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Abstract

This paper presents a brief introduction to the emerging research field

of multi-armed restless bandits (MARBs), which substantially extend the

modeling power of classic multi-armed bandits. MARBs are Markov deci-

sion process models for optimal dynamic priority allocation to a collection

of stochastic binary-action (active/passive) projects evolving over time.

Interest in MARBs has grown steadily, spurred by the breadth of their

possible applications. Although MARBs are generally intractable, a La-

grangian relaxation and decomposition approach yields a unifying design

principle for heuristic priority-index policies, which are often tractable and

nearly optimal, along with an upper bound on the optimal reward.
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1. Introduction

This paper presents a short introduction to the emerging research field of

multi-armed restless bandits, which are extensions of substantially expanded

modeling power of classic multi-armed bandits. In recent years, they have at-

tracted growing research attention, due both to the mathematical interest of the

research challenges they raise and to the breadth of possible applications. The

presentation highlights the key ideas involved as well as the historical develop-

ment of the field, and is biased towards the author’s view developed over the

last decade of work in the area. For a more technical presentation, the reader is

referred to the review paper Niño-Mora [18].

The remainder of the paper is organized as follows. Section 2 clarifies the

origin of the term “multi-armed restless bandits,” as it may sound surprising at
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first sight. Sections 3 and 4 introduce the one-armed and the multi-armed restless

bandit problem, respectively. Section 5 outlines the historical development of the

field, emphasizing the research challenges addressed. Section 6 lists some applied

models which have been successfully addressed via restless bandits. Finally,

Section 7 concludes.

2. “Multi-armed restless bandits”?

When first heard, the term “multi-armed restless bandits” may conjure up

disturbing images of dangerous outlaws plundering their way around, so it is in

order to begin this discussion by clarifying its origin and meaning. Recall that,

in English, the term “one-armed bandit” is used to refer to a slot machine, of

the kind one finds in a casino, the “arm” being the lever that the gambler pulls

after tossing in the coin. One can play a slot machine repeatedly, at discrete

time periods, with such plays having a dual effect: to make the machine yield

random rewards, and to change its state after each play, where the machine’s

state is displayed visually as a colorful assortment of symbols.

3. The one-armed restless bandit problem

Such a one-armed bandit provides a compelling metaphor for a Markov de-

cision process (MDP) model of a generic dynamic and stochastic project, whose

evolution over discrete time periods is controlled by a manager, who decides

at the start of each period whether the project should be active (worked on)

or passive (left idle) during the period. If at the start of period t the project

occupies state X(t) = i ∈ X (where X denotes the project’s state space) and

is worked on, i.e., the active action a(t) = 1 is taken, it yields an immediate

random reward with mean R(i, 1), and its state moves to X(t + 1) = j ∈ X in

a Markovian fashion with transition probability p(i, j|1). If, on the other hand,

the project is left idle, i.e., the passive action a(t) = 0 is taken, it yields an

immediate reward with mean R(i, 0), and its state moves to X(t + 1) = j with

probability p(i, j|0). In a classic bandit model, a passive project’s state remains

frozen, so p(i, i|0) ≡ 1. In contrast, in a restless bandit model a passive project

can change state, typically according to a different transition law than when the

project is active.

Let us incorporate into such a model a scalar parameter, denoted by λ,

which models the charge incurred per active period (e.g., the charge per play in

the slot machine), so the mean net reward earned when the project is worked

on in state i is R(i, 1) − λ. The infinite-horizon λ-charge one-armed restless

bandit problem is to find a policy π∗ prescribing when to engage the project,

which maximizes the expected total discounted net reward earned, where future

rewards are geometrically discounted with factor 0 < β < 1. In the infinite-
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horizon version, on which we will focus, such a problem is formulated as

max
π∈Π

Eπ
i0

[ ∞∑
t=0

{
R
(
X(t), a(t)

)− λa(t)
}
βt

]
. (3.1)

In formulation (3.1), Π denotes the class of admissible policies, among which an

optimal policy is sought. Such a class consists of policies that make nonanticipa-

tive decisions, i.e., which base each action a(t) on the project’s state and action

history X(0), . . . , X(t), a(0), . . . , a(t − 1). Further, Eπ
i0 [·] denotes expectation

under policy π, conditional on the initial project state being equal to X(0) = i0.

4. The multi-armed restless bandit problem

As for the term “multi-armed bandits,” it is used as a metaphor for a project

portfolio, the image being a collection of N ≥ 2 one-armed bandits, of which the

gambler is to choose at most M ≤ N to play at each time. Incorporating the

project label n = 1, . . . , N into the above single-project notation, we write, e.g.,

Xn, Rn(i, a), pn(i, j|a), Xn(t), and an(t), with the obvious meaning. In such a

setting, the project portfolio manager observes at the start of each period t the

joint state X(t) =
(
Xn(t)

)N
n=1

, and takes a joint action a(t) =
(
an(t)

)N
n=1

, which

must be based on the history of joint states and actions and satisfy
∑N

n=1 an(t) ≤
M . The choice of action is based on adoption of a scheduling policy π, which is

to be taken from the resulting class Π(M) of admissible scheduling policies. The

portfolio state’s transition laws are determined by those of individual projects

under the standard assumption that the latter are independent. As for the joint

reward, it is assumed to be additive across projects. The infinite-horizon λ-

charge multi-armed restless bandit problem (MARBP) is to find an admissible

scheduling policy π∗ prescribing which projects to engage at each time, if any,

which maximizes the expected total discounted net reward earned. We formulate

such a problem as

max
π∈Π(M)

Eπ
i0

[ ∞∑
t=0

N∑
n=1

{
Rn

(
Xn(t), an(t)

)− λan(t)
}
βt

]
, (4.1)

where Eπ
i0 [·] denotes expectation under scheduling policy π, conditional on the

initial portfolio state being equal to X(0) = i0 = (i0n)
N
n=1.

5. A bit of bandit history

The classic multi-armed bandit problem has its roots in the area of sequential

design of experiments, and in particular in the seminal works of Thompson [30],

Robbins [29], and Bradt et al. [3]. Such works addressed, at increasing stages

of development, the much-studied special case where engaging a project corre-
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sponds to sampling from a Bernoulli population with unknown success probabil-

ity, the goal being to find an optimal dynamic schedule for sampling from N such

populations in a finite number of periods, where only one population can be sam-

pled per period, to maximize the expected total number of successes. An MDP

formulation is obtained via a Bayesian approach, where a project (population)

state is given by the parameters of its posterior distribution.

A typical application in such early literature is the optimal dynamic alloca-

tion of patients to clinical treatments with unknown success probabilities. In

such a setting, the decision maker is faced with a difficult dilemma between

exploitation (i.e., using with the next patient the treatment that appears to be

better based on evidence gathered so far) and exploration or learning (i.e., trying

out a treatment that currently appears to be inferior, but which might turn out

to be the best, to obtain a more accurate belief estimate of its efficacy based

on the observed outcome). Ever since, the classic multi-armed bandit prob-

lem stands as a paradigmatic model for such an exploitation versus exploration

dilemma.

Being MDPs, the bandit problems outlined above are in principle amenable

to solution by the standard dynamic programming (DP) technique, i.e., by for-

mulating and solving numerically the corresponding DP equations. Yet, in the

one-armed case, the resulting numerical solution neither exploits nor provides

insights on the problem’s special structure. In the multi-armed case, the DP for-

mulation is hindered by the so-called curse of dimensionality, as the number of

DP equations grows exponentially in the number of projects. This fact renders

computationally intractable a conventional numeric DP approach for problems

of the dimensions that arise in real applications.

Such a state of affairs prompted researchers early on to develop solution

approaches that take advantage of special structure. Thus, Bradt et al. [3] first

realized that the optimal solution to the classic finite-horizon undiscounted one-

armed Bernoulli bandit problem is given by an index policy : there exists a scalar

index λ∗(i, s), which is a function of both the current project state i and the

number of remaining periods s, such that it is optimal to engage the project

when it occupies state i and s periods remain iff λ∗(i, s) ≥ λ (recall that λ is the

charge incurred per active period). Bellman [1] extended such a result to the

infinite-horizon discounted one-armed Bernoulli bandit problem, establishing the

existence of an index λ∗(i), which is a function of the state only, such that it is

optimal to engage the project in state i iff λ∗(i) ≥ λ.

Concerning the classic multi-armed bandit problem, it was long considered

intractable, to the point that, to quote from Whittle [35],

“it was formulated during the war, and efforts to solve it so sapped

the energies and minds of Allied analysts that the suggestion was

made that the problem be dropped over Germany, as the ultimate
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instrument of intellectual sabotage.”

Yet, the optimal policy for the infinite-horizon discounted version of such a

problem, where one bandit can be played at a time, turned out to be remarkably

simple, being based on building blocks that had been laid out long ago. In a

landmark achievement, Gittins and Jones [8] first showed that the index that

had been introduced in Bellman [1] to solve the one-armed bandit problem is

the key to the solution of the multi-armed problem, by using it as a priority

index. Consider the case where the charge per play is λ = 0. If λ∗
n(·) is the index

of project n, then it is optimal to engage at each time a project whose current

state’s index value is highest. For a nonzero charge λ where the option to idle

all projects is allowed, it is optimal to engage at each time a project of currently

highest index, among those projects, if any, whose current index value exceeds λ.

Nowadays, the classic bandit index λ∗
n(·) is known as the Gittins index. See the

discussion paper Gittins [6] and the monograph Gittins [7] for thorough accounts

of the subject. A variety of different proofs, yielding complementary insights,

has later been found of the Gittins and Jones result. See, e.g., Whittle [36],

Varaiya et al. [31], Weber [33], and Bertsimas and Niño-Mora [2]. It must be

pointed out that, independently of Gittins and Jones, Klimov [10] presented a

highly influential analogous result in the setting of the optimal scheduling of a

multiclass M/G/1 queue with Bernoulli feedback. See the review article Niño-

Mora [26].

As for the MARBP, although finding its optimal solution is in general com-

putationally intractable, in a seminal paper Whittle [37] deployed a Lagrangian

relaxation and decomposition approach that yields a heuristic priority-index pol-

icy, along with an upper bound on the optimal problem value. Whittle further

conjectured and Weber and Weiss [34] established under certain conditions that

such a Whittle index policy enjoys a form of asymptotic optimality. Such results

focus on restless bandits under the (long-run) average criterion, rather than

under the discounted criterion.

Yet, the Whittle index has a limited scope, being only well-defined for the

restricted class of so-called indexable restless bandits. To deploy the Whittle

index policy in a particular model, one first needs to establish the indexability

(i.e., existence of the index) of the underlying restless bandits. This can be done

numerically on an instance by instance basis, although it is of course preferrable

to establish indexability analytically for the model at hand, which typically in-

volves imposing restricting conditions on model parameters. Such a state of

affairs prompted Whittle [37] to write

“One would very much like to have simple sufficient conditions

for indexability; at the moment, none are known.”

In a series of papers, the author has introduced and developed an approach

that yields general sufficient indexability conditions. The first such conditions
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for a finite-state restless bandit are presented in Niño-Mora [13], both under the

discounted and the average criteria, being based on the framework of partial

conservation laws (PCLs; see the review Niño-Mora [25]), also introduced there,

along with an adaptive-greedy index-computing algorithm. Such results are ex-

tended in Niño-Mora [14] to restless bandits fed by a general resource, drawing

on polyhedral methods of linear programming (LP), along the lines of the poly-

hedral combinatorics approach to combinatorial optimization. The scope of the

PCL approach is expanded in Niño-Mora [17] to semi-Markov restless bandits on

a finite or countably infinite state space, under discounted, average, and a new

mixed average-bias criterion. The latter criterion overcomes limitations of the

conventional average criterion, as certain relevant models that are not indexable

relative to the average criterion are indexable relative to the average-bias crite-

rion. A similar motivation prompted the author to introduce in Niño-Mora [15]

indexability under the bias criterion. Such papers further clarify the economic

interpretation of the Whittle index and the extensions introduced there, via the

unifying concept of marginal productivity (MP) index. In short, a project’s index

λ∗(i) measures the marginal value or productivity of engaging it when it occu-

pies state i. The priority-index policy for a multi-armed problem allocates effort

where it appears to be currently more productive, using the individual projects’

MP indices as proxies of their current marginal productivities.

More recent work extends the scope of the PCL approach to indexability to

the continuous state case. See Niño-Mora [22, 23], and Niño-Mora and Villar

[24].

6. Applications

Besides the intrinsic mathematical interest of the challenging problems raised

by research on restless bandits, the main driving force behind the fast-growing

attention drawn by such a field is the realization by researchers that a wide va-

riety of seemingly disparate applied problems fall within its scope. Formulating

such problems as MARBPs allows investigators to deploy a unifying solution ap-

proach, which yields both an intuitively appealing and practical heuristic index

policy of low complexity, and a bound on the optimal problem value, which can

be used in practice to asses the policy’s suboptimality gap. Although finding the-

oretical bounds on the latter remains an open research challenge, an increasing

body of experimental evidence supports the view that, very often, the result-

ing index policies are nearly optimal and outperform previouly proposed index

policies that had been devised via ad hoc arguments.

The growing list of applied stochastic models that have been addressed via

restless bandit indexation includes the following: scheduling a multiclass make-

to-stock queue (Veatch and Wein [32], Dusonchet and Hongler [4], Niño-Mora

[17]); broadcast scheduling in information delivery systems (Raissi-Dehkordi and
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Baras [28]); dynamic control of admission and routing to parallel queues (Niño-

Mora [14, 19]); dynamic bandwidth allocation in a communication channel with

delays (Ehsan and Liu [5], Niño-Mora [20]); dynamic routing of unmanned aerial

vehicles with partial observations (Le Ny et al. [11]); bandits with switching

costs (Niño-Mora [21]); dynamic scheduling of multiclass wireless transmissions

(Goyal et al. [9], Niño-Mora [16]); dynamic scheduling of a multiclass queue

with finite buffers (Niño-Mora [15]); opportunistic spectrum access (Niño-Mora

[22, 23], Liu and Zhao [12]); multi-target tracking (Niño-Mora and Villar [24]);

and finite-horizon indexation (Niño-Mora [27]).

7. Concluding remarks

The research field of multi-armed restless bandits is still in its early stages,

and many challenging and relevant open problems remain to be solved. Among

these one can mention the theoretical performance analysis of the priority-index

policy, and the extension of the scope of restless bandit indexation to more

complex models. New applications are awaiting to be successfully addressed via

restless bandits.
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