

1,

(o]
Alim s(g) =0 E a(g)
#w=0
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it corresponds a d-neighborhood of

s
in the topology
T;
such that if
{sn} € 0, Alim s, € €;

and to this one, another 4’ of

b 0
3 o

n=0
in the topology
T
such that if
oo
}: an € 0,
n=0

we have by definition
{su} € &;

therefore, after
(11) and (2)
we have

o0

oY an=~2Alims,ce

# =0

That is to say, to every e-neighborhood of

[o=]
o ¥ a0

# =0

it corresponds another &’ of

o0
3 4

7 =0
in the topology
Tq
such that if
()
Y oaned

n =0

R. San Juan Llosi

oo
Y

#n =0
Tq

oo )
Yaned oY ance;
n =0 n =0

{0
T3
{sn} € &

[ece]

Wl .
L g € 6;
n=0

(11) and (2)

o0
JHm sy=0 Y ance
n=0

0)

3

2 lim s

0
sy
Ta

{sn} € ¢’

(1)
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=

we have

o
6 Y ance; A lim s, € s;
# =0 '

which means that the functional

o |
o Y, an i A lim s,
n =0
is continuous in
So ! Sa

with the topology

Tq Ta
transformed from the topology
T; I To

Remark. 1. In this Prop. 5 we have to do without the product laws, which are
not deducible from an algorithm to the other one, since obviously

n n "
Na. Yo~ Y (@b,
=0 y=0 =0

and tis is just the cause of troubles involved in the product law for summation algo-
rithms, including those for convergent series.

2. In stead of these product laws and as auxiliaires for the converse deduction of
Abel’s laws

e or ¢ ! e’ or e’y
we have introduced the converse laws e; and e’;, whose last conclusions
(7 ! (7)

are two particular cases of the said product laws, since we have

oo (=)
Alim (sy2%) = A lim sp. 4 lim xn = oY (I1xap)xn=0 Y (#rsanrm) =

n=0 » =0

= A lim s,. A9 lim = 0 * x> *® ot

w0 =02x".aEanx"=002x".trEa,.x"=
# 0 #=0 7" w0 " =0
= 1 . g § Ay XN
1 —x

7 =0

2. Linear algovithms
It is convenient to fix some terminology through the following definitions :
Def. 1. We will call linear algorithms of
convergence, A | addition, u
those defined by ineans of a matrix, or double sequence
{Ar.1} l {r.e}
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@
with two indexes » =0, 1, 2, ... and ¢ =0, 1, 2, ... as in
(1, 90]; I (7, 42];
and linear algorithms of
convergence, A | addition, p

with continuous parameter, f, or more shortly continuous algorithms, those defined by
means of a factors sequence of

{Ar (2)} - convergence ! {ur ()} - addition

with an » = 0, 1, 2, ... and variable ¢ within a set £ with the adherence point ¢y, as in
[12, 193-197], where it was analized in detail the relation between them.

Permanent linear algorithms are evidently distributive algorithms (Def. 1, no. 1).

Def. 2. We call transforms of a

oo
sequence {ans} (1) series Y an (1)
7n =0
by means of a matrix
{At,n} ! {pt.n}
or by means of a sequence of functions
{An(2)} | {mn (1)}

to the sequence

{éikman} (ml

or the fuuction of ¢, defined by the series

{ 2 Un (t) an} (2')

n=0

oo | oo
Y An (1) on ml Y #n (1) an (3)
% =0 7n=0
respectively.
Prop. 1. If the
sequences (1) series (1')

form a vectorial space, theiv tramsforms
(2) or (3) ! (2)) or (3)

do it also.

Proof. Because the transformation is linear.

Def. 3. We will say that a linear algorithm of

convergence, A | addition, u
verifies the principle of identity, when the only
| o

sequence ;a,} ¢ Si i series ¥ a, € Su
n =0
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having all its transforms null

(2) ! (2)
for t =0, 1, 2, ... or the
(3) ! (3)

for ¢t € E, is the identically zero one
an=0 for n=0,1, 2, ...

and when furthermore, in the second case, the set E is compact and the transforms

(2) ! (2)
of every
oo
sequence {sy} € sz ‘ series 2 aw € Su
n=0

are coatinuous functions in E-fg = E N C 1.

Prop. 2. If a linear algorithm verifies the identity principles, the set
Sa ! Su
and that of the transforms corvespond one-to-one each other; the vectorial space of the transforms
(2) or (3) | (2') or (3)
is a wectorial subspace ¢y or €y, vespectively fov the space ¢ of the convergemt sequences

or for the space C of the continucus functions within the compact set E; and we may define
a metvic in the set

Sa | S,

i such a way that the latter vesulte isometric with the subspace ¢ C ¢ or with the C; € C,
adopting as norm for every

oo
sequence {Su} € S, l series 2 an € So
| =0
thai of its transform in ¢y or Cy.
Proof. Tihe correspoadeiice between.
s; and ¢; or i S, and ¢; or C;

is obviously univocal; and one-to-one becuse of the identity principle.

Wehavec; C ¢, bacause there exists

o oo oo
Alim sy =lm ¥ 2up sn<oc (5) o Y ap=1lm Y w,pan<oo (5)
t—>00 4, 0 n=0 1—>00 4 0
and C; € C because existing
O-O oo o0
2 lim s, = lim E Jn (t) sy <oo, te E, (6) o 2 ay = lim 2 Un (t) an, te E  (67)
=y =0 n=0 =t =0

the transform is furthermore coatinuous in E-#;; therefore this transform is a cotinous
function in the whole set E, adopting this limit as value at #,.
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Finelly, the norm has identical property by virtue of the identity principle; and thke
spaces result obviously isometric, since they are vectorial spaces with equal norms at
homologous points.

Def. 4. The metric defined in Prop. 2 and the topology determined in

sa | Su
will be called specific for the algorithm (*).
Prop. 3. If an algorithm vevifies the identity principle (Def. 3) it satisfies the continuity law
f I r
with its specific topology.
Proof. The limit
~ (5) or (6) [ (5) or (6
is, of course, a continuous functional in ¢; or €; with the metric of ¢ or C, respec-
tively, and, therefore, in
Sa | S,

with the specific metric of the algorithm, because then, both spaces are isometric; and
therefore it shall be continuous with the specific topology for the algorithm (*).

The definitions of reversible and perfect convergence algorithms [1, 90] could be
generalized for continuous algorithms. But the extension of fundamental theorems requi-
res a detailed study, specially the [1, Lemma 4, 93], based on the [1, Theor. 10, 47
which we are trying to avoid here, through the algorithms with matrix subordinated
to a continuous algorithm.

Def. 5. Being given a continuous linear algorithm of

convergence, A | addition, u
with the factors
{An ()} I {un (1)},
we call subordinate algovithin through a sequence {vi} ¢ E with limit ¢, and it will be
designed sometimes by

A (n), | u (m),
to the algorithm of
convergence | addition
with the matrix
{An (1)} {un (r)}
fort=0,1,2,...andun=0,1, 2, ...
Prop. 4. Let
i [ )z

(*) Somewhere else we will analize the relation between this metric and the topology
defined by Erdés and Piranian [6, 139-148] by means of the Toeplitz matrices in the
set of bounded sequences.
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be a continuous algorvithm of
convergence addition

In order that theve exist

I [ee)
A lim sy, (7) | W 2 gy, (7"
| n =0
that 1is,
>0
{sn} € sa, l Y an €8,
n=0
it is necessary and sufficient that theve exist
(e}
2 () lim s, (8) u (re) E A, (8)
#=0

that 1is,

[o0)
{sn} € Sarry, Y an € Sy

n=0
for every sequence {7} € E with limit ty. Evidently :
all these limits (8) | all these sums (8)
vesult equal each othevr and
to the limit (7) i to the limit (7°)
Using symbols
sa= N (Sarry, {7} € £, lim#, =4y (9) Su= N (Susry, {r1} € E, lim v =1) (9"
t—o00 t—oc
x ot
A lim s, = A(r) lim s, (10) pY en=n) Y an (109
n=0 # =0

for every sequence {vi} € L.

In particular, if the compact set E, with the adherence point ty is the veal positive semi-
axis [0, + oo] and t = + oo, the preceding conclusions vemain valid, but limited to the
increasing sequences {rs} with limit 4 oo and all their terms larger than awny prefixed constant.

Proof. They are abvious consequences of the elemental properties of arithmetical and
functional limits.

Cors. 1. Any continuous algorvithm is weaker than awy of oils subordinate ones, i. e.
ACi(n) ! uCp(r)
for any sequence {riy € E with limit t,.
Proof. An obvious consequence from
(9) and (10) | (9" and (10"

2. If a continuous algorithm is permanent, all its subordinates are permanent too.
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Proof. Immediate consequence from permanence definition :

|
1

Ao C 4, Ap lim s, = A lim s,

(Prop. 1, no. 1), Cor. 1 and
(10)

3. Moments method.

oo oo
2o C 4 (o = 0o), po Y, Gn =p ) an

n=0 7 =0

(107)

We are still giving immediate definitions and propositions, which will he used later.

Def. 1. We use to call [12, 1993 [7, 811
summatory {v,}

algovithm of moments

integral {ua}

oo

to a permanent method [13, 34} of sumunation, defining the sum of a series Y a4 as follows

oo oo
vza,,= 2a1A1<oo (1)
w0 te=0

where

{a;} is the generatrix sequence with the
moments

(=)
Yy = 2 ap " <oco
t=0

for n =10, 1, 2,... and A; the associated
sequence formed by the values of the poly-
nomials

i n

A = —fort=20,1,2, ... 2
t Ednn ()

" =0
Prop. 1. Conversely, any

sequence {A:} is the associated

v
o0
of a series E with coefficients
7 =0
4 A
ag = Ao =40 Agand ap = ~—— L))
n!

for n=1, 2, ...

n=0

nY an= [DZ(L‘)A (t)dt < oo (1)
Y0

# o0

a (t) is the continuous function in [0, + oo]

[}

pn= | a(t)rdt < oo
0

and A(t) the associated function obtained by
analytical continuation along the positive
real semi-axis of the function holomorph
in 0 defined by the series

4@ = § an

t=0

in
— (2)

n!

holomorph function, A (t), in 0, analytical
continuable along the whole positive veal semi-
axis is the associated

u
A(») (0)
ag=A(0)=.A4(0) (0) anda, = T Hn (3%)
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Proof. Since we have evidently :

P Eog(n foly X m X om
Yan—=Y —ar 4, = 2( )A"A0= Y an—= — A (0) = A4 (1)
n=0 ¥ =0 n! n=0\" 7 =0 Hn n=0 7!
=Adifort=0, 1, 2, ... in a neighborhood of the origin and by con-
tinuation along the whole pogitive real semi-
axis, since, by assumption, A(#) is holo-
morph in 0 and continuable along this semi-
axis.
Prop. 2. In the set
sv I sll
of summable sevies with an algovithm of
summatory moments {vy} ! integral moments {un)

it can be defined a metric by adopting as norm for every sevies
(oo} oo
E ap € Sy 2 Ay € SF
n=0 n=0
that of the product of the associated by the genevatviz in the vectovial subspace
u Cu (4) UcU (49
formed by the said products, so that we have a space

Sv I S.“
isometric with
ug | Uy

Proof. By virtue of formulae

(2) and (3), ! (2) and (3’),

there exists a one-to-one correspondence, without exception, between the set -

S, [ Sy
of summable series

v X JZ

and the set

up f Uo
of the products

{ar Ay} | a(t) A ()

of the generatrix,
of the algorithm, by the associated in

44, A(),
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of every series

o0 (o]
Y aneS, Y ane Sy
=0

n=0

and in this correspondence, the identically zero series :

o0
2 ap with ay =0 for n=0,1, 2,...

#»=0

and the identically zero associated

Ay=0 for t=0,1, 2, ... A@)=0 for 0<t< 4 o0
become homologous.
This set
g ! U
is evidently a vectorial space, as well as the
S, ! Su
But being convergent the
series (1), integrals (1')
the space
u, Uy

is contained in the

u U
defined in
(Def. 2, No. 1, § 1). I (Def. 27, No. 1, § 1).
Then, we can adopt as norm for every series
oo ! co
Y anes. Y aseS,
n=0 | n=0

that of the homologous product
{at A1} € Uy C u | Ta(t) A ()] e Upc U
in the space
u ! U
This norm verifies the identical property, since, as we have said, the identically zero
series and the identically zero product are homologous and so, both spaces
S,‘ and Uy | Sl‘ and Uo
become isometrical, because they are vectorial spaces with equal norms at homologous
points.
Def. 2. The metric defined in the Prop. 2 and the topology determined by this me-
tric in
sv | sl‘
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will be called specific for the algorithm

v i u

Prop. 3. The continuity law f' become true for the moments algovithm with the specific
topology of the latier.

Proof. The value of the
series (1) | integral (1’)
heing a continuous functional in the vectorial subspace
w Cu l UocU

with the metric of the space

u | U
shall e also, according to Prop. 2, a continuous functional in

S, i Su
with the metric and, therefore, with the specific topology of

v | 7

Def. 3. An algorithm u of integral moments being given (Def. 1) we will call subor-
dinate algovithm to the p through a sequence {7:} of positive numbers with + oo limit,
and we will design it sometimnes by u (v), to that one defining the sum of a series

o0
E ay, as follows :
{0

(o] 't

B (71) E ay=lim a(v) A (v)dy

#w=0 t—00 0

Prop. 4. In ovder to exist the sum :

o0 oo
u 2 an, that is, ¥, aw € Sy,
n =0 n=0

it is mecessary and sufficient that theve exist the sums
[} oo
() Y aw, that is, Y, an € Surry)
7n=0 n=0

for any sequence {v} of positive numbers with + oo limit. Evidently all these sums arve equal
each othey and to the sum u.

In symbols :
Suz= N (Surry {7} € [0, 4+ o0], lim #; = + o)
t—00
(s o] (o]
1Y aw=pn(n) Y an for any {n} ¢ [0, + o] with lim 7, = + oo
n=0 n=0 t—»00

Proof. Immediate consequence from elemental properties of limits.
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Remark. The algorithm of

summatory | integral

moments is linear with summation factors
t ;L
l"bn='~E ay p(n for £ =10,1,2, ...; un () =—| % (v)mdvfor 0 =1 < +oc;
Yny=0 Hn vy
n=20,1,2, ... n=20,1,2,...

when the associated is an integral function;

since then the series ((5), no. 2) can be

added together under the integral sign, be-

cause of the uniform convergencein 0<r <t
1vﬂ

of a (v) 2 ap —

”n

#=0

As, after
((3) ; no. 2), : ((3), no. 2),

\

the algorithm satisfies evidently the edentity principle (Def. 3, no. 2), the foregoing
Props. 2, 3 and 4, are included in the (Props. 2, 3 and 4, no. 2) respectively.

In particular, the metric or specific topology for the moment algorithm (Def. 2) coin-
cides, then, in this case, with that one defined (Def. 4, 3, 2) for the linear algorithm,
and the same happens with the deflnition of subordinate algorithms (Def. 3) which coin-
cides with that other given by the linear ones (Def. 5, no. 2).

But, in the continuous case, the moments algorithm us more general because it does
not requiere convergence of the associated series in the whole plan, but only the analy-
tical continuation of the associated function along the posilive real semiaxis. For this
reason we have thought necessary to establish both directly for the moment algorithms.

4. The Euler’s and Borel’s associateds

Def. 1. As it is known the summation algorithm of

Tsuler ' Borel

which will be for short designed by
E | B
is a moments algorithm with the generatrix

a=2-t-1 for {=0,1,2 ... | a(l) =e—t for 0 <t< + oo

of moments

oo | oo
nl= Y 2-t-1 ¢ ; n!=f e—t in di
0

t=n |

for n =20,1, 2, ...
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The associated is, thus, the

sequence {A4;} formed by the values of the
polynommials

¢ i
ap— for t =0, 1, 2,...

Ay =
n!

n=0

function 4 (¢) obtained by analytical conti-
nuation along the real positive semi-axis
of the holomorph function in 0, defined by
the series

in

n!

A@) =Y aa
t=0

Tais associated has, among other important properties, the following, which we

are going to use :

Prop. 1. The asociated
E
(o]
of ¥ an is
n=1
{A A}

Proof. Since

AAy= [ao -L al(td'_ l) T
\ 1

t=1 {+1
A ' - At
* "”( f) "‘(H_;

for t =1, 2, ... and 44y = a;
oo

which s the associated of 2 au, q. e. d.
n=0

oo
Prop. 2. If E a’'y, with
n=0

a'g=0anday..1=anforn=0,1,2,... (1)
has the Euler associated A’y with
Ay=0and 4’41 =Asfort=0,1,2,... (2)

[ee]
the }J a’’y with
n=0

for 0 <i< 4+ o

o0
Prop. 2’. The sevies E a’y with

n=0
ay=0anda’pr1=anforn=0,1,2,... (1)

has the Borel associated
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A=Ay + & pr1 for n=20,1,2, ...
that is
a'’g=ag and &'’y = an—1 T 0n forn=1, 2, ...
has the Euler associated {A:}

oo
Proof. The associated of 2 a’’y is
n=0

it t
A =ag -+ (ao +“1)'\1)+---';— (“i—l+ai)(i>+

Y G KA

PN AN 2 o ,
-rat( 11 )—rﬂt-:—l(t_:_l)=-4 11 = At

for t=0,1,2,...q.e.d.
Prop. 3. If
{As} and {B:}

ave the associated
E

oo [e ]
of Y, anand Y bp, vespectively, and we set

Proof. Since

r in

F(t) = [ —_— . -1 = . =
(t) = ao Far— .anln!'l
f gy Lo B
=a’y dll! ;“'—'_a"n! = e

for 0 <! < -~ oo, which is the associated

(o]
of 2 a'nq.e.d.

n=0

Prop. 3'. If
A(t) and B(f)

7n =0 7 =0
n
Cp = Ay * by = E Ay by_y for n=0,1, 2,...
p=0
o0
the associaled of ¥, ¢'n with
n=0
o =0 and c’'yr1=—C¢ca for n =201, 2, ... (3)
is the

sequence {C't}

| function C (1)
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defined by

Co=0and Ch.1 - C = Ay * By =
t
= N A, By fori- 0, 1,2, ... (4)
v=10

Proof. Br formiay tie table of differen-
ces, we obtain

An C'O == :1() -1 BO - -l “10. e 2 ]30 —
L2 A A3 By = An 8 4y 12 By -

-+ An -2 4 0- B 1130 " g1 :1(). BO (5)
for m =1, 2, ...
waich is easily proved by induction.
In fact, it is evidently
1 Cy = Ay By
and being, after (4)
t—1
C'[ = E _'1,,13’[_1. p for t = , 2,
v=0
we have successively
t—1
A Cl= }_: Aw A By _1—y -+ Ay By
v=0
t—1
20 E Aw 2Bt yy s Adr By 1L By |
v=0
!
-1 i
O = }: Ay B Brogo s oy 42 By £
v=0
N I TR B() . L I Bq
t—1
A Cry e E Ay A Broy oy o In=1 B
v=0

oAy An=2 By - 42 g =8 By oL
A3 AL 2By =24 ABg - An-1 44 By
for t =1, 2, 3, ... Spe-ially, for ¢ =- 1, the
last one yielids
A Cly o= g A By — Ay A1 By -
Ay A2 By o A2 Ay An=8 By o~ L+

A3 A28+ An-24 . ABg = An—144. B,

49
~t
C()=A*B = f A(») B (1—v) dv
Yo
for 0 <t < +oc (49

Proof. It is deduced from 5, 11-127 by
virtue of Prop. 2’ ; since if w(?) is the asso-

oc [ee] .t
ciated of ¥ ¢y, that of ¥} ¢’y is/ W (v)dv
n=0 n=0 0
according to Prop. 2’; and by virtue of (5,

11-12] we have .

.t
] W (v)dv = C (1)
0
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whence, after (5):
An+1Cly = An C'y — An Cy’ = dg. A" By +
4+ AAgAn—1By 4 4245 An—2 By <+
4+ A3 Ag. Ar=3 By + ... + An=2 4. N2 By -~
4+ An—144. A By + Ar Ay. By
which is just the (5) for » - I.

But being {4} and }Bs} the associateds

o0 (o)

of ¥ an and Y ba, respectively, we have
n=0 n=0

((3), no. 3):

ay = A* 4gand b, = A7 Boforn=0,1, 2,...;

then, after (5), it is

An CIO = Qg bn_l + a; b”_z + ..+ au—1 bo =

=Cp—1=¢C"n
for n =1, 2, ...; and as furthermore
Co=0 and c¢o=0

it results actually, after ((3), no. 3) that
oo
C’y} is the associatedof ¥ ¢y, q. e. d. ‘
n=0
o0
Remnark. For the series Y, a, with
n=0
! = lim la,'lin < oo,
H—>Q
the conclusion of this proposition becomes
easily from the identity :

o] o) 7 t+1
2 ay 21 = 2 Ag( - )
n=0

t=0 7+ 1

<

which remains valid {7, 7 and 179 for
|2] < 1/I. But although these are the only
suminable series E, the restriction is ar-
titicial and needless for the validity of the |
result. ;

Prop. 4. If {A4:} and {B:i} are the asso-

[e o] oo
ciated of Y, an and Y, by, vespectively, and |
n=0 n=0 :
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we set ¢y = anpx by for n =0, 1, 2, ... the
(o]

associated of 2 ¢y with
n=0

c'o=coandc’y =cp—1 + cpforn=1,2,..
is {Asx By},

Proof. It suffices to apply Prop. 2, to

oo
the ¥} ¢’y and {C’s} defined in Prop. 3 abo-
n=0
ve; since conditions (3) and (4) of the
said Prop. 3 are exactly (1) and (2) of
(o]
Prop. 2; and furthermore E ¢’y has the
n=0
associated {C’;} after this Prop. 3, which
is the other assumption in Prop. 2, that
oo
assures that the associated of Z a’y is
n=0

Ct= A¢x Byfort=20,1, 2, ...

5. [Identity of the sums with the Euler’s or Bovel’s summation algovithms, and with a
weaker one satisfying the formal laws of no. 1.

It is expressed by the following theorem :

Taeor. 1. Lst o be a summation algovithm weaker (Def. 3, no. 1) than that of

Euler I | Borel B
If o satisfies the formal laws a’, b’, and ¢’ ov
a, | a1,
satisfying besides the e’ and [ with the specific topology [ov the algovithm
E: I B,
we have
oo (o] oo >0
o Y ap=EY an (1) oY ap— B Y an (1)
n=0 n =0 n=0 n=0
for the whole summable series o :
oC
2 ay € So
n=0
Proof. Since
Se C Sk, | S C S,

every summable series ¢ has an associated
{44 in I, | A4 (t) in B,
i. e., the vectorial space
uy, . l Uy,
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formed by the products

(2—t Ag of 2~ | e—t A(f) of e—t

of the associated

E | B
of the series of Sg, is contained in the vectorial space

u, ! Uy
of the products of

2t | e—t
for the associateds of all the summable series

E, | B,
which in turn, belongs to the space (Def. 1, no. 1) :

u; l U;
i. e, we have

uyCuyCu (2) 1 UicbUcu
being
u; ~ S¢ (3) 1 U; ~Sq

that is, coordinable with So

But, by virtue of ¢, if

it is also

oo
2 an, ¥ € S for x ¢ 0, 1],
n =0

then, the sum

o0
o Y, ap xn for v € 10, 1]

n =0

is a functional defined in So, at least, and depending on a parameter xe; O,

according to

: (3) | (3)
a functional defined, at least, in
u | U,
and depending on the parameter xe10, 1[ or on the
ze 0, 11 | ze 10, + ocof
‘writing
z ’ 1
X = X =

1[ that is,
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That is, if we define :

F.(2=tdy) = 2 > (:M( ‘ ) (4)

2—z

for the associated
{og) in £ | A(¢) in B

of each series

oo
2 ay € Sg,
n=0

we have a functional defined, at least, in

uy, ! Uy,
and depending on the parameter

z € ]0, 1 | ze€ 0, + oo
The functional F, is furthermore defined through
(4), ! (4,

not only for

uy, Uy,

but for the vectorial space

u; D uy (5 1 U, o Uy (5
(wider in fact, after ¢’) formed by the products
(2-t Aj} of 2~ | e~ A (1) of et
[ee]
by the associated of the series ). a, such that
n=0
o2
N an xn € 8g for x € 10, 17
n=0
that is
oo 2 " o an
Eu,,(———) ¢ 8¢ for ze¢ 0, 1] M ———— eSgfor z¢ 50, + cof;
w0 \2—2 s @1
s —_—
among which are obviously included, all the series 2 an with lim |a,|ll» <1, because of
n=0 #—>00

the permanency of the algorithm o.

Furthermore, since o verifies the laws a’, b’ and f* with the specific topology of this
functional

L | B
this functional ¥, is for each

2¢€ 0, 1] ! z € ]0,+ oo
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distributive and continuous, i. e., linear [1, 237 in
up | U,

with the subordinate topology, according to
(2), in uy I (29, in Uy

by the topology of
U, | Uy,

which is in turn, after (Def. 2, no. 3) that one defined by the metric of

u | U
But

ug | U,
being, after

(2) [ (2)
a vectorial subspace of the metrical space

u, [ U,
the functional F, can be extended [1, Theor. 2, 55] to

u | U
and we have a functional continuous in

u | U
and depending on the parameter

ze€]0, 1{ | 2¢]0, + oo

wich we will design with the same notation
(4) | (4)
Now, applying successively

a’, b’, (4), (Prop. 1, no. 3), ¢’y and (4), a’, (4), b’ (Prop. 1, no. 4), ¢’y and (4')
we have:
E d 1
2F, [A(2-tA)l =2F. (2-1-144y) — i ?Z{Z[B—f A ()1 } =F. [e—t A’ (8] —
F,(2—t-14)) = = F, (2-1 4 4y) F. e~ A (1) ! §———“
— 2 F, (2—-t— = —F, (2— —_ — F. [e— = .o —
2 F. ( =7 ! )] D 2y v
2 1 —1 oo
— —"}';(2 Ay = azan( ) — —F.[e—1 4 (t)]= v m—f:,_e_ffi()
n=1 "—1
ZTZI‘I oi (Z\” i b [an i IA(I"
— —F. (2-14s) = — i — ag— F, (e~ ji=
> ( t) o'nél an 2_2) Z et 0 { i

—Tz(z tAt)—aV ( z ) —ag — | =l Fule—t A (1] — ag— Fle—t A (8] =

n=0 2—
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2_ !

— SR AN = TR @A) —ay = =2 Tl (0] = [~ A (Omo
|

i

|

= ST @) = (1 =2 F (27041 —

—_ i_z—" At: =0
which is the incrementation law for which is the derivation law for
{2-t A} e uy for [e—t A4 (t)] € Uy

On the other hand, although the
constant sequence & = 1for¢t =0, 1, 2, ... | constant function £(t) = 1for 0 <¢ < 4 o
does not belong to
u, ! U,

and, therefore, neither

(2), to uy ! (29, to Uy
it surely belongs to
u; D ug; (5) 1 U, D Uy (5)
since
{21} et
is, according to
((3), no. 3) ((3%), no. 3)
the associated
E ! B
. oo
of the divergent series 2 | = oo, but of radius 1, and we have, because of the per-
n=0
manency of o
2 * z \" 1 e 1
Fe (&) = .o V.( ) = F. () =—.0 , =
S 2—z n:O 2—z 7+ 1 n§0 (3-1-1)”
2 1 ] - 1 1 1 N
=2_51 p =I_Zforzr.,-0,1'_ '_—z+1___1 ] —;for z2¢€]0, 4+ oo,
2—z ! z4+1

which is the initial condition
((14), Theor. 2, no. 3, § 1) ((14"), Theor. 2, no. 3, § 1)
The sequence {&;/0)} with !
E0) = 1 and &) =0fort =1, 2,... |

belongs evidently to u, but it does to u,;
since the sequence {2¢ &(°)} is, according to
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((3), no. 3), the L-associated of the non
oo

convergent series Y, (— 1), with radius
5 =0

equal 1 too, and we have

2 o z \"
Fy (E400)) = o ¥ (— 1)n< ) =
2—z =, 2—
2 1 )
2—z1_L 2
' 2—2z

which is the second initial condition ((13),
Theor. 2, no. 3, § 1).

Let us see now the convolution law. If
{4y and {B;}

are, respectively, the associated of

A(t) and B(¢)

o0 o0
Y awe Sgand ¥ bu e So

7 =0
and we write

n

7% =0

Cn=an* by = Y, ay by—y for n =0, 1, 2, ...

y=0
by applying successively
(4) (Prop. 4, no. 4), b’, d’ and (4)

we have
Fol(2- A)) * (2-! B)] = F, [2-H4:* Bi. =
2 z
= 2_z~0[00+(00+61) T

+(cn—1+cn) (%_Z)MT} =

z z \
= .alc d -—...+cC - ..
2—2 [0+(12_z ”(2— ) :|+

| (4), (Prop. 3, no. 4), a/,

b’ d’y and (4)

Fafle—t A@)1* et B@).="TF.ie~t[4 (1)*

Co c1
—+
+ (z+1)2

) 1
*B(t)_‘}=ZTI.O'l:0+le
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SRNES S PO R NOW EXNTE
+ zizziz.o[co +clziz+ v+ e {(Z _‘:—nl)n * ; _l:’—"l)n] +._.}=
+0n(2_z_z>"+...:| = (zi )z.a[oo+612iz + | = Z_l - o’[uo-l— z:’ [t i‘"l)" +] .
+ ...+ c"(zi z)u+...:| = <ﬁ)2 c[aobo—l- 'z-|1— [ or[bo+ zfi—ll +.o T : inl)" +] _
+ (a1 *bl)ziz+...+(an* bn)(—;:)n+...]= =FleA@)) Fule B

- ol s
oot el T ol D} -
_ z_i_z' a[ao+a1 zi o (ziz)"+

2
T .o|byg+b - '
+ } Py G[OT 12——-zT :

"n
+bn( z ) +] =F, [2-t4 . F. [2—1 By]
2—z

for every pair:

{2-tA4} € u; and {2 By € u, [e—tA(t)” ¢ U, and [e—tB(f)] € U,

It does not seem easy to prove that these
incrementation | derivation

or convolution laws hold in the whole space
u l U

i

But this is not either necessary in order to apply the (Theor. 1 and 2, no. 3, § 1)
of characterization ; since after (Theor. 3, no. 3, § 1) we can take in said (Theor. 1
and 2, n.o 3, § 1), as a complete sequence in the space the

Qn,t = 2—ttn+1 for t =0, 1, 2, ... | pu(t) = e—t tn for 0 <t < 4 oo

and » =0, 1, 2, ...

which not oaly belonge to u,, but also tu u; | whose product by ¢—a belongs surely to U,,
if the strictly positive constant is strictly
greater than 1, i. e, a € ]0, 1[
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then, the
sequence {{(n+1} | function e—at ¢»
for each » = 0, 1, 2, ... is the associated
E i B

[ee]
of a series ¥ “’(’Z) with the terms

i=0
wn(fl‘_)l = (n <4~ 1)! and w(:f) =O0foriztn + 1 o =0for 0 <i<n—1 (if n>0)

which evidently converge il

w(’;) —

o - (—a)i-»for i =z n = 0.
" A (1 — m)!
D w(i) < oo forn=0,1, 2,..

t=0 which actually has a convergence radius

We saw before that the sequences {&}and | a € 10, 1[.

{0/} belonged to u,, and thereafter, also | ;. [@" |Ili = g for each n = 0, 1, 2
the sequence {& — £(0)}. Also the {£/) € Uy | is00 ° o
((22), no. 3, § 1) since {2! &%} is, according

Specially, for » = 0, it results that the
to ((3), no. 3) the E- associated of the se- P ¥, 1ot ”

ol function e—a ¢ U, and, therefore, the con-
ries ¥ (— 1)»+1 21 with convergence ra- volution law holds for the products (19’) of
"o (Theor. 2, no. 3, § 1).
dius equal omne.
On the other hand, being {2¢ g, ¢} the

(o)
agsociated of 2 w(’f) and the difference
1=0

Ay 28y, 1= 2t @p, ¢ + 2001 Ap @u, g,
for t=0,1, 2, ...and each n=0, 1, 2, ..., :

(o]
the associated of ] w(?) (Prop. 1, n.o 4 ac-
i=1
cording to a, b and ¢y, {2¢ 4; @4, s} the as-
sociated of (¥)

] [ele) oo
3 Wl
_2 [ E w(’? _ }‘ w(?:):l — w(g)/Z =0
i =1 1=0
for each n =0, 1, ...

(*) This can be so proved directly:
Appn, 1 =2—t=1 (n + 1) t(n — 2=t=1 (¢t - J)(»

1
2 A u = 5[(7; + 1)t — (t + 1)(n]

1 .
which, up to the factor 5 is the associated to the difference between the two series

[ee] [ee]
Y wim and ¥, wi(®), whose terms are all zero, excepted the n-th of the former and
i=1 i=1

the (n + 1)-th of the second, both equal to (n+1)!
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then
{dipn, ¢} € U C uy

Furthermore, according to (Prop. 2, no. 4),

o0
since 3] o with o) = 0 has the a
i=0 .
{2t @y, 1} With gu, o= Oforeachn =0,1,2,..., |
the {2/+1 @, -1} is the associated of
[o e}
.20 C('E) < so with C(? = w(';) + wi(:)l for
4 =
2=20, 1, 2, ... and each n =0, 1, 2, ...
that is, {2! @u,t+1} is the associated of

oo
.1_ E Ci(")
2,70

therefore, also

<

~

co for each n =0, 1, 2, ...;

{@h, t+1} € U C u,

The convolution law is then verified
for all the products

(18), (19) and (20) of (Theor. 2, no. 3, § 1)
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Once thus proved all the hypotheses of the characterization theorems (Theor. 1, 2, 3,

no. 3, § 1) we have:
*

F.2-t A= ¥ 2~ Azt for {2-1 4} € uy
t=0
and z ¢ ]0, 1

or according to

[ele) z n
g ¥ a
o ”(2—z) z

for z € 10, 1[

[ee]

oo
F.le—t A(H)] =f e—t A(t) e—t dt for
0

[e—tA(#)? ¢ Uy and z € 10, + oof

49
An
_:_ l)n

(z + 1)f°:—r A(t) e-tr dt
0

for z € 10, + oof

’ ngo (Z

whatever the ¢ -summable series 2 an € Sq, may be. Whence it follows the conclusion

n=0
(1), for z — 1— |

by applying to the first member the law
theorem
for powers’ series |
The theorem is thus proved.
6. Algovithms of convergence of moments.
Def. 1. We call

summatory-

(17, for 2 -0~

e’, and to the second the classical Abel’s

for ILaplace’s transformation

Stieltjes-
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algorithm of convergence of moments, of p-type, to a permanent linear algorithm (Def. 1, no. 2),
whose convergence factors are

. Hn+p | . i p
Aty = ot for t =0, 1, 2,... (1) | n(t) = o () for 0 <t < + oo (1%)
Vap i Hn-ip
and # = 0, 1, 2, ..., where p = 0 is a fixed integer independent from ¢ and %, and the
{as} any arbitrary sequence ! a (¢#) a function of limited variation in
| each finite interval [0, 7],
such that
vn=—2t("Aat<oc | ,un=—/t"da(t)
t=0 : .
for w = 0, 1, 2,...; or more general to the one defining the limit for a sequence {s4} as
follows :
e ttP giu-p | e 20 tn+p
v1imsp= Y a(t) Y sn : u lm s, =f a(t) Y sn
t=0 n=0 Vn-p I 0 n=0 Hn=p
where
ttb pnip o0 - p
Ay =Y su fort=p, p -1 A@) =Y s for 0 <t< + oo
n=0 Vn-p n=0 Munip
is a polynomial whose values make a se- | is the function obtained by analytical con-
quence tinuation along the positive real semiaxis
of the function holomorphin 0 defined by the
series

which is called the associated for the sequence {sy} [17, 18] in the convergence algorithm.

Remark. The proof of the permanence conditions [12, 195] requires a detailed study
of the

" t(n) X
sequence of polynomials{ ¥ —} \ integral function ¥} —
t=0 Vn n=0 Hn
as a generalization of the
{zt} exponential and the /i, of Mittag-Leffler
functions.

i Def. 2. We will call regular sequence
with respect to a p-algorithm of Stieltjes
. moments {u,} to any increasing sequence
with limit + oo, and strictly greater than 1,
in wich, furthermore, the generatrix a(¢)

remains structly positive, that is

limrm= + oo, 1 <7 <71 and a(#) >0
t—>00

for t=0, 1, 2, ... (2%

With this terminology we can briefly
state the following




The uniqueness problem in the theory of numerical series

Prop. 1.
of sumumatory moments
[1, 90_.

Proof.

Any linear convergence algorvithm
{vn} is reversible

In fact it is normal (9, 600]

Prop. 2. A convergence algorithm of p-type
of summatory moments { vy}
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Prop. 1. Any algorithm subovdinate to
a lineav p-algovithm of integral moments
through a vegular sequence is reversible.

Proof. This means [1, 90] that for any
convergent sequence {7}, there exists ano-
ther {s,}, convergent or not, but such that

>
N () sn=mfort=0,1, 2, .. (3)

n =0
or after (1)

=)
S nt

" =
a(rt) 71;

<oofort=0,1,2,.. (4)
n=0HMn+p

Now then, [1, 76}, the necessary and
suficient condition for the system of in-
finite linear equations

E "z Ul
t n )
"0 oc(r;)rt

fort=0,1,2,... (5)
to have a solution {z,} such that
(=)
Ylml =M< + oo (6)
=0

is that for any finite sequence of numbers

ho, 1, .., hm, is be verified
& e -~
;é‘o ht a(n)r,‘,’ gﬂ[.os;‘sg}ioo t):ohmt |
form =0, 1, 2, ... (7%)
But being, by assumption, # > 1 for

t =0, 1, 2,... this upper bound of the se-
cond member is surely + oco; therefore
condition (7’) is verifed, whatever M may
be, that is, the system (5’) has a solution
{zn} which verifies (6’) for any prefixed cons-
tant M, and therefrom, the solution of
of (4’) follows by setting

Sn=12n pn+p for n =0, 1, 2, ...

Prop. 2. A convergence algorithi suboy-
dinate to a linear p-algovithm of Stieltjes mo-
ments {un} through a vegular sequence {v:}

(Def. 2.
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is perfect if the sequence
{as t(n+p} | {a (rs) rp+0)

being p = 0 a fixed integer independent from t and n, is very weakly complete with respect
to u. (Def. 5, no. 2).

Proof. If, for a sequence {s;} holds:

oo (e
Y dnst=0 N A () se=0
) t=0

for =0, 1, 2, ..., we have evidently, according to

(1) E ag tin-p sp =10 (17 —_— 2 a (1) 1P ss =20
Vnt+bi—0 Mn-pi—o
or
oc ! [e%]
E as H(r4P sp =0 ; E a (1) rm=pP s =10
t=0 t=0

for n=20, 1, 2, ...
But, being the sequence
o tUn2) | {a () reve)
very weakly complete with respect u, if {s;} € u, it will be (Def. 5, no. 2, S 1):
st=0fort=0, 1, 2, ...
As, on the oiher hand, according to Prop. 1 above, the algorithin is reversible, it shall
be perfect [1, 90j, q. e. d.
Theor. 1. Let be (Def. 1, no. 6)
v ! u
a linear convevgence algovithm of p-type of moments
n oo
vn=2att("<oo ‘ ,un=fa(t)t"dt<oo
t=0 0
for n =0, 1, 2, ... such that
| for any regular sequence {ri} (Def. 2’),
the sequence
{ap t(n+-p}, | {a (ry) v}
where p = 0 is an inleger independent from t and n, is very weakly complete with respect to
u (Def. 5, no. 2. § 1).

If 7 is a permanent lineav comvergemce algovithm, with wmatvix ov continuous (Def. 1,
no. 2), stronger (Def. 3, no. 1) than the

v set or umion (Def. 4, no. 1) of the subordinate
algovitms (Def. 5, no. 2) to the u through some
vegular sequences (Def. 2').
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we have
y lim s, = 4 lim s, 9) | p lim s, = 4 lim s, (9)
for every sequence
{sn} c sa ' {sn} € su »
A-convergent u-convergent

Proof. It is a consequence of Banach fundamental [Theorem 1, Theor, 12, 95]
by virtue of

Prop. 2 | Prop. 2’
In fact, if 2 comes from a inatrix, we have assumption,
v C 2 (10) | according to (Defs. 3and 4, no. 1) u () C 2
for every regular sequence {7;}; (107

and, if 1 is continuous, for every sequence {r’;} € [0, + oo] with limit 4 oo, we have,
according to

(10) | (10"
(Cor. 1). Prop. 4, no. 2) and (Prop. 1, no. 1)
vy CA (1) | pr) €A (v
But
4 l m(ve)
being perfect, according to
Prop. 2 | Prop. 2’

for every sequence
{sn} € 8y i {sn} ¢Sy Csury (Cor. 1, Prop. 43, no. 2)

we have, according to Banach theorem :

y lim s, = 4 lim s, | po(r) im s, = 4 lim s,
if A comes from a matrix; or

vy lim s, = 4 () lim s, | pu(rg) lim s, = 4 (v) lim s,
if A is continuous aund {#’;} any arbitrary sequence of positive numbers with limit - cc.
Therefore (Prop. 4, no. 2) it is surely
y lim sy = A lim sy () lim s, = A lim s,
whence (Prop. 4, no. 2).
i u lim s, = 4 lim sy,

Cor. The conclusions of
Prop. 2 | Prop. 2’
and Theor. 1 vemain valid if the sequence
{as t(n =P} ! {ou (v2) vt}

is complete with respect to u (Def. 5, no. 2, § 1).
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Proof. Since then itis surely very weakly complete with respect to u (Prop. 5, no. 2, § 1).
7. Identity of Euler and Bovel limits with those of a strongev algovithim
Def. 1. The classic convergence algorithm of
Euler | Borel
which we will design in short by
Ey | B,

to be distinguished from the summation algorithm (Def. 1, no. 4), is, after (Def. 1, no. 6)
a convergence algorithm of the p = 0 type of mo:nents, with the generatrix

a=2-tfort=20,1, 2,.. | a(t) =e—tfor 0 <t < + oo

which has:

oo oo I 00 oo
Up = — 2 t(”, Aat= 2 2—t—=1 tin = p! l Un = — [t"ada(t) = (e—-‘ in dt = n!

v

t=0 t=20 | (] 0
for n =0, 1, 2, ...

Def. We will call a convergence algovithm

Ey, | By,
to the algorithm of the p == 1 type of moments with the same generatrix as
Lo | By
that is (Def. 1, no. 6) to the permanent linear algorithm with convergence factors
1(n--1 ! in=1
lt,n=2—‘mfort=0, 1, 2,... \ /'.u(t)=e—’mfor 0<t< + oo

or more general obtained by analytical
continuation of the associated

and n =0, 1, 2, ...

The convenieince of introducing such a convergence algorithmn
Ei# Ep ! Bi1# By
is based on the following Prop. 1, which will be used in the proof of (Theor. 1, no. 8)
below
Prop. 1. The summation and convergence algorithms of

Euler, E = Eq | Borel, B = Bj

(Def. 5, no. 1). (Def. 1, no. 4), (Def. 2, no. 7) are equivalent

and also, specially, their subordinates (Def. 3,
no. 3, and Def. 5, no. 2)

B (rt) = B (r)

through any arbitrary sequence {r¢} of posi-
tive numbers with limit 4+ oo
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Proof. [10, 338] T[12, 212]. Writing
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Sy = L a, for n=20, 1, 2, ...,

r
¥ =0
let
{4y} and {4}
(o]
be the associated to the series E an and
n=0

convergence algotirlins
E and L,
respectively (Def. 1, no. 3 and Def. 1, no. 6).
Since
A2t Ay =2-t=1(d AW — A"t] =
=2—-t—-1 4; for t=0, 1, 2, ...

and furthermore

[2-’ A;]
¢

' 2—vel,=2-tA%fort=0,1,2,.. (1)
y =0 :

=0,
=0

we have

N |-

whence, for ¢t — - 0, it follows:

oc oo
YoaneSy > Y oancSg
n =0 #=0
oo )
I 2 = I E ay
n =0 n =0

which are the two conditions (1) and (2) of

E and E;

| A@) and A,(t)

to the sequence {s,} in the summation and

| B and B

Die=t Ay ()] = e~ [4'1 () — 41 ()] =
=e-t A(l) for 0 <t < + oo

t
[ e=rd(w)dyv=e—t4;(¢) for 0 <t < 400 (1)

0

o0 o0
YoanesSp > ¥ ane Sp
n=0 n=0
(oo} [ee]
B 2 ay = By E ay
n=0 n=0
(Def. 5, no. 1) for
B and Bj

Furthermore for every sequence {r;} of
positive numbers

| >0 for t=0,1, 2, ...

| we have, specially, after (1)

”~ "t
, / e=v A(v) dv=e—ry Ay () for 1=10,1,2, ...
' Yo
then, if
lim 7 = + o
t=0o
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it results for ¢ — oco.

[ee]

oo
Y aneSpry 7 Y aneSmyry
n=0 n =0

o0 oo
B (n) 2 an = By (r) E Ay
n =0 n=0

which are conditions (1) and (2) of the said
(Def. 5, no. 1) for subordinate algorithms
B (r) and Bj ()

through any arbitrary sequence of positive
numbers with limit + oc

Lemma 1. The conclusions of (Theor. 1, no. 6) and that of
(Prop. 2, no. 6) | (Prop. 2°, no. 6)
are verified for the convergence algovithins

Eq and E; By and B

and fuvthermore, every increasing sequence
{rt} with limit + oo and terms strictly grea-
ter than ome, i.e., with

limv=+oocand 1 <r<rp.i1fort=0,1,2,...
t—00

is vegular (Def. 2’, no. 6) with respect to By
and Bj.

Proof. By virtue of (Cor. Theor. 1, mo. 6), it auffices to remember that the
sequences

{2—t=1 ¢m)} and {2—-t—1 {(n=p} | {e=r, v} and {e~"t /' P}
are complete with respect to u, as we saw in
(Ex. 1 and 1/, no. 2, § 1) (Fx. 1”, no. 2, § 1)

and furthermore, the second condition ((2)
no. 6) is evidently satisfied for every se-
quence {r;} whose terms are greater than 1,
since the generatrix e—! > 0, for ¢ > 0.

Prop. 2. The convergence algovithms Prop. 2. Ewvery convergence algorvithm su-
bordinaled to the convergence algovithm Bg or
By through a regular sequence {r;} (Def. 2,
no. 6 and Lem. 1)

Ey and £

1s perfect.
Proof. According to Lemma 1, this proposition is included in

(Prop. 2, no. 6) ! (Prop. 2’, no. 6)
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Theor. 1. If A is a permanent convergence algovithm, with matvix ov continuous (Def. 1,
no. 2), stronger (Def. 3, no. 1) than

the linear convergence algovithm of Eulev, Eq | the set ov union (Def. 4, no. 1) of the subov-
(Def. 1) dinated algovithms (Def. 5, no. 2) to the
linear convergence algorithm of Bovel, B,
(Def. 1) through vegular sequences {ri}
(Def. 2, no. 6),
we have
Ey lim s, = A lim s, By lim s, = A4 lim s,
for every sequence
{sn} € sk, {su} € 8B,
Ey-convergent. Bg-convergent.
Proof. Itisincluded in (Theor. 1, no. 6) by virtue of Lemma 1.
8. Identity of the Euler and Borel sums with those of a stronger algovithm.

It is expregsed by the following :

Theor. 1. If a permanent, lineav algovithm of summation u, equivalent (Def. 5 no. 1)
to a linear convergence algovithm A, is strongev than

the summation algovithm of Euler, E (Def. 1, | the set ov union (Def. 4, no. 1) of the aigo-
no. 4) vihtms B (r)) (Def., 5, ns. 3) subovdinated to
the linear suinmation algovithm of Bovel, B,
through vegular sequences {rs}, (Def. 2’, no. 6
and Lem. 1)
we have
oo oo (o] o
EEa,.:,uEa” Bzanzyza”
n =0 n=0 n=0 n =0
for every series
o0 (e o]
E ay € SE 2 an € SB
n=0 n=0
E-summable B-summable
Proof. Being, by assumption
ECcu; i B(rn) € u (Def. 4, no. 1)
and by virtue of (Prop. 1, mo. 7):
Ei=E | Bi (r) = B (r)
it results from (Prop. 4, mo. 1):
EjC4; l By(n) cA;

and, since after (Lem. 1, no. 7), the (Theor. 1, no. 6) can be applied, we have

E; lim s, = A lim s, | B lim s, = A lim s,
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for every sequence
{sn} € SE; ! {sa} € spB;

Whence, according to (Prop. 1, no. 7) and to (Def. 5, no. 1) of equivalence, it follows

] [ee] ! ) [ele]
2 <
EY an=u Y an B Y an=p Y ay
n=0 n=0 n=0 n =0
for every sequence
2 ay € SE | 2 ay € Sg
=0 | =0

q. e. d.

Remark. The existence of permanent linear algorithm of summation not equiva-
lent to any permanent linear algorithm of convergence was pointed out in [12, 136-137".
Therefore, it has been necessary in Theor. | the hypothesis of the equivalence u = 4.

9. Analysis of the vesults of this paper and pending problems.

The theorems in numbers 5, 7 and 8 explain the central rol plaid by the Iuler's algo-
rithms, and even more so by the Borel’s one, in the summation of numerical series [77 [13].

The one in mo. 5 carries a hypothesis of continuity for the sum ¢ with the specific
topology (Def. 2, no. 4) of the algorithm

L, i B,
which is hard to prove and reqguires a special study for each algorithm.

But it has just been, thanks to this law of continujty with the specific topology
E l B
together with Abel’s law (uno. 1, § 2), that we have been able to give now an affir-
mative answer to the Kogbetliantz’s question [8, 11 ; which stated, as he did, without
including the said continuity law f* (no. 1) had to be answered negatively [20, 1841,

even postulating simultaneously, with Kogbetliantz, the two laws ¢’; and 4’ for suppres-
sion of the initial term and the product, in their most restricted forms, which requires

=) oo
E a, € S¢ oOr E (ay * by) ¢ Sq
n=1 n=0

and are no more verified by so fundamental algorithms as that of Borel; and the same

’

negative answer is valid by adding Abel’s law, e’

The said theorem of no. 5 completes for algorithms weaker than

E : B
that of no. 8 for algorithms stronger than
L the set of subordinates of B through rcgular
sequences

It remains, therefore, the problem for those algorithms
E i B
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nor stronger than

E | the union of the subordinates to B through
regular sequences

that is, for which
S, S5, SE S, | .= 8BS, U (Ssrry, {7 regular)
Since, furthermore, this theorem of no. 8 assures only equality for the sum of the
E-summable series, | B-summable series,
it remains unsolved the coincidence of the sums for the series, which being not
{E-summable, | B-summable,
may do it, nevertheless, with some algorithms stronger than u
E | B

This is the same problem that arised when passing from convergent series, in
which coincide the sums by any permanent algorithm, to the summable ones, Ordinary
convergence has been now substituted by the

E | B

summation, which is much wider, and even some other algorithms might be tried, ac-
cording to the theorem no. 6.
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CORRIGENDA

THE UNIQUENESS PROBLEM IN THE THEORY
OF NUMFERICAL DIVERGENT SERIES AND FORMAL
LAWS OF CALCULUS I1I

by

R. SAN JuaN LrLosA

Page 23 lines 14, 22, 24, and page 24 line 19, for «isomorphism»
read «homomorphism>.



