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Abstract

Branching process theory provides appropriate mathematical models

to describe the probabilistic evolution of systems whose components (cells,

particles, individuals in general) after a certain life period reproduce and

die. The genealogy of this theory is presented, describing the basic results

of the standard Bienaymé-Galton-Watson process and some of its general-

izations, paying special attention to controlled branching processes. Sev-

eral fields in which this theory has been applied successfully are indicated.
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1. Brief History of Branching Process Theory

Branching process theory is that part of mathematics which deals with the

growth and decay of systems whose components reproduce following some sto-

chastic laws. The term Branching Process appears to have been coined by A.N.

Kolmogorov and N.A. Dmitriev in 1947 (see [35]) but the subject is much older

and goes back to more than a century and a half ago. Initially it was moti-

vated to explain the extinction phenomenon of certain family lines of European

aristocracy.

It had traditionally been considered that the modern theory of branching

processes was initiated in England by F. Galton with his classical formulation

published in 1873 in the Educational Times:

PROBLEM 4001: A large nation, of whom we will only concern

ourselves with adult males, N in number, and who each bear separate

surnames colonise a district. Their law of population is such that, in

each generation, a0 per cent of the adult males have no male children
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who reach adult life; a1 have one such male child; a2 have two; and

so on up to a5 who have five. Find (1) what proportion of their

surnames will have become extinct after r generations; and (2) how

many instances there will be of the surname being held by m persons.

But, in 1977, C.C. Heyde and E. Seneta (see [28]) showed that, in France,

notably L.F. Benoiston de Châteauneuf (see [6]) and I.J. Bienaymé (see [5])

had considered the nobility and family extinction problem before F. Galton

publicized it. Indeed, they pointed out that I.J. Bienaymé was not only the first

to formulate the mathematical problem, but indeed knew its solution already in

1845, although the original publication has not been found (see also [7]).

Coming back to Galton’s problem, he persuaded his acquaintance H.W. Wat-

son to work out a solution. Watson proposed a solution using the theory of

generating functions and functional iteration, which they published together in

1874 (see [43]). However, they concluded erroneously that every family will die

out, even when the population size, on average, increases from generation to

generation. Even though, as was noted above, I.J. Bienaymé already knew a

correct solution to the extinction problem, this remained unknown, and it took

more that fifty years to rectify the solution provided by H.W. Watson. The

first complete and correct determination of the extinction probability follow-

ing Galton-Watson’s line was given by J.F. Steffensen (see [39] and [40]). He

established that if the mean number of children is less than or equal to one,

then Galton and Watson were right, but if it is greater than one, the extinction

probability of the family name is less than unity.

In parallel with Steffensen’s studies, branching processes appear in scientific

literature in the 1920s and 1930s with the works of R.A. Fisher (see [13]) and

J.B.S. Haldane (see [25]) who applied them to study the problem of the dispersion

and extinction of a mutated gene in a population. From then on, the original

model introduced by Bienaymé, Galton, and Watson, and its generalizations

have been treated extensively for their mathematical interest and as theoretical

approaches to solving problems in applied fields such as Biology (gene amplifi-

cation, clonal resistance theory of cancer cells, polymerase chain reactions,...),

Epidemiology, Genetics, and Cell Kinetics (the evolution of infectious diseases,

sex-linked genes, stem cells,...), Computer Algorithms and Economics, and, of

course, Population Dynamics, to mention only some of the more important ap-

plications.

For a detailed history of branching processes see [30] and [31] or the clas-

sical references [1], [2], [3], [26], [27], [29], and [37]. Also P. Jagers’ notes

(see http://www.math.chalmers.se/~jagers/Branching%20History.pdf) of

his lecture given at the 2009 Oberwolfach Symposium on ”Random Trees” are

very amusing. Moreover, for those wanting to acquaint themselves with contem-

porary branching process theory and its applications, see the recent monographs
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[4], [22], [23], [33], and [36]. All this has made branching process theory one of

the most dynamic fields in the general theory of stochastic processes.

Having given an overview of the genealogy of branching processes, our aim in

the rest of this communication is to introduce the mathematical formulation of

the standard Bienaymé–Galton–Watson branching process (BGWP), to describe

how it has been modified to tackle more complex real problems, and to indicate

some of its applications. Briefly, Section 2 is devoted to defining the BGWP, its

main properties, and some of its generalizations. In Section 3, we focus on one of

these modifications that has aroused our especial interest: controlled branching

processes. We state the main results without proofs, and invite the reader to

look more deeply into them by consulting the references provided.

2. Bienaymé-Galton-Watson Branching Processes and

their generalizations

With the nomenclature of population dynamics, a BGWP is a discrete-time

stochastic process that describes the evolution of a population in which each indi-

vidual independently of the others gives rise to a random number of offspring (in

accordance with a common reproduction law), and then dies or is not considered

in the following counts. We shall give its formal definition and establish some

interesting properties. Let {Xnj : n = 0, 1, . . . ; j = 0, 1, . . .} be non-negative

integer valued independent and identically distributed (i.i.d.) random variables

with probability distribution {pk}k≥0, i.e. P (X01 = k) = pk, k ≥ 0. The BGWP

is a stochastic process, {Zn}n≥0, defined recursively as follows:

Z0 = N ∈ N, Zn+1 =

Zn∑

j=1

Xnj , n ≥ 1, (2.1)

where
∑0

j=1 is defined to be 0. Thus, Xnj represents the number of offspring

produced by the j-th individual in the n-th generation, and Zn represents the

number of individuals in the n-th generation. We refer to {pk}k≥0 as the off-

spring distribution or law, with pk being interpreted as the probability that an

individual has k offspring. The expected value and the variance of the offspring

distribution, denoted by m and σ2, are called the offspring mean and variance,

respectively.

It is obvious that if the size of the n-th generation is known then the proba-

bility law governing later generations does not depend on the sizes of the gener-

ations before the n-th. Hence the BGWP is a Markov chain with 0 an absorbing

state. Moreover, since each individual reproduces in accordance with the same

offspring distribution, the transition probabilities are stationary.

A fundamental feature of a BGWP is the well-known additivity property.

We have defined Z0 = N ∈ N, but in the following we shall always assume that



110 M. González, I.M. del Puerto

Z0 = 1, because the BGWP starting with N individuals behaves as the sum

of N independent BGWP processes all starting with one individual (see [29]).

Moreover, to avoid trivialities, one usually assumes that p0 < 1 and p0 + p1 < 1.

By the extinction of the process is meant the event Q = {Zn → 0}, i.e.,
the set {Zn = 0 eventually}, which is obviously the same as Zn = 0 for some

n. The problem originally set out by F. Galton was to find the probability

of the extinction of a family, i.e., to determine P (Q). We shall denote this

probability by q. Notice that q = limn→∞ P (Zn = 0) = limn→∞ Fn(0), with

Fn(s) = E[sZn ], 0 ≤ s ≤ 1, being the probability generating function of Zn.

Moreover it can be proved that q = limn→∞ Fn(s), 0 ≤ s < 1. The solution

to the extinction problem is established in terms of m and of the probability

generating function of the offspring law, denoted by f(s). In particular, the

extinction probability q is stated to be the smallest non-negative root of the

equation

f(s) = s. (2.2)

If m ≤ 1 then q = 1, and if m > 1 then 0 ≤ q < 1 (see Figure 1).

f(s)
1

p0

s1

m ≤ 1

f(s)
1

q

p0

s
q 1

m > 1

Figure 1: Probability generating function and extinction probability.

The sequence {Zn}n≥0 does not remain positive and bound. It either goes

to 0 or goes to ∞. This property is known as the extinction-explosion duality,

i.e.,

P (Zn → 0) + P (Zn → ∞) = 1. (2.3)

As a consequence of the extinction result, BGWPs with m < 1, m = 1, and

m > 1 are called subcritical, critical, and supercritical, respectively. Figure 2

shows their different behaviour with respect to extinction.

Another problem of interest is to study the asymptotic distribution of Zn

when n is large.

In the subcritical case, the process dies out with probability one. To describe

its asymptotic behaviour, one introduces the device of imposing the condition
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Figure 2: Left: Extinction probabilities for BGWPs with geometric offspring
distribution of parameter λ, i.e., pk = (1 − λ)kλ, k ≥ 0. In this case m =
(1− λ)λ−1. Thus, according to whether λ > 2−1, = 2−1, or < 2−1, the process
is subcritical, critical, or supercritical, respectively. Right: Evolution of the
probability generating functions of Zn in the supercritical case.

that extinction has still not happened, and one obtains that, for k ∈ N,

lim
n→∞

P (Zn = k | Zn > 0) = bk, (2.4)

with
∑∞

k=1 bk = 1 and
∑∞

k=1 kbk < ∞ iff
∑∞

k=1 kpk log k < ∞. This result was

given by A.M. Yaglom (see [44]).

The unsteadiness of the critical case is clearly shown due to the fact that

E[Zn] = 1 for all n ∈ N, V ar[Zn] → ∞, as n → ∞, and that Zn → 0 with

probability one. In this case the limit probabilities bk in (2.4) are null, so that

a further normalization is need to make the conditional process converge to a

non-degenerate limit. Thus, A.N. Kolmogorov (see [34]) and A.M. Yaglom (see

[44]) proved that if σ2 < ∞ then, for all real numbers z,

lim
n→∞

P
(
n−1Zn ≤ z | Zn > 0

)
= Γa,b(z),

with Γa,b denoting the gamma distribution function with parameters a = 1 and

b = 2−1σ2. In other words, if the process has not become extinct and n is large,

then the process has a linear growth and the distribution of n−1Zn is almost

exponential. Moreover, the following estimate of the rate of convergence to zero

is proved:

P (Zn > 0) ∼ 2σ2n−1, as n → ∞. (2.5)

Finally, using martingale theory one can establish the behaviour of Zn in the

supercritical case. In particular, attention is focused on the process {m−nZn}n≥0.

It is verified that, for 0 < m < ∞, m−nZn → W almost surely as n → ∞. One
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knows that P (W = 0) = 1 for m ≤ 1. However, K. Kesten and B.P. Stigum (see

[32]) proved that for m > 1

P (W > 0) > 0 iff

∞∑

k=1

kpk log k < ∞

and

P (W > 0) = P (Zn → ∞) = 1− q.

This result implies that on the non-extinction set, Zn ∼ mnW , and hence one

should expect the population eventually to grow at a geometric rate.

The proofs of the extinction and limiting results can be found, for instance,

in [1], [3], and [29].

Finally, a further topic of a great interest is the inferential theory arising

from a BGWP. In this sense, the behaviour of estimators for the offspring mean

and variance and the extinction probability has been described and investigated.

A good exposition of the main results on this topic is given in [24].

Despite the simplicity of the model, there have been recent applications of

the BGWP as can been found for instance in [12], which considers the problem

of modeling outbreaks of infectious disease, and in [9], which treats the problem

of populating an environment.

The simple reproduction scheme considered in the BGWP can be generalized,

giving rise to other families of branching processes that could allow complex

practical situations to be reasonably modeled when the BGWP can not provide

an acceptable description. Thus, in the second half of the XX century, new

branching processes were introduced in both discrete and continuous time. We

shall present some of them. One can go more deeply into their study by reading

the monographs [1], [2], [26], [27], [29], and [37].

One straightforward generalization leads to multitype branching processes.

These consider K different types of individuals, and the process is determined by

a collection of fi(s1, . . . , sK), i = 1, 2 . . . ,K, generating functions for which the

coefficient of si11 si22 · · · siKK in fi is the probability of an individual of type i giving

rise to ij individuals of j-th type, j = 1, . . . ,K. The role of the offspring mean,

m, in the BGWP is now played by a K × K matrix M of which the element

(i, j) is the expected value of the number of individuals of type j produced by

an individual of type i.

In the simple model, we have assumed that individuals reproduce indepen-

dently of each other, and with the same offspring distribution. In the real world,

these properties can be violated in several ways. One can consider that the

offspring number depends on population size or that it can be vary over genera-

tions because of factors such as food supply. Thus there appear population size

dependent branching processes, branching processes in varying environments,

and branching processes in random environments. In brief, the future evolution
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of these kinds of branching processes is determined by a sequence of offspring

means.

One can also consider the migration phenomenon instead of isolated or closed

populations that evolve from a given number of ancestors. This introduces

branching processes with immigration and controlled branching processes. Due

to our own special interest in the latter, these will be presented in greater detail

in the following section.

Up to now we have ignored the fact that in species with sexual reproduction

changes in the population sizes depend on the formation of couples. In many

populations, mating is an important factor that can not be neglected. Bisexual

branching processes take this into account explicitly. In general, these processes

start with N couples. Each couple has random numbers of female and male

offspring which form new couples in accordance with a deterministic or stochastic

function, and so on. Specific reviews of bisexual branching processes can be found

in Chapter 2 in [23] and Chapter 20 in [22].

All the previous models are discrete-time branching processes. Time struc-

ture was added to the simple reproductive scheme of a BGWP in Bellman–Harris

branching processes, also called age-dependent branching processes. These de-

scribe populations in which individuals may have variable life spans, and split

into a random offspring number at death, independently of age. The idea that the

offspring law could also depend on age was actually introduced in Sevastyanov

branching processes. Finally, the general way to describe reproduction is to con-

sider that offspring can be born at several ages during a potential progenitor’s

life, and each birth event can result in single or multiple offspring. This model

is called a Crump–Mode–Jagers branching process.

There are many applications of the above processes to real problems. To cite

some of the more recent, we would direct the reader to Chapters 12–18 in [22]

which present very interesting applications of some generalizations of the BGWP

in Cell Kinetics, Genetics, and Epidemiology. In particular, they consider new

ideas for branching process theory that arise in modeling leukæmia cell kinetics,

(in vitro) progenitor cell populations, the amplification, mutation, and selec-

tion forces of Alu elements, the evolution of the number of carriers of the two

alleles of a gene linked to the Y chromosome, the spread of an SIR (susceptible–

infective–removed) epidemic among a closed, homogeneously mixing population

consisting initially of certain numbers of infective and susceptible individuals, the

propagation of Bovine Spongiform Encephalopathy at the scale of a very large

population, outbreaks of infectious diseases with an incubation period, and the

transmission dynamics of the macroparasite Echinococcus granulosus.
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3. Controlled branching processes

The model considered in this section is the controlled branching process. This

is a generalization of the classical BGWP, and is used to describe the evolution

of populations which require control of the population size at each generation.

This consists of determining the number of individuals with reproductive capac-

ity at each generation mathematically through a control process. In practice,

this branching model could describe reasonably the probabilistic evolution of

populations in which, for various reasons of an environmental, social, or other

nature, there is a mechanism that establishes the number of progenitors which

take part in each generation. For example, in an ecological context, one can

think of an invasive animal species that is widely recognized as a threat to na-

tive ecosystems, but there is disagreement about plans to eradicate it, i.e., while

the presence of the species is appreciated by a part of society, if its numbers are

left uncontrolled it is known to be very harmful to native ecosystems. In such

a case, it is better to control the population to keep it, for example, between

admissible limits even though this might mean periods when animals have to be

culled. Two examples of recent discussions about this are given in [11] and [42].

We shall now present the formal definition of controlled branching processes

and their main results by comparing them with the BGWP. B.A. Sevastyanov

and A.M. Zubkov in 1974 (see [38]) introduced a process with the novelty of

incorporating into the probability model a deterministic control function that

fixes the number of progenitors generation by generation. Subsequently, N.M.

Yanev (see [45]) generalized this model by considering a random control function.

We shall give the precise definition of Yanev’s model. A controlled branching

process (CBP) with a random control function is a stochastic process, {Zn}n≥0,

defined recursively as follows:

Z0 = N ∈ N, Zn+1 =

φn(Zn)∑

j=1

Xnj n ≥ 0, (3.1)

where, as in the BGWP, {Xnj : n = 0, 1, . . . ; j = 0, 1, . . .} are non-negative

integer valued i.i.d. random variables (we keep the notation pk = P (Xnj = k)),

and, for each n = 0, 1, . . ., {φn(k)}k≥0 are independent stochastic processes with

equal one-dimensional probability distributions. As before, the random variable

Zn represents the total number of individuals in generation n, starting with

Z0 = N > 0 progenitors. Each individual, independent of all others and all

with identical probability distributions, gives rise to new individuals. The ran-

dom variable Xnj is the number of offspring originated by the j-th individual

of generation n. The novel point is that if in a certain generation n there are k

individuals, i.e., Zn = k, then, through the random variable φn(k), identically

distributed for each n, there is produced a control in the process fixing the num-
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ber of progenitors which generate Zn+1. Thus the variable φn(k) determines

the migration process in a generation of size k: for those values of the variable

φn(k) such that φn(k) < k, k− φn(k) individuals are removed from the popula-

tion, and therefore do not participate in the future evolution of the process; if

φn(k) > k, φn(k)− k new individuals (immigrants) of the same type are added

to the population participating as progenitors under the same conditions as the

others. No control is applied to the population when φn(k) = k. The model in-

troduced by B.A. Sevastyanov and A.M. Zubkov is the particular case of setting

φn(k) = ϕ(k), with ϕ being a function that is non-negative and integer-valued

for integer-valued arguments.

Focusing on definition (3.1), one observes that the CBP with a random con-

trol function is also a homogeneous Markov chain. However the additivity prop-

erty is not always satisfied, hence the importance of fixing the initial number

of progenitors. Now the state 0 is absorbing iff φn(0) = 0 almost surely. In

this case, the extinction-explosion duality (2.3) is verified if at least one of the

following conditions holds: p0 > 0, or P (φ0(k) = 0) > 0, k = 1, 2, . . .. Thus the

extinction problem has sense under the assumption of φn(0) = 0 almost surely.

The presence of the random control function complicates the solution of the

extinction problem. This topic was initially addressed by N.M. Yanev (see [45])

and F.T. Bruss (see [8]) by considering φn(k) = αnk(1 + o(1)) almost surely as

n → ∞, where {αn}n≥0 is a sequence of non-negative i.i.d. random variables.

M. González, M. Molina, and I. del Puerto (see [16]-[20]) studied the extinc-

tion problem of these processes from a more general outlook than that considered

by N.M. Yanev and F.T. Bruss. In particular, let m = E[X01], σ2 = V ar[X01],

ε(k) = E[φ0(k)], and ν2(k) = V ar[φ0(k)], k = 0, 1, . . ., and define

τ(k) = E[Zn+1Z
−1
n | Zn = k] = mk−1ε(k), k = 1, 2, . . . .

Intuitively τ(k) is interpreted as the expected growth rate per individual when,

in a certain generation, there are k individuals. In order to obtain conditions

for the almost sure extinction and for the existence of a positive probability

of non-extinction, different possible behaviours of the sequence {τ(k)}k≥1 with

respect to 1 were considered. Extending the classification provided by m in a

BGWP, in a broad sense the cases lim supk→∞ τ(k) < 1, lim infk→∞ τ(k) ≤
1 ≤ lim supk→∞ τ(k), and lim infk→∞ τ(k) > 1 are referred to, respectively, as

subcritical, critical, and supercritical situations for a CBP with a random control

function.

In the subcritical case, the process dies out with probability one indepen-

dently of the initial number of progenitors (see [16]).

In general, and unlike the situations of the critical and supercritical BG-

WPs, neither the extinction with probability one in the former case nor the

non-extinction with positive probability in the latter case are always guaran-
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teed. First, we shall describe the supercritical case, and then the critical one.

In the supercritical case, if {k−1ε(k)}k≥1 and {k−1ν2(k)}k≥1 are bounded

sequences, there exists N0 ∈ N such that if the number of initial progenitors

is greater than N0 then there is non-extinction of the process with positive

probability (see [16]). If the condition on the control variances, ν2(k), is not

satisfied then the extinction of the process could occur with probability one.

The behaviour of the critical case in a CBP with random control function

is much richer than in a BGWP. Indeed, this case is vast. We have as yet only

considered the situation in which the limit of {τ(k)}k≥1 exists and is equal to

unity. We have distinguished two situations based on the speed of convergence

of {τ(k)}k≥1. On the one hand, if the convergence of {τ(k)}k≥1 to 1 is very fast

(with respect to the conditional variance), the whole process behaves as a true

critical process in the sense of a BGWP, and almost sure extinction follows. On

the other hand, if the convergence of {τ(k)}k≥1 is very slow, the process develops

as a simple supercritical process, having a positive probability of non-extinction.

Let us introduce the notation `2(k) for the conditional variance of the process,

i.e., `2(k) = V ar[Zn+1 | Zn = k]. Under some technical conditions, which the

reader can find in [19] and are not repeated here for the sake of readability, we

proved the following results on the extinction problem in the critical case. It is

verified that if

lim sup
k→∞

2(τ(k)− 1)

`2(k)k−2
< 1,

then the process dies out with probability one independently of the initial number

of progenitors. On the contrary, if

lim inf
k→∞

2(τ(k)− 1)

`2(k)k−2
> 1,

then the non-extinction of the process with positive probability occurs indepen-

dently of the initial number of progenitors.

Figure 3 shows the behaviour of the extinction probability of a critical CBP

under non-extinction conditions. An interesting open problem in the non-extinc-

tion cases is to determine exactly the extinction probability, q. As in BGWP, it

can be proved that q = limn→∞ Fn(s), 0 ≤ s < 1 (see Figure 3), but unfortu-

nately there exists no equation analogous to (2.2) that provides q.

The above results provide the answer to the extinction problem for the most

typical cases in this class of controlled models. They unfortunately do not cover

certain situations, for instance, when

lim
k→∞

2(τ(k)− 1)

`2(k)k−2
= 1. (3.2)

Research in this direction proceeded by assuming that φ0(k), k = 1, 2, . . ., have
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Figure 3: Left: Approximation to the extinction probability for a critical CBP
whose offspring law is a Poisson distribution with parameter one, and control
variables, φn(k), k > 0, are Poisson distributions with parameters k + 2.01 and
φn(0) = 0. Right: Evolution of the probability generating functions of Zn.

infinitely divisible probability distributions, and setting

τ(k) = 1 + k−1c, c > 0, k = 1, 2, . . . and `2(k) = νk +O(1) (3.3)

(consequently limk→∞ 2(τ(k) − 1)(`2(k)k
−2)−1 = 2cν−1). In these cases, one

has that if 2cν−1 ≤ 1, then the process dies out. Moreover, if 2cν−1 < 1 then

P (Zn−1 > 0) ∼ k1n
2cν−1−1, n → ∞,

whereas 2cν−1 = 1 implies

P (Zn−1 > 0) ∼ k2(log n)
−1, n → ∞

for some positive constants ki, i = 1, 2. It is therefore proved that for the critical

CBP P (Zn > 0) decays to zero more slowly than for the critical BGWP – see

(2.5). This is due to the immigration component – note that, by the assumption

τ(k) = 1 + k−1c, c > 0, k = 1, 2, . . ., there exists an expected immigration of

individuals in each generation.

Next, we shall briefly describe the main results on the asymptotic behaviour

of CBP.

In the subcritical case, under the assumption that zero is not an absorbing

state, i.e., P (φn(0) > 0) > 0, and p0 > 0 and p0 + p1 < 1, it is verified

that {Zn}n≥0 converges in distribution to a positive, finite, and non-degenerate

random variable Z as n → ∞. See details in [18].

With respect to the supercritical case, as in the BGWP, conditions to guar-

antee geometric growth on the whole set for which a CBP goes to infinity are
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provided in [17], [20], and [21]. In particular, an in-depth study is made of the

almost sure, in L1 and L2, convergence to a non-degenerate limit of the sequence

{Zn(τm)−n}n≥0, with τ = limk→∞ ε(k)k−1 and τm > 1 .

The most surprising case is again the critical one. Different kinds of limiting

behaviour are obtained for {Zn}n≥0 suitably normed. Critical CBPs which do

not become extinct with a positive probability are considered. It is also assumed

that τ(k) = 1 + ckα−1 + o(kα−1), where α < 1, c > 0 and τ(k) > 1, and

`2(k) = νkβ +o(kβ), β ≤ α+1, ν > 0. It is necessary to introduce the function

g(k) = k(τ(k) − 1), k ≥ 1, and to extend it to a twice continuous differentiable

function on R. Let us denote by {an}n≥0 the solution of the deterministic

recursive equation

a0 = 1, an+1 = an + g(an), n = 0, 1, . . . ,

which plays an important role in the asymptotic behaviour of the process as will

be seen below. It is verified that an ∼ (c(1− α)n)(1−α)−1

, as n → ∞.
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Figure 4: Asymptotic behaviour in the critical case.

Again, avoiding the more technical hypotheses – see [19] – one has:

If β = α+ 1 and 2cν−1 > 1, for all real numbers z

lim
n→∞

P
(
n−1Z1−α

n ≤ z | Zn > 0
)
= Γa,b(z),

with parameters a = (ν − να)−1(2c− να) and b = 2−1ν(1− α)2.

If 0 < α < 1 and β < α+ 1 then one has that

• For β < 3α− 1, on {Zr → ∞}, as n → ∞

a−1
n Zn → 1 almost surely, and g(an)

−1(Zn−an) converges almost surely.

• For β ≥ 3α − 1, on {Zr → ∞}, a−1
n Zn converges in probability to unity
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as n → ∞, and for all real numbers z,

lim
n→∞

P

(
∆−1/2

n

Zn − an
g(an)

≤ z | Zn > 0

)
= φ∗(z),

with φ∗ being the standard normal distribution function, and

∆n =





νc−3(1− α)−1 logn if β = 3α− 1.

ν(β − 3α+ 1)−1c
β−2
1−α ((1− α)n)

β−3α+1
1−α if β > 3α− 1.

Figure 4 shows, according to the α and β values, a simplified scheme corre-

sponding to the different kinds of limiting behaviour obtained for {Zn}n≥0.

Finally, in the case in which one assumes that φ0(k), k = 1, 2, . . ., have

infinitely divisible probability distributions and (3.3), if 2cν−1 ≤ 1 then

lim
n→∞

P (n−1Zn ≤ z | Zn > 0) = Γa,b(z),

with a = 1 and b = 2−1ν. Note that in this situation the parameter a does not

depend on c or ν, unlike the analogous result corresponding to the non-almost-

sure-extinction case. This result is similar to that of Kolmogorov and Yaglom

concerning the limiting exponential distribution for the critical BGWP. Both

models have the same exponential limiting distribution on their non-extinction

sets, notwithstanding the different decay rates of their non-extinction probabil-

ities.

With respect to the estimation theory for the CBP defined by (3.1), sev-

eral approximations have been considered. By setting a fixed control function

φn(k) = ϕ(k), M. González, R. Mart́ınez and I. del Puerto (see [14] and [15])

considered the supercritical case, and made a non-parametric estimation of the

offspring distribution and its parameters. J.P. Dion and E. Essebbar (see [10])

considered a particular CBP with a random control function φn(Zn) = αnϕ(Zn),

where {αn}n≥0 is a sequence of i.i.d. random variables with positive integer val-

ues, and E[α0] = α. They provided an estimator of θ = mα, and studied

its behaviour in the supercritical case. In an attempt to solve the problem of

providing estimators of the parameters of CBP which do not require any prior

knowledge of the growth behaviour of the process, T.N. Sriram et al. (see [41])

proposed an estimation theory based on a conditional weighted least squares

approach. They studied the asymptotic behaviour of the proposed estimator in

the subcritical, critical, and supercritical cases. This theory remains unclosed.

It is a very interesting open problem to continue developing it, dealing with the

problems from bootstrap or sequential perspectives or those based on Markov
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chain Monte-Carlo (MCMC) methods.

We shall finish by briefly noting some other open problems which become

CBPs in an interesting field to investigate. With respect to the extinction prob-

lem, more effort is required to clarifying the critical case. Situations in which

the existence of the limit of the expected growth rates is not guaranteed need

to be dealt with. Other more complex models have been derived from (3.1)

in a similar way to what was done for the BGWP. For instance, there appear

multitype CBPs, and CBPs with population-size-dependent reproduction or in

random environments. There has as yet been little work tackling the study of

these new controlled models. Their development will open up an extensive area

for research.
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