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Abstract
We consider the fair prize of insurance contracts with bene�t received either at the insurer's

demise or at maturity. Explicit formulas are given for a Brennan & Schwartz contract with bene�t
contingent on decease.
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1. Introduction
A unit-linked insurance contract is a life insur-

ance product where the bene�t depends upon the
value of some reference stock which is traded in
some associated market. Valuation of these prod-
ucts is a natural area for probabilistic and statisti-
cal applications. Even though not so widespread as
that of pricing purely �nancial products, this topic
is becoming a classical one in the actuarial litera-
ture; it was �rst discussed by Brennan & Schwartz
(1976) and Boyle & Schwartz (1977). See also
Bacinello & Ortu (1993), Aase & Persson(1994),
Ekern & Persson (1996), Boyle & Hardy (1997),
Moeller (2001) and Bacinello (2005). We remark
that the interplay between probability theory on the
one hand, and insurance theory on the other, has
been recognized for a long time (see for example Li
and Ma, 2008). However, the problem of prizing in-
surance contracts linked to stocks considered here
goes a step beyond, requiring new ideas and tech-
niques as it involves actuarial considerations as well
as �nancial ones.

Two sources of randomness are intrinsically as-
sociated to any probabilistic model that aims to de-
scribe these products. The �rst stems from the un-
certainty in mortality. To model this, let τ : Ω̄ → R
be the random time at which decease occurs for a
given individual aged d at time 0. Mathematically,
τ is de�ned on a probability space (Ω̄, Ḡ, P̄). Under
natural assumptions the "life" conditional distri-

bution function (the survival function T̂ pt1+d) and
conditional density h read

T̂ pt1+d ≡ P̄
(
τ > T |τ > t1

)
= e

− ∫ T
t1

µ(s+d;s)ds

(1.1)
and

h(T ) =T̂ pt1+d µ(T + d;T ) (1.2)

where µ(t1 + d, t) is the mortality intensity and
T̂ ≡ T − t1 > 0.

The second source of uncertainty arises from the
random nature of the stock markets. Here we con-
sider a simple model of �nancial market consist-
ing of two securities: a "savings account" whose
value Bt at time t evolves via Bt = B0e

rt, where r

is the (constant) instantaneous interest rate of the
market. The second instrument in the market, to
which the insurance policy is linked, is a given stock
whose price at time t, Xt, varies according to a
de�nite stochastic dynamics. The prototype model
for stocks-price evolution after the seminal work of
Black and Scholes (1973) and Merton (1973) as-
sumes that Xt evolves via the Itô's stochastic dif-
ferential equation

dXt = κXtdt + σXtdWt (1.3)

Here κ is the mean return rate, σ the stock's volatil-
ity while Wt is a Brownian motion on a probability
space (Ω,G,P), the "real world" probability. Note
that we assume that r, κ and σ are constants.
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We suppose that the contract considered here
is "written" at a certain time t1 and will expire
or "mature" at a time T > t1. At maturity T

the contract holder is entitled to a bene�t denoted
by Ψ1)

T where Ψ1)
T = Ψ1)(T ;Xs, t1 ≤ s ≤ T ) is

a functional of the future evolution of the stock
up to maturity time. However, if the insurer's
demise happens at a time τ before maturity, then
the policy entitles the bene�ciaries to a payment
Ψ2)

τ at the decease time. (This situation corre-
sponds to "endowment insurance contracts"-see sec-
tion 3.2 below- By contrast, for "pure endowment
contracts", bene�t is received only at maturity).
Let ∆ be the demise time or maturity, whichever
comes �rst: ∆ = min{T, τ}. Given the bene�t
function Ψ∆ ≡ Ψ1)

T 1{τ≥T} + Ψ2)
τ 1{t1≤τ<T}, we de-

termine in this paper explicit formulas for the fair
price υt1 required by the insurance �rm at time t1
to hedge the exposure to the evolution of the risky
asset i.e., we determine the map Ψ∆ → υt1 .

2. Contract characteristics and
valuation
In a unit-linked contract the premium vt1 paid

at time t1 is invested in a stock. Let Xt, 0 ≤ t ≤ T

be the value at time t of an unit of the stock and
let Ft ≡ σ

(
Xs, 0 ≤ s ≤ t

)
be the �ltration gener-

ated by the stock, which contains all information
on past history and take G ≡ F∞. We shall also as-
sume that our market is e�cient, i.e., the existence
of the Harrison and Pliska (1981) risk-neutral prob-
ability P∗ on (Ω,F∞) under which relative prices1
of all �nancial products v′t ≡ vt/Bt are martingales2
with respect to the history of the process up to time
t. No further reference will be made to the origi-
nal, real world probability, so to ease notation we
shall drop the symbol∗ and denote the martingale
probability P∗ simply as P ≡ P∗.

We assume that the risk stemming from the
market has no in�uence on the mortality risk.
Thus, we can assume independence of the �ltrations
Ft1 , F̄t1 ≡ σ

(
1{τ>s}, 0 ≤ s ≤ t1

)
.

Let E ≡ EP×P̄ denote the expectation with re-
spect to the product measure P× P̄, EP expectation
respect to the probability measure P and so forth.

We next note that the price process must satisfy:

(i) lim
t1↑T

υt1 = Ψ1)
T . (2.1)

(ii) υ′t1 = E
(
υ′t

∣∣∣Ft1 ∨ F̄t1

)
or

υt1e
−rt1 = e−rtE

(
υt

∣∣∣Ft1∨F̄t1

)
Ft1 ≤ t ≤ T. (2.2)

(i) states that we "pay just what we receive" if
contract matures right after it is written. (ii) is
the martingale property, alluded to above. Using
Doob's optional stopping theorem it can be ex-
tended to random times3. We also require property
(i) to hold if T is replaced by the random time τ .
Hence

υ′t1 = E
(
υ′∆

∣∣∣Ft1 ∨ F̄t1

)
= E

(
Ψ′∆

∣∣∣Ft1 ∨ F̄t1

)
=

E
(
Ψ′1)T 1{τ≥T} + Ψ′2)τ 1{t1≤τ<T}

∣∣∣Ft1 ∨ F̄t1

)
=

e−rTE
(
Ψ1)

T 1{τ≥T}
∣∣∣Ft1 ∨ F̄t1

)
+

E
(
Ψ2)

τ e−rτ1{t1≤τ<T}
∣∣∣Ft1 ∨ F̄t1

)
(2.3)

Recalling that Ft1 , F̄t1 are independent σ− �elds
we have

E
(
Ψ1)

T 1{τ≥T}
∣∣∣Ft1 ∨ F̄t1

)
=

EP̄
(
1{τ≥T}

∣∣∣F̄t1

)
EP

(
Ψ1)

T

∣∣∣Ft1

)
=

T̂ pt1+d EP
(
Ψ1)

T

∣∣∣Ft1

)
. (2.4)

Similarly, using the tower property for condi-
tional expectations we have in terms of the condi-
tional density h of τ (see eq. (1.1))

E
(
1{t1≤τ<T}Ψ2)

τ e−rτ
∣∣∣Ft1 ∨ F̄t1

)
=

E
[
E

(
1{t1≤τ<T}Ψ2)

τ e−rτ
∣∣∣Ft1 ∨ F̄t1 , τ

)∣∣∣Ft1 ∨ F̄t1

]
=

E
(∫ T

t1

h(s)e−rsΨ2)
s ds

∣∣∣Ft1 ∨ F̄t1

)
=

EP
( ∫ T

t1

h(s)e−rsΨ2)
s ds

∣∣∣Ft1

)
. (2.5)

1similarly, the relative bene�t Ψ′t ≡ Ψt/Bt compares our bene�t with that investing the money in a savings account.
2It implies that one can not expect a better deal by delaying the "signature" of the contract to the future.
3Note that the optional stopping theorem can be applied since P̄(∆ < ∞) = 1,EP

(
sup

0≤s≤T
Ψ

i)
s

)
< ∞.
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Thus the risk-neutral fair-price at time t1 is
made up of two terms, in correspondence with the
bene�ts at maturity or at decease:

vt1 ≡ v(T |t1, x) = v
1)
t1 + v

2)
t1 (2.6)

where

v
1)
t1 =T̂ pt1+d e−r(T−t1)EP

(
Ψ1)

T

∣∣∣Ft1

)
, (2.7)

v
2)
t1 ≡ EP

( ∫ T

t1

h(s)e−r(s−t1)Ψ2)
s ds

∣∣∣Ft1

)
. (2.8)

We shall �nd it convenient to use the notation
v(T |t1, Xt1) ≡ vt1 to stress that vt1 depends not
only on the "starting" values of time and of stock
(t1 and Xt1) but also on the maturity time T .

In a generic case, explicit evaluation of v
1)
t1 and,

mainly, of v
2)
t1 given by (2.8) can be a di�cult mat-

ter. The case when Ψ2)
τ can be represented as

Ψ2)
τ = Ψ2(Xτ ) in terms of a given increasing func-

tion Ψ2 : R → R is of particular interest in ap-
plications; further, in this case Eq. (2.8) can be
simpli�ed further since the Markovian nature of Xt

yields

v
2)
t1 =

[ ∫ T̂

0

h(s + t1)
Bs

EPx
(
Ψ2)

s

)
ds

]
x=Xt1

. (2.9)

For guaranteed unit-linked contracts the bene-
�t at maturity depends on the value of the asso-
ciated stock but there is a minimum guaranteed
amount if the stock price falls below a �xed level;
this can be taken to correspond to the capital ac-
crued at a �xed interest rate δ, the "technical rate".
The simplest example corresponds to a linear de-
pendence on X in the bene�t: suppose that both
Ψ1,2)

∆ = X∆ + Xt1

(
eδ(∆−t1) − 1

)
, say; here, con-

tingent on an insurance event happening (maturity
∆ = T or death ∆ = τ) the insured receives the
stock plus the interest accrued with rate δ. By sub-
stitution in eqs. (2.7) and (2.8) and using that X ′

t

is also a martingale the fair price is found in explicit
way as

v
1)
t1 =T̂ pt1+d Xt1

(
1 +

Bt1

BT

(
eδT̂ − 1

))
,

v
2)
t1 = Xt1

(
1−T̂ pt1+d+

∫ T

t1

h(s)
Bt1

Bs

(
eδ(s−t1) − 1

)
ds

)
. (2.10)

When the mortality rate µ is constant one recovers
the result of Shen & Xu (2005). A case of more
interest, non-linear in XT , is considered in the next
section.

3. Valuation of endowment insurance
contracts of Brennan & Schwartz
type
We �rst review the case considered by Brennan

& Schwartz (1976) and Boyle & Schwartz (1977)
where Ψ1)

T = max{XT , Xt1e
δT̂ }, Ψ2)

τ = 0. Here, the
insured receives at maturity the value of the associ-
ated stock; further, the initial capital, accrued at a
�xed interest rate δ, is guaranteed, in case the stock
price does not reach this level. In case of decease
before maturity, bene�ciaries are not entitled to any
extra bene�t.

3.1. Pure endowment case
Evaluation of the premium involves determining

the corresponding expectation given by eq. (2.7); it
can be obtained in closed form, as follows. Recall
�rst that Girsanov's theorem implies that the evolu-
tion of Xt under the martingale probability is given
by Eq. (1.1) where the drift κ is replaced by the
instantaneous interest rate r of the market. The
solution that at t1 equals Xt1 is

Xt = Xt1e
σ(Wt−Wt1 )+

(
r−σ2

2

)
(t−t1) Law=

Xt1e
σWt̂+qt̂, t1 ≤ t ≤ T

where we use that independence of Brownian in-
crements implies that Wt − Wt1

Law∼ Wt̂ and de-
�ne q ≡ r − σ2

2 , t̂ ≡ t − t1. Say Xt1 = x. Using
the Markovian nature of the bene�t and the well
known Gaussian distribution of Brownian motion
Wt ∼ N (0,

√
t) we obtain

EP
(
Ψ1)

T

∣∣∣Ft1

)
=

EP
(
Xt1 max{eσWT̂ +qt̂, eδT̂ }|Xt1 = x

)
=

∫
x√
2πT̂

e−y2/(2T̂ ) max{eqT̂+σy, eδT̂ }dy =

x
(
erT̂ Φ

(
m+

√
T̂ ) + eδT̂ Φ(−m−

√
T̂ )

)
(3.1)
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where

m± ≡ r̂

σ
± σ

2
, r̂ ≡ r − δ, T̂ ≡ T − t (3.2)

and Φ is the standard normal distribution function

Φ(x) =
∫ x

−∞
e−z2/2 dz√

2π
. (3.3)

Hence v
1)
t1 ≡ v1)(T |t1, x) =

T̂ pt1+dx
(
Φ

(
m+

√
T̂ ) + e−r̂T̂ Φ(−m−

√
T̂ )

)
. (3.4)

The limit behavior for long values of T̂ is interest-
ing; depending on whether r̂ > 0, r̂ = 0 or r̂ < 0
three di�erent possibilities are found: v1)(T |t1, x)
tends, respectively, to either T̂ pt1+dx ≡ v1)(T |T, x),
to 2T̂ pt1+dx or to ∞. The result is easy to under-
stand. The higher the guaranteed rate the more
interesting the contract becomes. Further, when δ

is higher than the market rate r, the relative bene-
�t tends to∞ asymptotically in time and so it does
the fair price.

3.2. Endowment insurance contract

In the sequel we study valuation for a case that
generalizes the result of Brennan & Schwartz to
a contract paying Ψ1)

T = max{XT , Xt1e
δ(T−t1)} at

expiry or Ψ2)
τ = max{Xτ , Xt1e

δ(τ−t1)} should de-
cease occur before maturity. It turns out that with
this demise bene�t an analytical, exact formula for
the fair price can be also derived if an exponen-
tial distribution is assumed for the decease rate:
h(t) = µe−µ(t−t1) where the parameter µ−1 is the
mean life. In this case, using (2.8) and (3.1) we �nd
v
2)
t1 ≡ v2)(T |t1, x) =

xµ

∫ T̂

0

(
e−µsΦ(m+

√
s) + e−(µ+r̂)sΦ(−m−

√
s)

)
ds

(3.5)
and hence it involves the integral

I ≡
∫ T̂

0

e−αsΦ(m
√

s)ds (3.6)

By interchanging integrals we �nd

I =
1
2α

[
1− |m|√

m2 + 2α
+

2|m|√
m2 + 2α

Φ
( |m|

m

√
(m2 + 2α)T̂

)−

2e−αT̂ Φ
(
m

√
T̂

)]
. (3.7)

Thus, the demise contribution to the price is

v
2)
t1 =

x

2

[
1− m+√

η
+

2m+√
η

Φ
(√

ηT̂
)−

2e−µT̂ Φ
(
m+

√
T̂

)]
+

xµ

2(µ + r̂)

[
1− |m−|√

η

+
2|m−|√

η
Φ

(−
√

ηT̂ sign m−
)−

−2e−(µ+r̂)T̂ Φ
(−m−

√
T̂

)]
(3.8)

where η ≡ m2
++2µ and m± are de�ned in Eq. (3.2).

The premium simpli�es when the insurance com-
pany is committed to pay a technical interest rate δ

satisfying δ = r. In this case m± = ±σ
2 , η = σ2

4 +2µ

and the full price vt1 ≡ v
1)
t1 +v

2)
t1 for such a contract

reads

vt1 = x
[
1 +

σ√
η

(
Φ

(√
ηT̂

)− 1
2

)]
. (3.9)

In Fig. 1 we plot vt1 ≡ v(T |t1, x) = v(T−t1|0, x)
as a function of T − t1. Notice how it starts from
vt1 = x when T − t1 = 0 and then it increases to-
wards x

(
1 + σ

2
√

η

)
.
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Figure 1: Fair price as a function of time to ma-
turity given in years corresponding to a constant
annual interest rate r = 4.5%. Other parameters
are: Xt1 ≡ x = 5, σ = 25%, µ = 0.015
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