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Abstract

Understanding independence and conditional probability is essential

for a correct application of many probabilistic and statistical concepts

and methods. Although an intuitive definition of these two concepts is

possible, psychological research shows that its application in some specific

circumstances becomes difficult and produces biases and wrong decisions.

This paper describes some of these findings with the aim of warning tea-

chers to take them into account when planning the teaching and assessment

of this topic. We finally suggest some possible teaching devices that can

help students to better understand these two concepts.
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1. Introduction

In traditional mathematics, the boundary between elementary thinking and

advanced thinking is reasonably well-defined, since advanced thinking is usually

taken to rest on an understanding of the differential and integral calculus. The

differences between advanced and elementary stochastic thinking are much less

well defined. Stochastic thinking rests on ideas of randomness and independence

which are frequently assumed as obvious in elementary courses, but which are

in fact deep ideas requiring advanced thought.

While the learning of technical procedures can help develop stochastic thin-

king, these techniques need to be applied by a mature, critical stance which is
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often lacking in many students after a statistics course. This critical stance is

essential for making interpretations which go beyond intuitive approaches, and is

especially important, because research has shown that even trained statisticians

retain and use invalid intuitions in some circumstances (e.g. Nisbett, & Ross,

1980; Kahneman, Slovic & Tversky, 1982).

In this paper we discuss the teaching and learning of two main concepts, the

related ideas of Independence and Conditional Probability, whose understanding

is closely related to that of Randomness and are therefore at the foundations

of advanced stochastic thinking. We start with some considerations about the

basic definitions of the two concepts and then discuss research findings related to

psychological biases in conditional reasoning. We conclude with some suggestions

about good pedagogic practice.

2. Two fundamental stochastic ideas: Conditional

probability and independence

Conditional probability and independence were included by Heitele (1975)

in his list of fundamental stochastic ideas that have helped probability theory

to develop throughout history. Their relevance for statistical applications is due

to the fact that conditional probability allows us to change our degree of belief

in random events when new information is available. As even the unconditional

probabilities are conditioned by the sample-space in which the events are de-

fined and it is always theoretically possible to have some information about a

given phenomena, within the subjective view of probability (Bayesian school) all

probabilities should be considered as conditional probabilities (Lindley, 1993).

At a theoretical level, understanding conditional probability and indepen-

dence is required in understanding classical and bayesian inference, as well as in

correlation and regression models. Independent sampling is usually assumed as

a crucial hypothesis in deriving many sampling distributions, such as the normal

and T-tests for comparing two means; F-test for comparing two standards de-

viations or Chi-square test to assess the homogeneity of several samples. These

concepts are also needed to be able to combine experiments themselves and to

assign probabilities to these multiple random experiments: ”What matters in

probability is almost never one single probability field, but rather interrelatedness

of many probability fields” (Freudenthal 1973, pp. 613).

Heitele hold the view that these fundamental concepts can be studied at

various degrees of formalization, which are manifested in more complex cognitive

and linguistic levels as one proceeds through school to university using a spiral

curriculum. He also suggested that even young children may be helped to build

intuitive models for these fundamental ideas that later help them to establish

correct analytic knowledge. However, Heitele also pointed out the fact that

these fundamental ideas are sometimes accompanied by misconceptions or errors:
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“There are fundamental ideas, as there are fundamental errors, and both are

counterparts of each other. Such errors bridge the centuries, the ages and the

cultural layers, and may be criteria of what is really fundamental” (Heitele 1975,

p. 191).

These errors also appear in relation to conditional probability. As suggested

by Feller (1968, p. 114) “conditional probability is a basic tool of probability

theory, and it is unfortunate that its great simplicity is somewhat obscured by a

singularly clumsy terminology”. Let’s consider the following simple definition:

Definition 2.1. Suppose an event B, in a sample space, for which P (B) > 0. In

this case, for every event A in the same sample space, the conditional probability

of A given that B happened is defined by:

P (A/B) = P (A ∩B)/P (B) (2.1)

Independence is closely liked to conditional probability. Classically, two

events A and B are said to be independent if and only if:

P (A ∩B) = P (A)× P (B), or (2.2)

P (A/B) = P (A) (2.3)

These two definitions are equivalent from the mathematical point of view

(provided that P (B) is different from 0), and illustrate the close links between

independence and conditional probability. However, the intuitive understandings

which each generates are different. Consider definition (2.3), which is really an

abbreviation for

P (A/B) = P (A/E) (2.4)

and it requires that A is as likely to be obtained from within the subset B as

from the whole universal set E. For example, the probability that a Spanish

new-born baby is a boy is the same than the probability that any new-born is a

boy. Although, (2.3) is a “pure mathematics” definitions, people might interpret

it in a “causal” way as saying that two events are independent if one do not

affect the other. On the other hand, statistical data will rarely lead to exact

equality for independent events, and perfect independence is not found in “real”

applications. Therefore, a variety of modifications to the basic definition (2.3)

are required to establish independence in practice. But the underlying principle

in this definition is simple, and the classical concept of independence is clearly

reflected in the conditional probability form of its definition.

It is the alternative, more common, form (2.2), which causes difficulties in

understanding, partly because it is more difficult to visualise. An additional
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difficulty is that many textbooks argue that two probabilities may be multiplied

together because “A has no effect on B”. By doing so they are arguing that

“effect” is the criterion for establishing independence, in defiance of the well-

established view that independence neither confirms nor denies cause and effect.

3. Biases in understanding conditional probability

Apparently, the definitions of conditional probability and independence are

easy, although different researchers have shown that its understanding and a-

pplication are not always correct. There is a substantial body of literature

which shows that many people, including statistically trained people, make poor

judgements about independence and conditional probability. In fact, conditional

probability is, at the same time, enriched and complexified when it is related to

several particular situations which are discussed below with the aim of informing

teachers and lecturers so that they can use these results in their classrooms.

3.1. Conditioning and causation

Causation is a very complex scientific concept, although it is intuitively per-

ceived by human beings, because most of our knowledge about the world we live

in was built by taking into account causes and effects. The concept of causation

develops after the period of formal thought (Inhelder & Piaget, 1955), though

our perceptions about causation are sometimes biased and other times causation

and conditionality are confused (Pozo, 1987).

It is well known that if an event B is cause of another event A whenever

B is present, A is also present and therefore P (A/B) = 1. On the contrary

P (A/B) = 1 does not imply that B is a cause for A, though the existence of

a conditional relationship indicates a possible causal relationship. For example

birth rate is smaller in those countries where the life expectance of the population

is higher. This do not imply that raising birth rates lead to a decrease in life

expectancy, but that there are other factors (such as the higher proportion of

women at work in developed countries) which are contributing at the same time

to increase the life expectancy and to decrease the birth rate.

From a psychological point of view, the person who assesses the conditional

probability P (A/B) may perceive different type of relationships between A and

B depending of the context. If B is perceived as a cause of A, then P (A/B)

is viewed as a causal relation, if A is perceived as a possible cause of B, then

P (A/B) is viewed like a diagnostic relation (Tversky & Kahneman, 1982). This

distinction is immaterial in the mathematical computation or in the assessment

of independence of events. However, causal data have greater impact in our per-

ceptions and inferences. In the following problem students usually find relation

a) to be more likely than relation b), although in fact the two events are equally

probable.
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Problem 3.1. Which of the following events is more probable? a) That a girl

has blue eyes if her mother has blue eyes; b) That the mother has blue eyes, if

her daughter has blue eyes; c) The two events are equally probable.

3.2. The Fallacy of the Time Axis

Falk (1979, 1989), suggested that students who confuse conditional and causal

reasoning believe that an event cannot condition another event that occurs before

it. When given Problem 3.2 students easily answer part (a) but are confused

in part (b). Students typically argue that, because the second marble had not

been drawn at the time of drawing the first marble, the result of the second draw

could not influence the first. Hence the students claim that the probability in

Part (b) is 1/2.

Problem 3.2. An urn contains two white marbles and two red marbles. We

pick up two marbles at random, one after the other without replacement. (a)

What is the probability that the second marble is red, given that the first marble

is also red? (b). What is the probability that the first marble is red, given that

the second marble is also red?

This is false reasoning, because the information in the problem that the

second marble is red has reduced the sample space for the first drawing. In

essence, there is now just one red marble and two white marbles for the first

drawing. Hence, P (M1 is red/M2 is red) = 1/3.

In relation to this type of problems, Gras and Totohasina (1995) identified

three different misconceptions or false beliefs in students about conditional pro-

bability:

• The chronological conception where students interpret the conditional pro-

bability P (A/B) as a temporal relationship; that is, the conditioning event

B should always precede the occurrence of event A.

• The causal conception where students interpret the conditional probability

P (A/B) as an implicit causal relationship; that is, the conditioning event

B is the cause and A is the consequence.

• The cardinal conception where students interpret the conditional proba-

bility P (A/B) as the ratio Card(A∩B)
Card(B) . This conception is correct in the

case of finite equiprobable sample spaces. However, when we are dealing

with a continuous sample space or the probabilities for the simple events

are not equal, this conception leads to an error.

Gras and Totohasina suggested that the origin of the chronological and causal

misconceptions is cognitive, while the cardinal conception is induced by tea-

ching. All of these misconceptions can hide the reversible character of conditional

probability, which is needed if students are to understand the Bayes theorem and

statistical inference.
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3.3. Synchronical and Diachronical Situations

Another difference involving time in conditional probability problems are

synchronical and diachronical situations. Synchronical situations are static and

do not incorporate an underlying sequence of experiments. Problem 3.3, adapted

from Feller (1968) is an example.

Problem 3.3. In a population of N people there are NF fair haired and NW

women. We pick up a person at random. Let F denote the event: “selecting

at a fair-haired person”. If we just consider the women population in doing the

selection, the probability of selecting a fair-haired person is then NF∩W /NW ,

that is, the conditional probability P (F/W ).

As shown in this example, computing the conditional probability implies re-

ducing the sample space (in the example to the subset of women). This reduction

is, however, not easy to realise in diachronical situations where the problem is

formulated as a series of sequential experiments, which are carried out over time,

as in Problem 3.4.

Problem 3.4. Two black marbles and two white marbles are put in an urn.

We pick a white marble from the urn. Then, without putting again the white

marble in the urn, we pick a second marble at random from the urn. Which is

the probability that this second marble is white?

To compute this probability we need to consider the composition of the urn

after having taken a white marble out in the first experience (two black marbles

and a white marble), so that the probability of obtaining a white marble in the

second drawing is 1/3. We observe that this is a conditional probability, even

when it sees unnatural apply here the definition (2.1). Diachronical situations

can be reduced to “event” situations, if we consider a convenient sample space.

We can distinguish the different marbles in the urn and its colour by the notation

W1, W2, B1, B2. Let us note by W1W2 the event ”white in the two drawings”.

By using a similar notation we can describe the sample space in the compound

experiment by: E = (W1W2,W1B1,W1B2,W2W1,W2B1,W2B2, B1B2, B1W1,

B1W2, B2B1, B2W1, B2W2). After the first drawing the sample space has been

reduced to: E′ = (B1B2, B1W1, B1W2, B2B1, B2W1, B2W2) and the probability

we look for is 2/6, that is,1/3.

Problem 3.4. is a “without replacement” situation. Tarr and Lannin (2005)

suggest that conditional probability problems becomes still more complex in

“with replacement” situations since it is harder for students visualize the sample

space in these cases. Being able to understand the reduction of sample space in

conditional probability problems and correctly compute conditional probability

in with and without replacement situations is typical of the highest level of

understanding conditional probability, as described by Tarr and Jones (1997).
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3.4. Exchanging the events in a conditional probability

The probability P (A/B) is often confused with the probability P (B/A) and

even with the joint probability P (A ∩B). For example, Pollatsek et al. (1987),

found that a 69 percent of subjects considered c) to be the correct answer to the

item shown in the following example.

Problem 3.5. In which of the following statements do you have the most con-

fidence?

a) That a blue cab is correctly identified at night as a blue cab;

b) That a cab identified at night as a blue cab is a blue cab;

c) The two events are equally probable.

The authors suggest that part of this problems seem to be caused by formal

notation or verbal ambiguity in expressing conditional probabilities. However in

a second experiment they also found a big amount of difficulty even when the

conditional probabilities were given in percentages. Even when patterns of res-

ponses were consistent with the existence of a causal bias in judging conditional

probabilities, data also suggested that a major source of error was the confusion

between conditional probabilities and join probabilities. Similar results were ob-

tained by Batanero et al. (1996) in students interpretation of contingency tables,

where many students confused “the percentage of smokers who get bronchial di-

sease” with “the percentage of people with bronchial disease who smoke”.

3.5. Confusing mutually exclusive events with independent events

Because probability has been taught in a formal way to many students, it

is easy for them to confuse the concepts of independent events and mutually

exclusive events. This belief is false. For example if we throw a die and we

flip a coin, the events A “getting 6 on the die” and B “getting a head” are

independent. However, they are not mutually exclusive. A less formal teaching

where more emphasis is put on examples and investigations might help to avoid

the confusions described.

3.6. Other difficulties

Finally, for the specific case of independence, Chapman & Chapman (1967)

have shown that in emotionally charged situations people make judgements

about the independence of events which disregard the numerical data and rely

principally on their subjective beliefs about the truth of a situation. Yet the

making of accurate decisions in such real-world situations is at the heart of a-

pplied advanced stochastic thinking.

There is also substantial evidence that children hold beliefs about random

generators (e.g. a die, a coin) that might lead then to difficulties in perceiving
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independence of random experiments carried out with them. For example Truran

(1992) reported cases of children who think that a die has “a mind of its own”

or may be controlled by outsides forces.

Fischbein, Nello and Marino (1991) suggested that even when the simulta-

neous operation of random generator (e.g., tossing three dice together) is ma-

thematically equivalent to their consecutive operation (e.g., tossing a dice three

times) many children do not consider these two experiments to be equivalent.

4. Some teaching resources

In this section we are suggesting ways in which the teaching of these concepts

might be improved. Firstly, there are many paradoxes in probability which relate

to misunderstandings on conditional probability (Bar-Hillel & Falk, 1982), and

could e used as didactic resources in the teaching of the topic. An example is

given below:

Problem 4.1. Three cards are in an urn. One is blue on both sides, one is red

on both sides, and one is blue on one side and red on the other. We pick a card

at random from the urn and put it on the table as it comes out. If the face we

can see is red, which is the probability that the other is also red?

Falk (1989) discusses this problem, where most people give the answer 1/2,

because they condition the probability supposing the card with blue on both

sides is out of the sample space. They, therefore, think that each of the two

remaning cards have the same probability to be drawn. Even when it is true

that we cannot obtain the double blue card, when we can see a red face, “the

hidden face is red” is not the event that should condition our calculus, but the

event that “one of the faces is red”. Therefore we should take into account the

card with blue on boths sides in the sample space of this experiment and the

answer to the problem is 1/3.

4.1. Experiments and simulations

One simple way to convince the students that their ideas or their solutions to

probability problems are wrong is to confront their ideas with experiments. For

example, if students are confused with the solution to Problem 4.1, we might

organise a classroom experiment, where students working in pairs repeat many

times the trial described in problem 4.1 and record the results. They can then

compare those trials where the visible side of the card is red and count in how

many of them the hidden card is also red. Experimentally they can estimate

and compare the two probabilities involved in the problem.

Internet applets may be used to simulate some classical games, for example

the Monty Hall problem where independence and conditional probability are

needed to solve the related problem. Contreras (2009) analysed the mathemati-

cal objects implicit in the use of some games related to conditional probability,
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part of which are listed in Table 1. These games include variations of the Be-

trand’s box paradox (Monty Hall and several generalizations of the same; the

two coins problem, etc.) and the Saint Petersburg paradox.

When working with one of these applets, once the students understand the

problem, and after doing some trials of the game with the applet, the lecturer

asks the students to solve the problem or to find the strategy that produces

the best chance to win over a long series of trials. After a while each student

will list his/her solution in the blackboard and the lecturer will give them the

opportunity of expressing their ideas and check their conjectures. Results will

be compared time to time and, when necessary, the game will be repeated to

increase the total number of experiments. Generally, when increasing the number

of trials, some solutions are discarded, because results contradict the teachers’

initial expectations. Finally, the students have a clear preference for one or seve-

ral favourite solutions, though some of them might keep to a wrong solution. A

discussion will be organised by the lecturer where different teams should give a

mathematical proof of their solution. Along this discussion, both correct reaso-

ning and possible misconceptions will be revealed. These activities will serve to

reflect on the properties of conditional probability and compound experiments.

At the same time students would use other concepts such as event, probability

and convergence, combinatorial operations, addition and multiplication rules,

independence, random variable, expectation and sampling.

Table 1: Games related to conditional probability
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4.2. Adequate notations

Experimental probability can “show” the students that the initial conjecture

was false. Convincing them, however, of the reason why their intuitions were in-

correct requires a combinatorial or mathematical approach to solve the problem.

In Problem 4.1, one way to visualise the mathematics behind the experimental

solution is imagining that in each card we put the number “1” on one side and

“2” on the other side. Thus, we might represent each card by a pair of letters

with sub index, which indicate the sides. We agree with our students in that

the first position indicates the face we can observe on the table and the second

position refers to the hidden face. The sample space is then represented by:

E = {R1R2;R2R1;R1B2;B2R1;B1B2;B2B1}
and the conditioning event “we see a red side” is:

E′ = {R1R2;R2R1;R1B2}
from where the P (the second side is red) = 2/3.

4.3. Tree diagrams and visualization

Students may use a tree diagram to write down all the elements of the sample

space and to help them visualise the nature of the experiment, in particular for

diachronic experiments (Sanchez & Hernández, 2003). According to Fischbein

(1975), tree diagram belong to ”diagramatic models” and present important in-

tuitive characteristics. They offer a global representation of the situation struc-

ture and this contributes to the immediacy of understanding and to finding the

problem solution. We might use the next tree diagram to visualize the structure

of Problem 4.1, and to make clear the solution to the problem, because there

are three cases where the face shown is red and in two of them the hidden face

is also red.

Figure 1
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Table 2: Resources for visualizing conditional probability and related objects

Again, Internet is a source of tools that can help students understand and

build tree diagrams and visualize the meaning of conditional probability, inde-

pendence and other related ideas. These tools are analysed in Contreras (2009).

In table 2 we present a list of some of these resources and include calculators

(for example calculators for Bayes’ formula), Venn’s diagrams that visualize the

relationships between two events, its complementaries and the effect on condi-

tional probability of the relative size of different events, different visualizations

of conditional and compound probability, and tools that help building a tree

diagram.

5. Final remarks

As suggested by Tarr and Lannin (2005), the inclusion of conditional proba-

bility in the school curriculum is a challenge for teachers, and instruction should

be informed by research results in order to help students acquire this concept.

Moreover, as stated by Romberg et al. (1991), when assessment is viewed as

a continuous and dynamic process that can be used by teachers to help stu-

dents to attain curricular goals. Garfield (1995) suggests that effective teaching

should be based on knowledge of students’ preconceptions, because when lear-

ning something new, students contruct their own meaning by connecting the

new information to what they already believe to be true.

A knowledge of student’s difficulties is particularly needed in case of inde-

pendence and conditional probability where most teachers agree that students

have a big deal of difficulty. In this sense we hope the examples along this paper

(all of which were used in different research work either in questionnaires or in-

terviews) can help teachers build their own in-classroom exercises and problems

for teaching and assessing conditional probability.
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